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Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated
the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and
2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation
workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in
Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data
perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring

classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly
assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to
identify errors in reference data and point to the opportunities for integration in habitat mapping and

monitoring.

1. Introduction

While the climate crisis has gained a lot of attention during the last
years, a closely related crisis, the global loss of biodiversity, has just been
brought to the fore recently (McElwee, 2021). During the last UN
Climate Change Conference in Glasgow 2021 it was shown that these
two challenges have to be addressed and solved simultaneously (COP26,
2021). For local measures of biodiversity protection, it is relevant to gain
sufficient information about the current state and the development of
small-scale, as well as large-scale green spaces. Comprehensive moni-
toring of green spaces reveals the state of climate-relevant, ecological,
economic and social functions. Moreover, it points out to specific mea-
sures that can be taken to maintain, obtain or improve biodiversity.

To promote and harmonize such constant monitoring, relevant areas
may be designated worthy of protection. One Europe-wide measure
established the Natura 2000 network of areas of high biodiversity value
(EUR-Lex, 2022). As of January 2021, 15.6 % of the area of Austria are
classified as Natura 2000 regions with additional regions being already
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nominated (Umweltbundesamt, 2021). The Natura 2000 network aims
to preserve, protect and improve the quality of the natural habitats and
therefore promotes the maintenance of biodiversity and the necessity of
human activities for preservation. As a part of the network, the member
states define and prioritize distinct areas of conservation and should
report on the implementation and the taken measures every-six years.
(Council of the European Union, 1992). To describe and classify Natura
2000 areas, the scheme presented in the annex of the EU’s Habitat’s
directive (HD) is used (Council of the European Union, 2006). The
classification is based on characteristic plant species and communities as
well as on abiotic features, e.g., occurrence area, bedrock, soil or
geomorphological features.

To date, classification, mapping and monitoring mainly relies on
expert-based fieldwork. This approach is labor-intensive and therefore
difficult to be implemented in frequent monitoring and the required
reporting. An opportunity to overcome this challenge is to include data-
driven classification and monitoring of habitats. Therefore, it is neces-
sary to find exhaustive data reflecting characteristic features of different
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habitat types.

Remote sensing provides promising data for classification and
monitoring of habitats. Morphological vegetation features derived from
airborne laser scanning (ALS) point cloud data were shown to be useful
as plant species predictors (Hollaus et al., 2009; Koenig and Hofle, 2016;
Puliti et al., 2017). In addition, the potential of describing vegetation
structure using ALS data was highlighted in several studies (Hollaus
et al., 2006; Wagner et al., 2008; Lindberg et al., 2012; Leiterer et al.,
2015; Coops et al., 2016; Guo et al., 2017). Apart from that, ALS data
was previously shown to be powerful in deriving detailed terrain models
for geomorphological features, especially in forested areas (Kraus and
Pfeifer, 1998). ALS data seems therefore promising for habitat classifi-
cation, but is usually acquired with a repetition rate of several years and
therefore not appropriate for constant monitoring with high temporal
resolution, e.g., on a yearly basis. In contrast to ALS data, satellite-based
data (e.g. Copernicus’ Sentinel data) shows the big advantage of a very
high temporal resolution. Therefore, it is possible to derive phenological
characteristics. Several studies show that this is beneficial for tree spe-
cies classification (Dostalova et al., 2021, 2018; Immitzer et al., 2019;
Lechner et al., 2022) and prediction of grassland or field crop diversity
and condition (Fauvel et al., 2020; Ghassemi et al., 2022; Pfeil et al.,
2020; Vreugdenhil et al., 2018; Vuolo et al., 2018). Additionally,
monitoring could be conducted with a shorter repetition cycle.

Habitat mapping and monitoring with remotely sensed data was
already shown to be promising in several published studies. Vegetation
and terrain features derived from ALS data, partly combined with
hyperspectral images and full waveform analysis, were used successfully
for classifying and monitoring various Natura 2000 habitats (Bassler
et al.,, 2011; Zlinszky et al., 2014, 2015; Alexander et al., 2015;
Demarchi et al., 2020; Osinska-Skotak et al., 2021; Szporak-Wasilewska
et al., 2021). Data from different satellite-based sensors like Sentinel 1
and 2 (S1 and S2) (Tarantino et al., 2021, Pesaresi et al., 2022, Le Dez
et al., 2021), Landsat 8 (Pesaresi et al., 2020), MODIS (Sittaro et al.,
2022) or Quickbird (Hernando et al., 2012) showed potential for clas-
sification and monitoring of various habitat groups like waterbodies,
grassland, bogs, dunes or forests. Although numerous studies show the
use of satellite data as well as ALS data and imagery, relatively few
studies combine these data sources for habitat monitoring (Rasanen
et al., 2014, Nijland et al., 2015, Plakman et al., 2020, Onojeghuo et al.,
2021). In combined approaches, only few ALS-based features like can-
opy height model (CHM) or terrain features are included. Most of these
studies base their analysis on pixel- or plot level. In contrast, the studies
of Hernando et al. (2012), Plakman et al. (2020) and Rasanen et al.
(2014) employed on object level-based approach with segmentation
prior to the classification. The extensive number of studies on habitat
mapping and monitoring using remotely sensed data reflects the broad
relevance of the topic.

Table 1
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In this study, we combine a great variety of features from satellite-
based remote sensing data of high temporal resolution (S1 and S2)
and features from airborne remote sensing data with high geometric
resolution such as ALS and image-based point cloud (IM) data. We
explore the potential of combining different data sources to classify and
monitor forest and grassland habitats of Natura 2000 areas on two study
sites in Vienna, Austria. The aims of this study are (1) to investigate
different combinations of remote sensing data for habitat classification
of the study sites, (2) to create a comprehensive feature-derived habitat
map and (3) to evaluate the results with regard to the potential and
limits of remote sensing-based habitat mapping and monitoring.

We conduct these analyses with a random forest classification with
recursive feature elimination using a 10-fold spatial leave location out
cross validation (LLO-CV) approach, trained, tested and validated on the
available Natura 2000 HD mapping of Vienna on a 10 m pixel size.

2. Data and methods
2.1. Habitats directive classification

In this study, we use habitat groups and types according to the HD
classification (Council of the European Union, 2006; described in detail
in European Commission, 2013). This classification scheme differenti-
ates nine habitat groups with a total of 229 habitat types. The habitat
types are defined by occurring plant species and species communities, as
well as location parameters like soils or geomorphological characteris-
tics and management characteristics (European Commission, 2013).

For this study, we select four habitat types of the group natural and
semi-natural grassland formations (further referred to as grass or
grassland) and seven forest types. The selected types are presented in
Table 1. We refer to Council of the European Union (2006) and European
Commission (2013) for a detailed ecological description of the different
habitats. The habitat maps of the City of Vienna are available as open
data (Stadt Wien - https://data.wien.gv.at, 2020). The most recent
mapping was conducted in 2008 in expert-based field work.

2.2. Study sites

We chose the two study sites as representatives of the two main green
area types in Vienna: hilly, mainly forested alpine foothills in western
Vienna (A) and floodplains with river meadows and riparian forest
vegetation along the Danube River (B).

Study site A (Vienna Woods) is located in the southwest of Vienna.
The study site covers 28.3 km? and is situated in the geological unit of
the “Flyschzone”, and is therefore characterized by clay and sandstone.
The hilly area is cut by three major valleys in the south, north and
northeast. The altitude is between 214 m and 515 m above sea level (a.s.

Habitat types investigated within the two study sites Vienna Woods (A) and Lobau (B), according to the Habitat’s Directive (Council of the European Union, 2006). The

sign * prior to the name indicates priority habitat types.

Habitat groups Habitat type (NATURA Description
2000 Code)

6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (* important

Natural and semi-natural ?rchld sites) . .

. 6240 * Sub-Pannonic steppic grasslands
grassland formations . . . i

6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae)
6510 Lowland hay meadows (Alopecuruspratensis, Sanguisorba officinalis)
9110 Luzulo-Fagetum beech forests
9130 Asperulo-Fagetum beech forests
9170 Galio-Carpinetum oak-hornbeam forests

Forests 9180 * Tilio-Acerion forests of slopes, screes and ravines
91E0 * Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae)
91F0 Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus excelsior or Fraxinus

angustifolia, along the great rivers (Ulmenion minoris)
91GO *Pannonic woods with Quercus petraea and Carpinus betulus
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L.). Forests, with the major occurring forest types of oak-hornbeam and
beech forests, dominate the area. The meadows in between are mainly
lowland hay meadows. The study site covers the Viennese recreation
area “Lainzer Tiergarten”, is part of the “Biospharenpark Wienerwald”
and entirely classified as Natura 2000 nature protection area.

Study site B (Lobau) is part of the “Donau-Auen” National Park in the
riparian forests along the Danube River in the southeast of Vienna. The
22.9 km? of study site B are mainly flat with indications of a former
dominant and now partly regulated braided river system and a flood-
plain landscape. The mean altitude is 153 m a.s.l., stretching from 147 m
to 163 m. The main vegetation is again forests, with a dominance of
alluvial forests and riparian mixed forests.

Fig. 1 shows the habitat group and habitat type coverage for both
study sites. We excluded 13.8 % of the area of study site A and 45.3 % of
the area of study site B from further analysis, as shown in the habitat
group pie charts. These areas were either not assigned to a habitat type
during the initial mapping or excluded due to limited occurrence. The
threshold for a habitat type to be included was set to a minimum of three
independent locations of a minimum of 1 ha each within the study site.
Furthermore, the different locations must be without a buffer of 1 km
from each other to prevent spatial autocorrelation.

2.3. Remote sensing data

As input features for the classification, we use point clouds from ALS,
and image-based point clouds from aerial photographs (IM) as well as
data from S1 and S2. In the following sections, the data are described in
more detail.

2.3.1. High resolution point cloud data

The ALS data covers the entire area of the City of Vienna and was
collected between November 9th and November 24th 2015 under leaf-
off conditions in eight flight campaigns. Two different sensors were
used for the data acquisition: a Riegl LMS-Q680i and a Riegl LMS-Q560
(RIEGL Laser Measurement Systems, Horn, Austria). Both scanners
provide full waveform data acquisition (RIEGL Laser Measurement
Systems, 2012, 2010). The median point density for the whole city area
is 27 echoes/m? for 97 % with up to 12 echoes per beam. A preliminary
point cloud classification (ground, vegetation, buildings, high points,
water bridges, others and errors) was available.

For deriving the IM point cloud, aerial photographs were used. These
aerial photographs were acquired during summer 2018 under leaf-on
conditions and cover the entire area of the City of Vienna. The camera
used was an Ultracam Eagle Mark 2 from Vexcel. The ground sampling
distance (pixel size on the ground) was at least 20 cm. The overlapping
in flight direction was at least 80 %, the overlapping at right angles to
flight direction at least 30 %. The IM point cloud was created using the
software MatchT from Trimble (Trimble, 2022). In addition to the 3D

-
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Fig. 1. The coverage of different habitat types of the two study sites A and B.
The descriptions of the different classes are shown in Table 1. The excluded
areas are not considered for the further classification.
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coordinates, the points are attributed with information from the four
used spectral channels (red, green, blue, colored near infrared).

2.3.2. Sentinel data

The Sentinel satellites are part of the European Commission’s and
European Space Agency’s (ESA) Copernicus program for earth obser-
vation. The data is openly available.

S1 provides data from an active synthetic aperture radar (SAR)
sensor. The used tiles are derived from S1 in C band at a pixel spacing of
10 m from the vegetation period of 2018. In detail, we use the Level 1B
high resolution ground range detected (GRDH) and Level 1a single look
complex (SLC) scenes acquired in the Interferometric Wide (IW) swath
mode. The data from the relative orbits 22 (descending) and 146
(ascending) was extracted separately. The data was seasonally (February
to March, June to August, October to November) and annually averaged.

S2 holds a passive sensor providing multispectral image data. For the
study, we selected three cloud-free scenes from 2018. The scenes were
acquired at different stages of the vegetation period on June 2nd, August
9th and September 28th 2018. For each scene, ten different bands (from
10 m to 20 m original resolution) were used for further feature
extraction.

2.4. Feature extraction

We derived various features as raster layers for the model input.
Therefore, we used the software packages OPALS (OPALS Development
Team, 2022), GDAL (Rouault et al., 2022), SAGA (Conrad et al., 2015),
QGIS (QGIS Development Team, 2022) and R (R Development Core
Team, 2022).

The Sentinel features were party resampled and calculated at 10 m
grid size, the features from ALS and IM point clouds at 1 m grid size.
These 1 m grid size features were subsequently resampled to a 10 m grid.
Therefore, statistical measures (mean, median, standard derivation) are
derived. All features are transformed and reprojected to MGI / Austria
GK East (EPSG 31256). An overview of the derived features is given in
Table 2. In the following paragraphs of this chapter, we describe the
features that might be unclear or unknown to the reader in more detail
and give references to publications which show the exact calculations.

A digital terrain model (DTM), derived from the ALS point cloud, is
the basis for the feature set of terrain features. Terrain features describe
the absolute orientation as well as the relative position of a pixel in its
surrounding. We split the aspect in sine (east-west exposition) and
cosine (north-south exposition) to avoid the numerical challenges close
to 0° / 360° north. The TPI measures the relative slope position of a pixel
(De Reu et al., 2013), the TWI indicates potential runoff (Sgrensen et al.,
2006). We used the preliminary point cloud classification for the water
surface distances in horizontal and vertical direction. The vertical dis-
tance to the closest water surface serves as a proxy for the groundwater
level.

Gap fraction, FC and LAI of the ALS feature set are different measures
for vegetation coverage. The gap fraction shows the proportion of pixels
with a DSM < 0.02 m in a 10 m radius, the fractional cover is calculated
as the share of first echoes higher than 1.5 m of all first echoes per m?.
The LAI is the fraction of leaf area to ground area and approximated by
the share of first echo points to last and single echo points per m?
(Morsdorf et al. 2006). The VCI, the understory height and the mean
maximum echo number give information about the vegetation structure.
The VCI describes the evenness of the point distribution within a voxel
column (van Ewijk et al. 2011). Only points with higher than 0.2 m
above ground are considered. The mean maximum echo serves as a
proxy for vegetation density over the observed vegetation column. We
calculated visibility features using the Solar Radiation and Annual
Insolation Tool of SAGA (Conrad, 2018, 2010). We approximate the
annual sums of potential radiation and insolation hours by calculating
the values for a representative day per month. From the full waveform
analysis, the echo width was extracted at terrain and surface level and
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Table 2
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Features derived from different remote sensing data. FM: February and March, JJA: June, July and August, ON: October and November. Y shows the number of

derived features per feature set.

Feature set Subgroups Features Aggregation and resampling >
Terrain Topographic Sine of aspect, cosine of aspect, slope [deg], topographic positioning index (TPI), Mean, median, standard deviation from 1 m
features features topographic wetness index (TWI) pixels 17
(TF) Distance to water Horizontal and vertical distance to water [m] Mean from 1 m pixels
Vegetation Normalized digital surface model (nDSM) [m], height quantile 90 % [m], gap
structure fraction, fractional cover (FC), understory height [m], leaf area index (LAI),
vertical complexity index (VCI), maximum number of echoes per beam
Mean, median, standard deviation from 1
ALS Visibility (from Duration of insolation [h], diffuse, direct and total radiation [kWh/m?] ean, median, stan i?(rels eviation from & m 45
DSM - ALS) P
Full-waveform Amplitude ratio surface/ground, pulse width surface [nm], pulse width terrain
analysis [nm]
Vegetation nDSM [m]
structure
M di tandard deviation fi 1
M Visibility (from Duration of insolation [h], diffuse, direct and total radiation [kWh/m?] €an, median, Stan ii:als ceviation from 1 m 30
DSM - IM) P
Spectral data Blue, green, red, infrared, normalized difference vegetation index (NDVI)
Vertically polarized sent — vertically polarized received (VV) and vertically FM, JJA, ON, changes from FM to JJA and
polarized sent — horizontally polarized received (VH) backscatter, cross ratio VH/ from JJA to ON, separate for each orbit
S1 VV, coherence 44
Slope VV and VH, correlation VV and VH Yearly, orbits combined
Spectral bands B02, B03, B04, BOS5, B06, BO7, BO8, B8A, B11, B12
02.07.2018 (t1), 09.08.2018 (t2), 28.09.2018
s2 Vegetation indices  BAI, GCI, GEMI, GI, gNDVI, LCCI, NDRESSWIR, NDVI, NDVI2, reNDVI, REPA, (t3), changes from t1 to t2, changes from t2to 165

RETVI, SAVI, SRBRE1, SRBRE2, SRBRE3, SRNIRB, SRNIRG, SRNIRR, SRNIRRE1, 3
SRNIRRE2, SRNIRRE3, WBI - see Immitzer et al. (2019) for further details.

Total number of features

301

the ratio between surface and ground amplitude was calculated. The
echo width serves as a proxy for roughness, the amplitude as a radio-
metric property (Fieber et al., 2013).

From the IM point cloud, the nDSM and the visibility features are
derived equally to the equivalent ALS features. The idea behind this
approach is to test the interchangeability of ALS and IM data. Addi-
tionally, we used the spectral information of the IM point clouds, i.e., the
spectral bands blue, green, red, near infrared (NIR) and the derived
NDVIL

From S1-data, we extracted features sensitive to phenological char-
acteristics of vegetation as well as canopy structures. Higher contribu-
tions of VH backscatter are typically seen as an indicator for volume
scattering in vegetation canopies. Interferometric coherence was esti-
mated between subsequent acquisitions with a temporal baseline of six
days. This feature correlates the reflected phases of the same areas be-
tween six days, where low correlation (< 0.3) indicates dynamic sur-
faces like water or vegetation. The features slope and correlation are
calculated for both VV and VH polarization annually. Slope describes the
relation between radiation incidence angle and backscatter coefficient
as the regression gradient, while correlation represents the corre-
sponding correlation coefficient. These values give hints about vegeta-
tion types and densities. The sensitivity of the described features for
vegetation monitoring was already shown in several studies (Bruggisser
et al., 2021; Vreugdenhil et al., 2018). Dostalova et al. (2018) show the
data processing in more detail.

From the S2 scenes, 23 vegetation indices were derived in addition to
the original ten spectral bands. An extensive description of the used
vegetation indices is shown by Immitzer et al. (2019). The changes be-
tween the different dates (both for S1 and S2 features) were calculated
by subtracting the temporally latter from former feature values.

2.5. Model training, prediction and performance evaluation

We utilize the derived features as input for a classification based on a
random forest model (Belgiu and Dragut, 2016; Breiman, 2001) with

recursive feature elimination (RFE) using mean decrease in accuracy as
described by Immitzer et al., (2012). We implemented the workflow in R
(R Development Core Team, 2022) using the RandomForest package
(Liaw and Wiener, 2002). The habitat mapping described in 2.1 serves as
training as well as test data.

The workflow is split up into a two-step process as shown in Fig. 2. In
a first step, the RFE evaluates all different feature combinations. Input
features are ranked by importance and subsequently reduced until the
best performing feature combination is selected. We limit the training
sample to max. 2500 pixels per considered class to create a more
balanced data set and exclude areas within a 10 m distance from class
borders to limit boundary conditions.

In a second step, the optimal feature combination serves as input
data for a 10-fold spatial LLO-CV setting. For this approach, we create
the folds spatially and slice each study site in east-west direction into ten
areas of equal size. One necessary condition for classes to be included is
that every class considered is present within at least three different sli-
ces. We selected the 10-fold spatial LLO-CV approach to exclude the
effects of spatial autocorrelation when applying the models on the test
areas (as described by Meyer et al., 2018) and to get an independent
model-based classification for the whole area of the study sites. For each
fold of the LLO-CV, training pixels are selected randomly from the nine
training folds. Again, we set the maximum number of pixels per class to
2500 and exclude 10 m distance from class borders. Using these pixels,
we train a model and obtain the out-of-bag (OOB) error as a first mea-
sure of accuracy. For a detailed description of the OOB error, see Brei-
man (2001). With the trained model, we subsequently predict the whole
area of the test fold. By changing the test fold, we can predict the whole
study sites comprehensively with ten model training and prediction
runs.

For the RFE as well as for the 10-fold spatial LLO-CV, we set the
number of trees of the random forest to 500. The number of variables
used for splitting mtry is set to the rounded down square root of the
number of input variables.

We apply this two-step process first on the level of habitat groups to
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Optimized
feature set
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comparison map to
initial mapping
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R
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Confusion matrices and
accuracy and agreement metrics
of OOB analysis and results of
the model-based classification

Fig. 2. Two-step classification workflow. Step 1. Optimizing input feature set by a recursive feature elimination (RFE) within random forest (RF) modelling (see
Immitzer et al., 2012 for details). Step 2. Using the optimized feature set for training and applying of RF classifier in a 10-fold leave location out cross validation (LLO-
CV) setup of the whole study area. For both steps, subsamples with max. 2 500 pixel per class are used. Confusion matrices and accuracy estimates are created both
for out-of-bag (OOB) analysis during the model training and for the independent evaluation on the test sites. We run the workflow first for habitat groups (i.e.,
grassland, forest) and then, based on the group results, individually for different grassland and forest habitat types.

classify forest and grassland. In a consecutive step, we use this habitat
group classification results as mask layers for the second-level classifi-
cation of habitat types: the two-step process of RFE and 10-fold spatial
LLO-CV is performed individually for grassland habitat types and forest
habitat types. We compare and the final habitat group and type pre-
dictions to the reference data and validate the results by extracting
confusion matrices and accuracy and agreement metrics (i.e., overall
accuracy, kappa, user’s (UA) and producer’s accuracy (PA), F1l-score).
Additionally, we create maps to investigate spatial patterns of
misclassifications.

We estimate the performance of all possible 31 different feature set
combinations (FSCs) of the feature sets TF, ALS, IM, S1 and S2 to analyze
the added values of different feature sets and investigate the combina-
tion of airborne and satellite-based remote sensing data for habitat
classification. The described model training and classification is there-
fore conducted 31 times. We consider the OOB errors from the trained
models as well as the overall accuracies to rank the performance of
different FSCs. The OOB errors are averaged over the 10 folds of each
FSC.

The 31 FSCs are grouped to ten single and 21 combined FSCs. Single
FSCs include either a single feature set or combinations of either
airborne only (TF, ALS, IM) or satellite-based only (S1, S2) feature sets.
Combined FSCs include a combination of airborne and satellite-based
feature sets. We calculate the median OOB error and the median over-
all classification error for each classification (habitat groups, forest types
and grassland types) for single FSCs and combined FSCs separately and
analyze the significance of the median differences, due to skewed dis-
tribution, with a Mann-Whitney-U-Test.

2.6. Evaluation of the results

We evaluate the output of the model both in desktop and fieldwork.

We compare the maps classified by the model to a series of annual
orthophotos to detect possible dynamics in vegetation. Additionally, we
investigate chosen areas with differences between reference and classi-
fication results in the field.

3. Results
3.1. Investigate feature set combinations

Table 2 shows the results of the comparison of single and combined
FSCs. The median OOB error is obtained from the ten LLO-CV models,
the overall classification error from the comprehensive application of
the trained models on the whole study sites. The FSCs include the fea-
tures selected by the individual RFE. We considered both values for the
habitat group classification and separately for habitat type classification
of forests and grassland. For all OOB errors and classifications, combined
FSCs outperform single FSCs in regards to classification accuracy. OOB
and overall classification errors are lower for combined FSCs for all
considered classifications, and, with one exception (overall classifica-
tion error of grass, study site B), all differences are significant on a 5 %
significance level. We can therefore state that combining airborne and
satellite-based remote sensing data leads to better classification results
than using airborne or satellite-based data only.

One additional interesting outcome is visible in Table 3: we observe
great differences between the median OOB error values and the median
overall classification errors. A detailed look to the results confirms the
observed trends. We assume this might be a result of spatial autocor-
relation of randomly selected training pixels for tree generating and
OOB testing during the model training. As an additional factor, some
classes are underrepresented in the model training, although training
samples were at least balanced regarding to the order of magnitude.
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Table 3
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Performance analysis of different feature set combinations (FSCs) after recursive feature elimination (RFE). Groups shows the results of the first level classification
(discriminate grass and forest), forest and grass refer to the second level classification of different grassland habitat types and forest habitat types. The p-value relates to
the result of the Mann-Whitney U Test for rank sum differences (n = 31, 10 single and 21 combined FSCs).

OOB error overall classification error

median single median combined p-value median single median combined p-value

groups 1.9 % 1.5% < 0.001 4.4 % 4.2% 0.044
study site A forest 14.5 % 12.4 % 0.008 49.6 % 41.7 % < 0.001
grass 9.4 % 5.1 % 0.002 45.1 % 39.9 % < 0.001

groups 2.4 % 2.0 % 0.003 9.4 % 8.8% 0.003

study site B forest 15.2 % 9.7 % 0.003 30.8 % 26.7 % 0.007

grass 9.1 % 2.7 % 0.001 30.8 % 29.5 % 0.125

Table 4
Results of the habitat group classification for study site A based on the FSC of all input feature sets. (UA. user’s accuracy = precision, PA: producer’s accuracy = recall).
study site A observed habitat groups sum (pred.) UA
grass forest
predicted habitat groups [pixels] grass 26 165 7866 34031 76.9 %
forest 2481 218 577 221 058 98.9 %
sum (obs.) 28 646 226 443 255 089
PA 91.3 % 96.5 %
F1-score 0.835 0.977

overall accuracy: 95.9 %, kappa: 0.81

Table 5
Results of the habitat group classification for study site B based on the FSC of all input feature sets. (UA: user’s accuracy = precision, PA: producer’s accuracy = recall).
study site B observed habitat groups sum (pred.) UA
grass forest
predicted habitat groups [pixels] grass 21 358 9884 31 242 68.4 %
forest 1900 101 876 103 776 98.2 %
sum (obs.) 23 258 111 760 135018
PA 91.8 % 91.2%
Fl-score 0.784 0.945

overall accuracy: 91.3 %, kappa: 0.73

3.2. Comprehensive classification results

In 3.1, we showed the benefit of combining airborne and satellite
based remote sensing data. Therefore, we are limiting the presentation
of our further results to the FSC including all input feature sets (TF, ALS,
IM, S1, S2). The detailed results for all different FSCs are shown in the
supplements (Table Al). The FSC including all input features does not
perform best for all classifications, but the differences are negligible and
result from the randomization during the recursive feature elimination
and random forest model training. In average of all considered OOB and
overall classification errors, this FSC shows the best results and therefore
we can assume that the model is generally robust.

3.2.1. Habitat group classification

In the first level of classification, we investigate the discrimination of
the two habitat groups forest and grassland. Table 4 and Table 5 show
the results for study sites A and B. For both study sites, the overall
classification accuracy is higher than 90 % and the kappa for both study
sites show high agreement values (0.81 and 0.73). The kappa values
have to be interpreted statistically carefully considering class prevalence
(Foody, 2020).

With UA and PA, we consider additionally class-specific accuracy
measures. The UA is a probability measure: it represents the chance of a
randomly selected pixel of a predicted class showing the same class in
the reference data. The PA shows the share of the correctly classified

8 km

- Mapped group = predicted group
Mapped group = predicted group

Grassland

- Forests

Fig. 3. Results of the habitat group classification. Sub-figures a-c refer to study
site A, d-f to study site B. Sub-figures a and d show the reference data, b and e
the predicted habitat groups. Sub-figures c¢ and f indicate the differences of
reference data and prediction.
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reference pixels. The Fl-score is the harmonic mean of PA and UA,
represents a combined class-specific measure and is useful for
comparing class performances of imbalanced data. For both study sites,
we can see comparably lower UA values for grassland. Almost 1/4 (study
site A) and 1/3 (study site B) of the pixels classified as grassland are
mapped as forests in the reference data set. Comparing to the UA of
forests, the opposite way of mapped forests classified as grasslands are
neglectable with values lower than 2 % for both study sites. We can
therefore assume an overestimation of grassland habitats for both study
sites. Comparing the F1-scores, we see that the classifier performs better
for forest habitats.

Fig. 3 shows the comparison of mapped habitat groups (reference
data) and the maps of the model classification, including a directly
comparing binary layer. We can see the spatial patterns of the confusion
matrices results here. Most misclassified areas are one to three pixel-
wide belts located at the border regions between grassland and forest
habitats. Another source of misclassifications are small patches of
grassland within forests: the classifier recognizes small clearings as
grassland, while the reference data shows a generalized forest patch.
Interestingly, single trees or small tree patches on grassland do not show
up as small forest patches in grassland areas — the overestimation of
grassland plays well here.

3.2.2. Habitat type classification

The second level of classification deals with habitat types within the
forest and grassland habitat groups. We performed the two-step classi-
fication process independently for grassland and forest habitat types and
combined the result in one confusion matrix and one map series per
study site. Table 6 and Table 7 show the confusion matrices for study site
A and B. For study site A, we get an overall accuracy of 63.0 % for nine
habitat types and a kappa value of 0.43. For study site B, we reach a
higher overall accuracy of 76.5 % and a kappa value of 0.54 for six
habitat types. Parts of the overall classification errors are inherited from
the first level of classification. The training data for the 10-fold spatial
LLO-CV is depicted from the original mapping, but the prediction is
made on the habitat group mask resulting from the first level classifi-
cation described in 3.2.1.

The F1-scores reveal large differences in class accuracies. For study
site A, the Fl-scores range from 0.004 (class 9180) up to 0.719 (class
9170). The F1-scores of the habitat types of study site B show a smaller
variety than the corresponding values of study site A ranging from 0.244
(class 6240) up to 0.869 (class 91F0). High F1-scores tend to occur more
often for classes with a higher number of observed habitat pixels of a
certain habitat type. Correlating the sum of observed habitat types and
the Fl-score for both study sites, a positive correlation of p = 0.62 is
reached. The correlation of the sum of observed habitat types and the UA
shows even higher correlation of p = 0.72. One explanation is that,

Table 6
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although the training data was (partly) balanced, the greater variety of
training pixels coming from a larger pool of independent habitat sites
strengthens the classifier.

Fig. 4 shows the comparison of mapped habitat types (reference
data) and the maps of the model classification with a binary layer
comparing the two maps. In contrast to the habitat groups, there are
obvious patterns of misclassification. Study site A shows large areas as
well as small patches of differences between reference and classified
maps more or less evenly distributed over the whole area. Study site B
reveals hot spots of differences in the center region and in the north. A
closer look on class level reveals some patterns: an observation we can
make in both study sites is the overestimation of class 91E0 (Alluvial
forests) close to water bodies. Furthermore, the maps reveal numerous
differing pixels in habitat type border regions. While the reference data
shows clear borders, the habitat type boundaries of the classified map
are frayed.

3.3. Evaluation of the results

The evaluation of the results considers the mapped differences be-
tween reference data (i.e., mapped habitat groups and types) and model
predictions (i.e., classified habitat groups and types) shown in Fig. 4, c
and f. One challenge of the study that is important to be considered in
this context is the different acquisition periods of remote sensing data for
the model (2015 — 2018) and reference data (2008). We distinguish the
differences between mapped and classified habitat groups and types
between three different categories: 1) model classification errors, 2)
initial mapping mistakes or inaccuracies 3) real changes of habitat
groups or types. Following, we describe the evaluation of selected
examples.

The focus of the desktop evaluation based on orthophoto inspection
was on habitat groups. We can trace back some of the discrepancies of
forest and grassland habitat groups with a closer look at the maps: one
challenge arises with rasterizing the reference data that was originally
provided in a vector. We can find extrapolations of up to half a pixel
between two different classes and up to one pixel on external borders of
the study site. Additionally, we could find ambiguous mapping strate-
gies of forest/grassland borders (stem or canopy, with buffers in both
direction) when comparing the vector data to orthophotos. These ob-
servations explain the misclassified belts described in 3.2.1. and can be
seen as a combination of model classification errors and initial mapping
inaccuracies. Other misclassification can be traced back to classification
errors only: we found young forest stands misclassified as grassland. This
might be a result of the low average height in the nDSM. Furthermore,
we found explicit examples of initial mapping mistakes of habitat
groups: areas, which can be clearly identified as forests in annual
orthophoto series starting from 2006, are mapped as grassland in the

Results of the habitat type classification for study site A based on the FSC of all input feature sets. (UA. user’s accuracy = precision, PA. producer’s accuracy = recall).
Misclassifications with grey background are inherited from the first level classification (see Table 1 for class definitions).

study site A observed habitat types [pixels] sum (pred.) UA

6210 6410 6510 9110 9130 9170 9180 91E0 91GO

predicted habitat types [pixels] 6210 3139 746 2714 22 1180 2539 26 199 222 10 787 29.1 %

6410 228 259 99 0 54 171 0 12 6 829 31.2%

6510 3944 798 14 238 12 394 2067 10 699 253 22 415 63.5 %

9110 5 0 10 18 1343 1727 83 74 29 3289 0.5 %

9130 283 59 201 1221 44 585 30 384 782 236 520 78 271 57.0 %

9170 609 112 580 520 19 961 93 951 905 632 2488 119 758 78.5 %

9180 2 0 1 131 218 970 7 10 15 1354 0.5 %

91E0 60 47 343 223 1400 5765 111 4584 673 13 206 347 %

91GO 77 20 72 39 908 3826 33 159 46 5180 0.9 %

sum (obs.) 8347 2041 18 258 2186 70 043 141 400 1957 6605 4252 255 089

PA 37.6 % 12.7 % 78.0 % 0.8 % 63.7 % 66.4 % 0.4 % 69.4 % 1.1%
F1-score 0.328 0.180 0.700 0.007 0.601 0.719 0.004 0.463 0.010

overall accuracy: 63.0 %, kappa: 0.43
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Table 7
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Results of the habitat type classification for study site A based on the FSC of all input feature sets. (UA: user’s accuracy = precision, PA: producer’s accuracy = recall).
Misclassifications with grey background are inherited from the first level classification (see Table 1 for class definitions).

study site B observed habitat types [pixels] sum (pred.) UA
6210 6240 6510 91E0 91F0
predicted habitat types [pixels] 6210 9454 1648 1244 1487 4914 18 747 50.4 %
6240 905 648 48 306 767 2674 24.2 %
6510 717 35 6659 628 1782 9821 67.8 %
91EO0 209 128 160 6142 12514 19153 321 %
91F0 994 184 225 2780 80 440 84 623 95.1 %
sum (obs.) 12279 2643 8336 11 343 100 417 135018
PA 77.0 % 24.5 % 79.9 % 54.1 % 80.1 %
F1-score 0.609 0.244 0.733 0.403 0.869

overall accuracy: 76.5 %, kappa: 0.54

Habitat types (occurences in study sites)

Grasslands Forests

6210 (A, B) o110 (A) Ml 91r0 (A, 3) [l Mapped type =
predicted type
6240 (B) 9130 () [l 91r0 ®
Mapped type =
I 6410 (A) B o170 ) [ 91G0 (A predicted type
B 6510 (A,B) [ 9180 (A)

Fig. 4. Results of the habitat type classification. Sub-figures a-c refer to study
site A, d-f to study site B. Sub-figures a and d show the reference data, b and e
the predicted habitat types. Sub-figures ¢ and f indicate the differences of
reference data and prediction.

reference data.

We checked the habitat type maps in the field in October 2021 in
both study sites for selected areas. Field evaluation revealed both areas
of model classification errors and differences between the reference data
and the situation in the field (differences of category 2 and 3). Dividing
initial mapping errors and inaccuracies from real habitat changes turned
out to be challenging for certain habitat types. We could identify areas of
clear initial mapping errors, but we assume that some detected differ-
ences (for example the frayed habitat type boundaries) can be traced
back to habitat shifts and habitat changes since the initial mapping of
2008.

A comprehensive and therefore quantifiable evaluation of the dif-
ferences between mapped and classified habitat types and groups for the
whole study sites was not possible in the scope of the study. Therefore,
we cannot quantify the differences according to the categories of dif-
ference 1) — 3), but we assume the dominant shares are model classi-
fication errors.

4. Discussion
4.1. Investigation of different feature set combinations

We could clearly show that the combination of airborne and satellite-
based remote sensing data is superior to airborne only as well as
satellite-based only approaches for habitat classification in forest land-
scapes. Our findings are therefore in accordance with previous studies
combining ALS and satellite-based data for tree species and forest clas-
sifications, like ALS and Landsat data for wildlife habitat classification
(Nijland et al., 2015), ALS and S2 for tree species classification (Plakman
et al.,, 2020) or ALS and QuickBird multispectral imagery for forest
species classification (Ke et al., 2010). All studies highlighted the
improvement in accuracy of the combined data approach. With our
study, we can confirm the findings for habitat mapping and show that
the differences are significant for forest habitat types and habitat groups.

For grasslands, we could show the significance only for one study
site. This finding consists with study on grassland habitat discrimination
using S2 time series: adding terrain information (DTM) to S2 data does
not increase the overall accuracy, but Fl-scores of single classes (Tar-
antino et al., 2021). The structure of grassland habitats tends to be less
complex with a lower vegetation height. Therefore, we expect that ALS
structure features have less explanatory power. Another impact is that
simple structure changes like mowing can be detected by S1 coherence
features (De Vroey et al., 2021) as well.

4.2. Out-of-bag error vs Overall classification error

For the ranking of the performance of different FSCs, we evaluated
both OOB errors and overall classification errors and observed notable
differences. For the chosen FSC of all feature sets, the OOB error and the
overall classification error diverge by up to 6.9 percentage points for
habitat groups, 24.5 percentage points for forest types and 27.8 per-
centage points for grassland types, where always the OOB error provides
the lower values (i.e. more optimistic results). This outcome is contrary
to previous studies (Immitzer et al., 2019; Lawrence et al., 2006; Vuolo
et al., 2018; Zhong et al., 2014) stating that OOB errors are comparable
to assessments based on a separate dataset for validation, presupposing
that the reference data are well-distributed, representative and inde-
pendent. In this context, we have to state that for our pixel-based
approach, the training observations (pixels) in our models are to a
large degree spatially dependent and therefore auto-correlated. This is
especially true for small groups with only a few occurrences in the study
site. We called for only three independent locations per class. Therefore,
we expect auto-correlation within training data, although having a large
number of training pixels (due to the defined prerequisites at least 2000
before boundary buffer elimination) per class. These spatial dependent
training pixels can influence the results of bagging within the random
forest model. This is negligible for ranking FSCs as done in 3.1, but for
absolute accuracy assessment, we rely in our study on cross validation
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rather than OOB errors. For the cross validation, we chose the 10-fold
spatial LLO-CV as described by Meyer et al. (2018) to avoid spatial
overfitting and make the overall accuracy robust. We propose further to
consider this.

4.3. Classification accuracy

The overall accuracy of our model-based classification reaches 63.0
% for nine habitat types of study site A (six forest, three grassland types)
and 76.5 % for five habitat types of study site B (two forest, three
grassland types). Comparing the results directly to other studies on
habitat classification is challenging, as input data, considered habitat
types as well as study designs and scale vary. Nevertheless, the results
are in line with similar studies on classification of HD habitat types.
Bassler et al. (2011) achieve overall accuracies of 68.8 % and 72.6 % for
four forest habitat types using ALS data. Demarchi et al. (2020) reach
overall accuracies between 65.2 % and 77.4 % for three grassland
habitat types with hyperspectral airborne images and ALS data, Zlinszky
et al. (2014) show an overall accuracy of 68 % for 10 grassland classes
and 75 % for five grassland classes using ALS data. Pesaresi et al. (2022)
use S2 time series, topography and lithology as input for classifying
eleven habitat types of different groups and reach an overall accuracy of
85.6 %. Rasanen et al. (2014) based their habitat classification on a
different classification scheme and reached an overall accuracy of 79.1
% for 28 habitat types in a boreal forest landscape using high resolution
satellite imagery, CHM and DTM.

We found that imbalanced class occurrences in the overall data have
negative effects on class-specific accuracies for underrepresented clas-
ses. This is shown by comparably very low Fl-scores for rare habitat
types. These results reflect those of other studies (Immitzer et al., 2019;
Sheeren et al., 2016). We showed that balancing training samples does
not efficiently counteract the issue, as the individual observation (in our
case pixels) are (spatially) dependent. This points to the importance of
(at least group wise) independent training observations, not only inde-
pendence between training and test data. Our minimum number of three
independent locations of a minimum size of 1 ha (equals 1 000 observed
pixels per location) turned out to be too little for a sound classification of
the rare habitat types. One approach would be to buffer pixels within the
training areas to avoid at least direct neighboring pixels. Therefore, it
has to be discussed, what buffer on what scale guarantees pixels to be
independent. Small classes are thus further reduced in size.

In 3.3 we addressed the challenges of different acquisition dates
between reference data and model input data. We identified inaccura-
cies and errors of different sources in the reference data; therefore, ac-
curacy estimates require a careful interpretation.

4.4. Evaluation of the results and usability for operational mapping and
monitoring

Fig. 1 shows the share of the study site areas we used for our study:
13.8 % of study site A and 45.3 % of study site B were excluded from
further analysis. These areas were either not assigned to a distinct class
in the reference data or belong to rare classes and therefore offer too
little data to train the model. The class accuracy results revealed that,
from the model’s perspective, even more classes should be excluded due
to infrequent occurrence. Within the classification, we reduced the in-
fluence of spatial autocorrelation with the spatial partitioning of
training and testing data. Nevertheless, training and testing area are still
within the same landscape element, therefore the model accuracies only
account for similar regions. We note that satisfactory area-wide habitat
classification, including rare habitat types, cannot be achieved with our
proposed approach.

The conditions described in the paragraph above make a discussion
of the general usability of model-based habitat classification in opera-
tional use necessary. Despite all the limiting factors, we could reach
good results for frequently occurring classes. All classes with more than
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12 000 pixels in the study site reached F1-scores greater than 0.6. Hence,
the trained models can at least support initial classification of regions
similar to the investigated study sites. The models can reveal areas of
common habitats and indicate areas with need for expert-based classi-
fication. For this, it can be helpful to show classification probabilities
rather than an absolute assignment of a pixel to one class and apply the
classification on homogeneous segments rather than pixels. Addition-
ally, we showed that the model-based classification could assist in
monitoring and evaluation of reference data. We could reveal initial
mapping mistakes and indications of habitat shifts and changes. For
monitoring, we can again state that our tested model can support expert-
based fieldwork by pointing out areas worth investigating.

4.5. Limitations

The pixel-based approach of this study sets the minimum mapping
unit of habitat types to squares of 100 m2. We chose this approach in line
with other studies working on habitat classification described in Chapter
1 Introduction. The benefits are the possibility for a straightforward
classification without the need to define further homogeneity criteria or
area sizes for mapping units. We identified the challenges and limits
related to this approach clearly in this study, i.e., inaccuracies at boarder
regions and scattered patterns. Another challenge of the pixel-based
approach is the fusion of different data sources at different resolutions
to a common grid. This leads to resample effects, especially as the raw
data is initially provided in different coordinate reference systems. The
results of the pixel-based approach could possibly be improved by
morphological operations or label smoothing on the final maps to reduce
salt-and-pepper effects (Li et al., 2019; Schindler, 2012). A different
possibility would be the delineation of homogeneous segments prior to
classification to use an object-based approach (Hernando et al., 2012;
Rasanen et al., 2014). The challenge of this approach is to identify
measures of homogeneity for object segmentation in the context of
habitats, which are characterized by high biodiversity value.

The presented classification performs best on frequently occurring
habitat types. Therefore, a clear limitation we state is the classification
accuracy for habitat types with limited occurrence in the training data.
Very rare types within the study sites were excluded prior to the model
training and are therefore not considered at all in this study. As the
monitoring of rare habitats is often of high interest, this is a clear
drawback of the proposed approach. Considerations to address these
limitations are to include classification probabilities to the mapping. By
using class probabilities rather than assigning distinct classes to the
pixels, rare habitats could probably be still be included in the model and
classification uncertainties can be revealed.

A clear limitation of our presented approach is the fact, that the
model is trained on very local conditions. Therefore, we only expect it to
be useful to classify habitats in neighboring areas with similar topo-
graphic, hydrological and structural conditions. The support for local
applications is anyway still valuable. For a more generalized and larger-
scale mapping and monitoring of biodiversity we refer to the possibility
of remote sensing data to estimate essential biodiversity variables
(Skidmore et al., 2021).

5. Conclusion

In this study, we could show the benefit of combining airborne and
satellite-based remote sensing data for habitat classification. We could
show the significance of the combination of the data sources for habitat
groups and forest habitat types. The high temporal resolution of Sentinel
data provides information about dynamics, the high geometric resolu-
tion of airborne data gives insight in vegetation structure and topo-
graphic and spectral information on a smaller scale. Both information is
useful and complementary for characterizing habitats.

We combined all feature sets from Sentinel-1 (S1), Sentinel-2 (S2),
airborne laser scanning (ALS) and image-based point cloud (IM) data to
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train a random forest model and predict the overall study sites using a
10-fold spatial leave-location-out cross validation (LLO-CV). With the
presented workflow, we derived confusion matrices of different habitat
types as well as habitat maps. We achieved overall accuracies of 63 % to
76.5 % for up to nine different habitat types per study site and class
accuracies with Fl-scores from 0.60 to 0.87 for frequently occurring
forest and grassland habitat types. Additionally, we showed the capa-
bility of model-based classification maps to identify initial mapping
errors in reference data and to monitor habitat distribution. In summary,
we can state that habitat classification by trained models on pixel scale
has a great potential to support expert-based habitat mapping and
monitoring in forest landscapes.

CRediT authorship contribution statement

Anna Iglseder: Conceptualization, Methodology, Validation, Formal
analysis, Investigation, Data curation, Writing — original draft, Visuali-
zation. Markus Immitzer: Methodology, Software, Formal analysis,
Writing — review & editing. Alena Dostalova: Formal analysis. Andreas
Kasper: Resources, Validation. Norbert Pfeifer: Writing — review &
editing, Supervision. Christoph Bauerhansl: Resources. Stefan
Schottl: Resources. Markus Hollaus: Conceptualization, Methodology,
Software, Writing — review & editing, Supervision, Project administra-
tion, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgements

The ALS data are provided by the municipality of Vienna. The IM
data are provided by the Austrian Research Centre for Forests. Sentinel-1
data were extracted from the Austrian Data Cube (ACube) operated by
EODC and supported by the ACube partners and processed in the
framework of the FFG Austrian Space Applications Programme ASAP 14
“Austrian Data Cube” project (grant agreement number 865999). The
ALS and Sentinel-2 data processing and classification work was founded
by the FFG Austrian Space Applications Programme ASAP 15 “Anwen-
dungsmoglichkeiten von Sentinel-Daten fiir ein Monitoring im Umwelt-
und Naturschutz in Stadten am Beispiel Wien, SeMoNa22” (grant
agreement number 881400). The authors acknowledge TU Wien Bib-
liothek for financial support through its Open Access Funding
Programme.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jag.2022.103131.

References

Alexander, C., Dedk, B., Kania, A., Miicke, W., Heilmeier, H., 2015. Classification of
vegetation in an open landscape using full-waveform airborne laser scanner data.
Int. J. Appl. Earth Obs. Geoinformation 41, 76-87. https://doi.org/10.1016/j.
jag.2015.04.014.

Bassler, C., Stadler, J., Miiller, J., Forster, B., Gottlein, A., Brandl, R., 2011. LiDAR as a
rapid tool to predict forest habitat types in Natura 2000 networks. Biodivers.
Conserv. 20, 465-481. https://doi.org/10.1007/s10531-010-9959-x.

Belgiu, M., Dragut, L., 2016. Random forest in remote sensing: A review of applications
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24-31. https://doi.
org/10.1016/j.isprsjprs.2016.01.011.

10

International Journal of Applied Earth Observation and Geoinformation 117 (2023) 103131

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5-32. https://doi.org/10.1023/A:
1010933404324.

Bruggisser, M., Dorigo, W., Dostélova, A., Hollaus, M., Navacchi, C., Schlaffer, S.,
Pfeifer, N., 2021. Potential of Sentinel-1 C-Band Time Series to Derive Structural
Parameters of Temperate Deciduous Forests. Remote Sens. 13, 798. https://doi.org/
10.3390/rs13040798.

European Commission, 2013. Interpretation Manual of European Union Habitats, version
EUR 28 [WWW Document]. URL https://eunis.eea.europa.eu/references/2435
(accessed 28.4.22).

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J.,
Wichmann, V., Bohner, J., 2015. System for Automated Geoscientific Analyses
(SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991-2007. https://doi.org/10.5194/gmd-8-
1991-2015.

Conrad, O., 2010. Tool Potential Incoming Solar Radiation / SAGA-GIS Tool Library
Documentation (v6.4.0) [WWW Document]. URL https://saga-gis.sourceforge.io
/saga_tool doc/6.4.0/ta lighting 2.html (accessed 18.5.22).

Conrad, O., 2018. Tool Potential Annual Insolation / SAGA-GIS Tool Library
Documentation (v7.6.1) [WWW Document]. URL https://saga-gis.sourceforge.io
/saga_tool doc/7.6.1/ta lighting 7.html (accessed 18.5.22).

Coops, N.C., Tompaski, P., Nijland, W., Rickbeil, G.J.M., Nielsen, S.E., Bater, C.W.,
Stadt, J.J., 2016. A forest structure habitat index based on airborne laser scanning
data. Ecol. Indic. 67, 346-357. https://doi.org/10.1016/j.ecolind.2016.02.057.

COP26, 2021. Protecting and restoring nature for the benefit of people and climate.
[WWW Document]. UN Clim. Change Conf. COP26 SEC - Glasg. 2021. URL https://
ukcop26.org/nature/ (accessed 7.4.22).

Council of the European Union, 2006. Council Directive 2006/105/EC of 20 November
2006 adapting Directives 73/239/EEC, 74/557/EEC and 2002/83/EC in the field of
environment, by reason of the accession of Bulgaria and Romania, OJ L.

De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., Chu, W.,
Antrop, M., De Maeyer, P., Finke, P., Van Meirvenne, M., Verniers, J., Crombé, P.,
2013. Application of the topographic position index to heterogeneous landscapes.
Geomorphology 186, 39-49. https://doi.org/10.1016/j.geomorph.2012.12.015.

De Vroey, M., Radoux, J., Defourny, P., 2021. Grassland Mowing Detection Using
Sentinel-1 Time Series: Potential and Limitations. Remote Sens. 13, 348. https://doi.
org/10.3390/rs13030348.

Demarchi, L., Kania, A., Cigzkowski, W., Piérkowski, H., Oswiecimska-Piasko, Z.,
Chormanski, J., 2020. Recursive Feature Elimination and Random Forest
Classification of Natura 2000 Grasslands in Lowland River Valleys of Poland Based
on Airborne Hyperspectral and LiDAR Data Fusion. Remote Sens. 12, 1842. https://
doi.org/10.3390/rs12111842.

Dostalova, A., Wagner, W., Milenkovié, M., Hollaus, M., 2018. Annual seasonality in
Sentinel-1 signal for forest mapping and forest type classification. Int. J. Remote
Sens. 39, 7738-7760. https://doi.org/10.1080/01431161.2018.1479788.

Dostalova, A., Lang, M., Ivanovs, J., Waser, L.T., Wagner, W., 2021. European Wide
Forest Classification Based on Sentinel-1 Data. Remote Sens. 13, 337. https://doi.
org/10.3390/rs13030337.

EUR-Lex, 2022. EUR-Lex - Natura 2000 [WWW Document]. URL https://eur-lex.europa.
eu/EN/legal-content/glossary/natura-2000.html (accessed 26.4.22).

Fauvel, M., Lopes, M., Dubo, T., Rivers-Moore, J., Frison, P.-L., Gross, N., Ouin, A., 2020.
Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image
time series. Remote Sens. Environ. 237, 111536 https://doi.org/10.1016/j.
rse.2019.111536.

Fieber, K.D., Davenport, 1.J., Ferryman, J.M., Gurney, R.J., Walker, J.P., Hacker, J.M.,
2013. Analysis of full-waveform LiDAR data for classification of an orange orchard
scene. ISPRS J. Photogramm. Remote Sens. 82, 63-82. https://doi.org/10.1016/j.
isprsjprs.2013.05.002.

Council of the European Union, 1992. Council Directive 92/43/EEC of 21 May 1992 on
the conservation of natural habitats and of wild fauna and flora, OJ L.

Foody, G.M., 2020. Explaining the unsuitability of the kappa coefficient in the
assessment and comparison of the accuracy of thematic maps obtained by image
classification. Remote Sens. Environ. 239, 111630 https://doi.org/10.1016/j.
r5e.2019.111630.

Ghassemi, B., Dujakovic, A., Z6ttak, M., Immitzer, M., Atzberger, C., Vuolo, F., 2022.
Designing a European-Wide Crop Type Mapping Approach Based on Machine
Learning Algorithms Using LUCAS Field Survey and Sentinel-2 Data. Remote Sens.
14, 541. https://doi.org/10.3390/rs14030541.

Guo, X., Coops, N.C., Tompalski, P., Nielsen, S.E., Bater, C.W., John Stadt, J., 2017.
Regional mapping of vegetation structure for biodiversity monitoring using airborne
lidar data. Ecol. Inform. 38, 50-61. https://doi.org/10.1016/j.ecoinf.2017.01.005.

Hernando, A., Arroyo, L.A., Velazquez, J., Tejera, R., 2012. Objects-based Image Analysis
for Mapping Natura 2000 Habitats to Improve Forest Management. Photogramm.
Eng. Remote Sens. 78, 991-999. https://doi.org/10.14358/PERS.78.9.991.

Hollaus, M., Miicke, W., Hofle, B., Dorigo, W., Pfeifer, N., Wagner, W., Bauerhansl, C.,
Regner, B., 2009. Tree species classification based on full-waveform airborne laser
scanning data. Presented at the Silvilaser 2009, College Station, Texas, USA, p. 10.

Hollaus, M., Wagner, W., Eberhofer, C., Karel, W., 2006. Accuracy of large-scale canopy
heights derived from LiDAR data under operational constraints in a complex alpine
environment. ISPRS J. Photogramm. Remote Sens. 60, 323-338. https://doi.org/
10.1016/j.isprsjprs.2006.05.002.

Immitzer, M., Atzberger, C., Koukal, T., 2012. Tree Species Classification with Random
Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data.
Remote Sens. 4, 2661-2693. https://doi.org/10.3390/15s4092661.

Immitzer, M., Neuwirth, M., Bock, S., Brenner, H., Vuolo, F., Atzberger, C., 2019.
Optimal Input Features for Tree Species Classification in Central Europe Based on
Multi-Temporal Sentinel-2 Data. Remote Sens. 11, 2599. https://doi.org/10.3390/
rs11222599.


https://doi.org/10.1016/j.jag.2022.103131
https://doi.org/10.1016/j.jag.2022.103131
https://doi.org/10.1016/j.jag.2015.04.014
https://doi.org/10.1016/j.jag.2015.04.014
https://doi.org/10.1007/s10531-010-9959-x
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/rs13040798
https://doi.org/10.3390/rs13040798
https://eunis.eea.europa.eu/references/2435
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.5194/gmd-8-1991-2015
https://saga-gis.sourceforge.io/saga_tool_doc/6.4.0/ta_lighting_2.html
https://saga-gis.sourceforge.io/saga_tool_doc/6.4.0/ta_lighting_2.html
https://saga-gis.sourceforge.io/saga_tool_doc/7.6.1/ta_lighting_7.html
https://saga-gis.sourceforge.io/saga_tool_doc/7.6.1/ta_lighting_7.html
https://doi.org/10.1016/j.ecolind.2016.02.057
https://doi.org/10.1016/j.geomorph.2012.12.015
https://doi.org/10.3390/rs13030348
https://doi.org/10.3390/rs13030348
https://doi.org/10.3390/rs12111842
https://doi.org/10.3390/rs12111842
https://doi.org/10.1080/01431161.2018.1479788
https://doi.org/10.3390/rs13030337
https://doi.org/10.3390/rs13030337
https://eur-lex.europa.eu/EN/legal-content/glossary/natura-2000.html
https://eur-lex.europa.eu/EN/legal-content/glossary/natura-2000.html
https://doi.org/10.1016/j.rse.2019.111536
https://doi.org/10.1016/j.rse.2019.111536
https://doi.org/10.1016/j.isprsjprs.2013.05.002
https://doi.org/10.1016/j.isprsjprs.2013.05.002
https://doi.org/10.1016/j.rse.2019.111630
https://doi.org/10.1016/j.rse.2019.111630
https://doi.org/10.3390/rs14030541
https://doi.org/10.1016/j.ecoinf.2017.01.005
https://doi.org/10.14358/PERS.78.9.991
https://doi.org/10.1016/j.isprsjprs.2006.05.002
https://doi.org/10.1016/j.isprsjprs.2006.05.002
https://doi.org/10.3390/rs4092661
https://doi.org/10.3390/rs11222599
https://doi.org/10.3390/rs11222599

A. Iglseder et al.

Ke, Y., Quackenbush, L.J., Im, J., 2010. Synergistic use of QuickBird multispectral
imagery and LIDAR data for object-based forest species classification. Remote Sens.
Environ. 114, 1141-1154. https://doi.org/10.1016/].rse.2010.01.002.

Koenig, K., Hofle, B., 2016. Full-Waveform Airborne Laser Scanning in Vegetation
Studies—A Review of Point Cloud and Waveform Features for Tree Species
Classification. Forests 7, 198. https://doi.org/10.3390/f7090198.

Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with
airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 53, 193-203.
https://doi.org/10.1016,/50924-2716(98)00009-4.

RIEGL Laser Measurement Systems, 2010. Riegl Data Sheet LMS-Q560 [WWW
Document]. URL http://www.riegl. com/uploads/tx_pxpriegldownloads/10_DataSh
eet Q560 20-09 -2010_01.pdf (accessed 17.2.22).

RIEGL Laser Measurement Systems, 2012. Riegl Data Sheet LMS-Q680i [WWW
Document]. URL http://www.riegl. com/uploads/tx_pxpriegldownloads/10_DataSh
eet LMS-Q680i 28-09-2012_01.pdf (accessed 17.2.22).

Lawrence, R.L., Wood, S.D., Sheley, R.L., 2006. Mapping invasive plants using
hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote
Sens. Environ. 100, 356-362. https://doi.org/10.1016/j.rse.2005.10.014.

Le Dez, M., Robin, M., Launeau, P., 2021. Contribution of Sentinel-2 satellite images for
habitat mapping of the Natura 2000 site ‘Estuaire de la Loire’ (France). Remote Sens.
Appl. Soc. Environ. 24, 100637 https://doi.org/10.1016/j.rsase.2021.100637.

Lechner, M., Dostédlova, A., Hollaus, M., Atzberger, C., Immitzer, M., 2022. Combination
of Sentinel-1 and Sentinel-2 Data for Tree Species Classification in a Central
European Biosphere Reserve. Remote Sens. 14, 2687. https://doi.org/10.3390/
1s14112687.

Leiterer, R., Torabzadeh, H., Furrer, R., Schaepman, M.E., Morsdorf, F., 2015. Towards
Automated Characterization of Canopy Layering in Mixed Temperate Forests Using
Airborne Laser Scanning. Forests 6, 4146-4167. https://doi.org/10.3390/f6114146.

Li, N., Liu, C., Pfeifer, N., 2019. Improving LiDAR classification accuracy by contextual
label smoothing in post-processing. ISPRS J. Photogramm. Remote Sens. 148, 13-31.
https://doi.org/10.1016/j.isprsjprs.2018.11.022.

Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest. R News 2,
18-22.

Lindberg, E., Olofsson, K., Holmgren, J., Olsson, H., 2012. Estimation of 3D vegetation
structure from waveform and discrete return airborne laser scanning data. Remote
Sens. Environ. 118, 151-161. https://doi.org/10.1016/j.rse.2011.11.015.

McElwee, P., 2021. Climate Change and Biodiversity Loss: Two Sides of the Same Coin.
Curr. Hist. 120, 295-300. https://doi.org/10.1525/curh.2021.120.829.295.

Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauss, T., 2018. Improving
performance of spatio-temporal machine learning models using forward feature
selection and target-oriented validation. Environ. Model. Softw. 101, 1-9. https://
doi.org/10.1016/j.envsoft.2017.12.001.

Morsdorf, F., Kotz, B., Meier, E., Itten, K.I., Allgower, B., 2006. Estimation of LAI and
fractional cover from small footprint airborne laser scanning data based on gap
fraction. Remote Sens. Environ. 104, 50-61. https://doi.org/10.1016/j.
rse.2006.04.019.

Nijland, W., Coops, N.C., Nielsen, S.E., Stenhouse, G., 2015. Integrating optical satellite
data and airborne laser scanning in habitat classification for wildlife management.
Int. J. Appl. Earth Obs. Geoinformation 38, 242-250. https://doi.org/10.1016/].
jag.2014.12.004.

Onojeghuo, A.O., Onojeghuo, A.R., Cotton, M., Potter, J., Jones, B., 2021. Wetland
mapping with multi-temporal sentinel-1 & -2 imagery (2017-2020) and LiDAR data
in the grassland natural region of alberta. GIScience Remote Sens. 58, 999-1021.
https://doi.org/10.1080/15481603.2021.1952541.

OPALS Development Team, 2022. OPALS - Orientation and Processing of Airborne Laser
Scanning data [WWW Document]. URL https://opals.geo.tuwien.ac.at/htm
1/stable/index.html (accessed 18.5.22).

Osinska-Skotak, K., Radecka, A., Ostrowski, W., Michalska-Hejduk, D., Charyton, J.,
Bakuta, K., Piérkowski, H., 2021. The Methodology for Identifying Secondary
Succession in Non-Forest Natura 2000 Habitats Using Multi-Source Airborne Remote
Sensing Data. Remote Sens. 13, 2803. https://doi.org/10.3390/rs13142803.

Pesaresi, S., Mancini, A., Quattrini, G., Casavecchia, S., 2020. Mapping Mediterranean
Forest Plant Associations and Habitats with Functional Principal Component
Analysis Using Landsat 8 NDVI Time Series. Remote Sens. 12, 1132. https://doi.org/
10.3390/1rs12071132.

Pesaresi, S., Mancini, A., Quattrini, G., Casavecchia, S., 2022. Functional Analysis for
Habitat Mapping in a Special Area of Conservation Using Sentinel-2 Time-Series
Data. Remote Sens. 14, 1179. https://doi.org/10.3390/rs14051179.

Pfeil, I., ReuB, F., Vreugdenhil, M., Navacchi, C., Wagner, W., 2020. Classification of
Wheat and Barley Fields Using Sentinel-1 Backscatter, in: IGARSS 2020 - 2020 IEEE
International Geoscience and Remote Sensing Symposium. Presented at the IGARSS
2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, pp.
140-143. 10.1109/IGARSS39084.2020.9323560.

Plakman, V., Janssen, T., Brouwer, N., Veraverbeke, S., 2020. Mapping Species at an
Individual-Tree Scale in a Temperate Forest, Using Sentinel-2 Images, Airborne Laser
Scanning Data, and Random Forest Classification. Remote Sens. 12, 3710. https://
doi.org/10.3390/1rs12223710.

11

International Journal of Applied Earth Observation and Geoinformation 117 (2023) 103131

Puliti, S., Gobakken, T., @rka, H.O., Nasset, E., 2017. Assessing 3D point clouds from
aerial photographs for species-specific forest inventories. Scand. J. For. Res. 32,
68-79. https://doi.org/10.1080/02827581.2016.1186727.

QGIS Development Team, 2022. QGIS Geographic Informatino System. Open Source
Geospatial Foundation Project. [WWW Document]. URL http://qgis.osgeo.org
(accessed 18.5.22).

R Development Core Team, 2022. The R Project for Statistical Computing [WWW
Document]. URL https://www.r-project.org/ (accessed 18.5.22).

Rasénen, A., Kuitunen, M., Tomppo, E., Lensu, A., 2014. Coupling high-resolution
satellite imagery with ALS-based canopy height model and digital elevation model in
object-based boreal forest habitat type classification. ISPRS J. Photogramm. Remote
Sens. 94, 169-182. https://doi.org/10.1016/].isprsjprs.2014.05.003.

Rouault, E., Warmerdam, F., Schwehr, K., Kiselev, A., Butler, H., Loskot, M., Szekeres, T.,
Tourigny, E., Landa, M., Miara, 1., Elliston, B., Kumar, C., Plesea, L., Morissette, D.,
Jolma, A., Dawson, N., 2022. GDAL. https://doi.org/10.5281/ZENODO.5884351.

Schindler, K., 2012. An Overview and Comparison of Smooth Labeling Methods for Land-
Cover Classification. IEEE Trans. Geosci. Remote Sens. 50, 4534-4545. https://doi.
org/10.1109/TGRS.2012.2192741.

Sheeren, D., Fauvel, M., Josipovi¢, V., Lopes, M., Planque, C., Willm, J., Dejoux, J.-F.,
2016. Tree Species Classification in Temperate Forests Using Formosat-2 Satellite
Image Time Series. Remote Sens. 8, 734. https://doi.org/10.3390/rs8090734.

Sittaro, F., Hutengs, C., Semella, S., Vohland, M., 2022. A Machine Learning Framework
for the Classification of Natura 2000 Habitat Types at Large Spatial Scales Using
MODIS Surface Reflectance Data. Remote Sens. 14, 823. https://doi.org/10.3390/
rs14040823.

Skidmore, A.K., Coops, N.C., Neinavaz, E., Ali, A., Schaepman, M.E., Paganini, M.,
Kissling, W.D., Vihervaara, P., Darvishzadeh, R., Feilhauer, H., Fernandez, M.,
Fernandez, N., Gorelick, N., Geijzendorffer, I., Heiden, U., Heurich, M., Hobern, D.,
Holzwarth, S., Muller-Karger, F.E., Van De Kerchove, R., Lausch, A., Leitao, P.J.,
Lock, M.C., Miicher, C.A., O’Connor, B., Rocchini, D., Roeoesli, C., Turner, W., Vis, J.
K., Wang, T., Wegmann, M., Wingate, V., 2021. Priority list of biodiversity metrics to
observe from space. Nat. Ecol. Evol. 5, 896-906. https://doi.org/10.1038/541559-
021-01451-x.

Sgrensen, R., Zinko, U., Seibert, J., 2006. On the calculation of the topographic wetness
index: evaluation of different methods based on field observations. Hydrol. Earth
Syst. Sci. 10, 101-112. https://doi.org/10.5194/hess-10-101-2006.

Szporak-Wasilewska, S., Piorkowski, H., Cigzkowski, W., Jarzombkowski, F., Stawik, L.,
Kope¢, D., 2021. Mapping Alkaline Fens, Transition Mires and Quaking Bogs Using
Airborne Hyperspectral and Laser Scanning Data. Remote Sens. 13, 1504. https://
doi.org/10.3390/rs13081504.

Tarantino, C., Forte, L., Blonda, P., Vicario, S., Tomaselli, V., Beierkuhnlein, C.,
Adamo, M., 2021. Intra-Annual Sentinel-2 Time-Series Supporting Grassland Habitat
Discrimination. Remote Sens. 13, 277. https://doi.org/10.3390/rs13020277.

Trimble, 2022. Trimble Inpho | Trimble Geospatial [WWW Document]. URL https://de.
geospatial.trimble.com/products-and-solutions/trimble-inpho (accessed 25.5.22).

Umweltbundesamt, 2021. Schutzgebiete [WWW Document]. URL https://www.umwelt
bundesamt.at/umweltthemen/naturschutz/schutzgebiete (accessed 26.4.22).

van Ewijk, K.Y., Treitz, P.M., Scott, N.A., 2011. Characterizing Forest Succession in
Central Ontario using Lidar-derived Indices. Photogramm. Eng. Remote Sens. 77,
261-269. https://doi.org/10.14358/PERS.77.3.261.

Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., Riidiger, C.,
Strauss, P., 2018. Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An
Austrian Case Study. Remote Sens. 10, 1396. https://doi.org/10.3390/rs10091396.

Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., Ng, W.-T., 2018. How much does
multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth
Obs. Geoinformation 72, 122-130. https://doi.org/10.1016/].jag.2018.06.007.

Wagner, W., Hollaus, M., Briese, C., Ducic, V., 2008. 3D vegetation mapping using small-
footprint full-waveform airborne laser scanners. Int. J. Remote Sens. 29, 1433-1452.
https://doi.org/10.1080/01431160701736398.

Stadt Wien - https://data.wien.gv.at, 2020. Biotoptypenkartierung Wien - data.gv.at
[WWW Document]. Biotoptypenkartierung Wien Sel. Flachige Kart. Leb. Biotope
Gem Wien. Naturschutz-Verordn. Flora-Fauna-Habitat-Richtlin. FFH-RL Sowie
Biotope Rote-Liste-Biotope Umweltbundesamtes UBA Auf Grundl. Phytotop-Kart.
1980er-Jahre. URL https://www.data.gv.at/katalog/dataset/stadt-wien_biotoptyp
enkartierungwien (accessed 17.2.22).

Zhong, L., Gong, P., Biging, G.S., 2014. Efficient corn and soybean mapping with
temporal extendability: A multi-year experiment using Landsat imagery. Remote
Sens. Environ. 140, 1-13. https://doi.org/10.1016/j.rse.2013.08.023.

Zlinszky, A., Schroiff, A., Kania, A., Dedk, B., Miicke, W., Vari, A., Székely, B., Pfeifer, N.,
2014. Categorizing Grassland Vegetation with Full-Waveform Airborne Laser
Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types. Remote Sens.
6, 8056-8087. https://doi.org/10.3390/rs6098056.

Zlinszky, A., Dedk, B., Kania, A., Schroiff, A., Pfeifer, N., 2015. Mapping Natura 2000
Habitat Conservation Status in a Pannonic Salt Steppe with Airborne Laser Scanning.
Remote Sens. 7, 2991-3019. https://doi.org/10.3390/1s70302991.


https://doi.org/10.1016/j.rse.2010.01.002
https://doi.org/10.3390/f7090198
https://doi.org/10.1016/S0924-2716(98)00009-4
http://www.riegl.+com/uploads/tx_pxpriegldownloads/10_DataSheet_Q560_20-09+-2010_01.pdf
http://www.riegl.+com/uploads/tx_pxpriegldownloads/10_DataSheet_Q560_20-09+-2010_01.pdf
http://www.riegl.+com/uploads/tx_pxpriegldownloads/10_DataSheet_LMS-Q680i+_28-09-2012_01.pdf
http://www.riegl.+com/uploads/tx_pxpriegldownloads/10_DataSheet_LMS-Q680i+_28-09-2012_01.pdf
https://doi.org/10.1016/j.rse.2005.10.014
https://doi.org/10.1016/j.rsase.2021.100637
https://doi.org/10.3390/rs14112687
https://doi.org/10.3390/rs14112687
https://doi.org/10.3390/f6114146
https://doi.org/10.1016/j.isprsjprs.2018.11.022
http://refhub.elsevier.com/S1569-8432(22)00319-3/h0200
http://refhub.elsevier.com/S1569-8432(22)00319-3/h0200
https://doi.org/10.1016/j.rse.2011.11.015
https://doi.org/10.1525/curh.2021.120.829.295
https://doi.org/10.1016/j.envsoft.2017.12.001
https://doi.org/10.1016/j.envsoft.2017.12.001
https://doi.org/10.1016/j.rse.2006.04.019
https://doi.org/10.1016/j.rse.2006.04.019
https://doi.org/10.1016/j.jag.2014.12.004
https://doi.org/10.1016/j.jag.2014.12.004
https://doi.org/10.1080/15481603.2021.1952541
https://opals.geo.tuwien.ac.at/html/stable/index.html
https://opals.geo.tuwien.ac.at/html/stable/index.html
https://doi.org/10.3390/rs13142803
https://doi.org/10.3390/rs12071132
https://doi.org/10.3390/rs12071132
https://doi.org/10.3390/rs14051179
https://doi.org/10.3390/rs12223710
https://doi.org/10.3390/rs12223710
https://doi.org/10.1080/02827581.2016.1186727
https://doi.org/10.1016/j.isprsjprs.2014.05.003
https://doi.org/10.5281/ZENODO.5884351
https://doi.org/10.1109/TGRS.2012.2192741
https://doi.org/10.1109/TGRS.2012.2192741
https://doi.org/10.3390/rs8090734
https://doi.org/10.3390/rs14040823
https://doi.org/10.3390/rs14040823
https://doi.org/10.1038/s41559-021-01451-x
https://doi.org/10.1038/s41559-021-01451-x
https://doi.org/10.5194/hess-10-101-2006
https://doi.org/10.3390/rs13081504
https://doi.org/10.3390/rs13081504
https://doi.org/10.3390/rs13020277
https://de.geospatial.trimble.com/products-and-solutions/trimble-inpho
https://de.geospatial.trimble.com/products-and-solutions/trimble-inpho
https://www.umweltbundesamt.at/umweltthemen/naturschutz/schutzgebiete
https://www.umweltbundesamt.at/umweltthemen/naturschutz/schutzgebiete
https://doi.org/10.14358/PERS.77.3.261
https://doi.org/10.3390/rs10091396
https://doi.org/10.1016/j.jag.2018.06.007
https://doi.org/10.1080/01431160701736398
https://www.data.gv.at/katalog/dataset/stadt-wien_biotoptypenkartierungwien
https://www.data.gv.at/katalog/dataset/stadt-wien_biotoptypenkartierungwien
https://doi.org/10.1016/j.rse.2013.08.023
https://doi.org/10.3390/rs6098056
https://doi.org/10.3390/rs70302991

	The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest l ...
	1 Introduction
	2 Data and methods
	2.1 Habitats directive classification
	2.2 Study sites
	2.3 Remote sensing data
	2.3.1 High resolution point cloud data
	2.3.2 Sentinel data

	2.4 Feature extraction
	2.5 Model training, prediction and performance evaluation
	2.6 Evaluation of the results

	3 Results
	3.1 Investigate feature set combinations
	3.2 Comprehensive classification results
	3.2.1 Habitat group classification
	3.2.2 Habitat type classification

	3.3 Evaluation of the results

	4 Discussion
	4.1 Investigation of different feature set combinations
	4.2 Out-of-bag error vs Overall classification error
	4.3 Classification accuracy
	4.4 Evaluation of the results and usability for operational mapping and monitoring
	4.5 Limitations

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


