Aktionen
Anzeigeoptionen
  • Titel
    The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes
  • Verfasser
  • Erscheinungsort
    Amsterdam
  • Verlag
  • Erscheinungsjahr
    2023
  • Seiten
    11 S.
  • Material
    Sonderdruck
  • Digitales Dokument
  • Standardsignatur
    13061S
  • Datensatznummer
    40003720
  • Quelle
  • Abstract
    Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring.Keywords: Habitat Mapping, Natura 2000, Airborne Laser Scanning, Sentinel-1, Sentinel-2, Random Forest
ExemplarnummerSignaturLeihkategorieFilialeLeihstatus
13061SPDF13061SPDFelektronische PublikationVerfügbar