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A B S T R A C T   

Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated 
the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 
2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation 
workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in 
Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data 
perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring 
classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly 
assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to 
identify errors in reference data and point to the opportunities for integration in habitat mapping and 
monitoring.   

1. Introduction 

While the climate crisis has gained a lot of attention during the last 
years, a closely related crisis, the global loss of biodiversity, has just been 
brought to the fore recently (McElwee, 2021). During the last UN 
Climate Change Conference in Glasgow 2021 it was shown that these 
two challenges have to be addressed and solved simultaneously (COP26, 
2021). For local measures of biodiversity protection, it is relevant to gain 
sufficient information about the current state and the development of 
small-scale, as well as large-scale green spaces. Comprehensive moni
toring of green spaces reveals the state of climate-relevant, ecological, 
economic and social functions. Moreover, it points out to specific mea
sures that can be taken to maintain, obtain or improve biodiversity. 

To promote and harmonize such constant monitoring, relevant areas 
may be designated worthy of protection. One Europe-wide measure 
established the Natura 2000 network of areas of high biodiversity value 
(EUR-Lex, 2022). As of January 2021, 15.6 % of the area of Austria are 
classified as Natura 2000 regions with additional regions being already 

nominated (Umweltbundesamt, 2021). The Natura 2000 network aims 
to preserve, protect and improve the quality of the natural habitats and 
therefore promotes the maintenance of biodiversity and the necessity of 
human activities for preservation. As a part of the network, the member 
states define and prioritize distinct areas of conservation and should 
report on the implementation and the taken measures every-six years. 
(Council of the European Union, 1992). To describe and classify Natura 
2000 areas, the scheme presented in the annex of the EU’s Habitat’s 
directive (HD) is used (Council of the European Union, 2006). The 
classification is based on characteristic plant species and communities as 
well as on abiotic features, e.g., occurrence area, bedrock, soil or 
geomorphological features. 

To date, classification, mapping and monitoring mainly relies on 
expert-based fieldwork. This approach is labor-intensive and therefore 
difficult to be implemented in frequent monitoring and the required 
reporting. An opportunity to overcome this challenge is to include data- 
driven classification and monitoring of habitats. Therefore, it is neces
sary to find exhaustive data reflecting characteristic features of different 
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habitat types. 
Remote sensing provides promising data for classification and 

monitoring of habitats. Morphological vegetation features derived from 
airborne laser scanning (ALS) point cloud data were shown to be useful 
as plant species predictors (Hollaus et al., 2009; Koenig and Höfle, 2016; 
Puliti et al., 2017). In addition, the potential of describing vegetation 
structure using ALS data was highlighted in several studies (Hollaus 
et al., 2006; Wagner et al., 2008; Lindberg et al., 2012; Leiterer et al., 
2015; Coops et al., 2016; Guo et al., 2017). Apart from that, ALS data 
was previously shown to be powerful in deriving detailed terrain models 
for geomorphological features, especially in forested areas (Kraus and 
Pfeifer, 1998). ALS data seems therefore promising for habitat classifi
cation, but is usually acquired with a repetition rate of several years and 
therefore not appropriate for constant monitoring with high temporal 
resolution, e.g., on a yearly basis. In contrast to ALS data, satellite-based 
data (e.g. Copernicus’ Sentinel data) shows the big advantage of a very 
high temporal resolution. Therefore, it is possible to derive phenological 
characteristics. Several studies show that this is beneficial for tree spe
cies classification (Dostálová et al., 2021, 2018; Immitzer et al., 2019; 
Lechner et al., 2022) and prediction of grassland or field crop diversity 
and condition (Fauvel et al., 2020; Ghassemi et al., 2022; Pfeil et al., 
2020; Vreugdenhil et al., 2018; Vuolo et al., 2018). Additionally, 
monitoring could be conducted with a shorter repetition cycle. 

Habitat mapping and monitoring with remotely sensed data was 
already shown to be promising in several published studies. Vegetation 
and terrain features derived from ALS data, partly combined with 
hyperspectral images and full waveform analysis, were used successfully 
for classifying and monitoring various Natura 2000 habitats (Bässler 
et al., 2011; Zlinszky et al., 2014, 2015; Alexander et al., 2015; 
Demarchi et al., 2020; Osińska-Skotak et al., 2021; Szporak-Wasilewska 
et al., 2021). Data from different satellite-based sensors like Sentinel 1 
and 2 (S1 and S2) (Tarantino et al., 2021, Pesaresi et al., 2022, Le Dez 
et al., 2021), Landsat 8 (Pesaresi et al., 2020), MODIS (Sittaro et al., 
2022) or Quickbird (Hernando et al., 2012) showed potential for clas
sification and monitoring of various habitat groups like waterbodies, 
grassland, bogs, dunes or forests. Although numerous studies show the 
use of satellite data as well as ALS data and imagery, relatively few 
studies combine these data sources for habitat monitoring (Räsänen 
et al., 2014, Nijland et al., 2015, Plakman et al., 2020, Onojeghuo et al., 
2021). In combined approaches, only few ALS-based features like can
opy height model (CHM) or terrain features are included. Most of these 
studies base their analysis on pixel- or plot level. In contrast, the studies 
of Hernando et al. (2012), Plakman et al. (2020) and Räsänen et al. 
(2014) employed on object level-based approach with segmentation 
prior to the classification. The extensive number of studies on habitat 
mapping and monitoring using remotely sensed data reflects the broad 
relevance of the topic. 

In this study, we combine a great variety of features from satellite- 
based remote sensing data of high temporal resolution (S1 and S2) 
and features from airborne remote sensing data with high geometric 
resolution such as ALS and image-based point cloud (IM) data. We 
explore the potential of combining different data sources to classify and 
monitor forest and grassland habitats of Natura 2000 areas on two study 
sites in Vienna, Austria. The aims of this study are (1) to investigate 
different combinations of remote sensing data for habitat classification 
of the study sites, (2) to create a comprehensive feature-derived habitat 
map and (3) to evaluate the results with regard to the potential and 
limits of remote sensing-based habitat mapping and monitoring. 

We conduct these analyses with a random forest classification with 
recursive feature elimination using a 10-fold spatial leave location out 
cross validation (LLO-CV) approach, trained, tested and validated on the 
available Natura 2000 HD mapping of Vienna on a 10 m pixel size. 

2. Data and methods 

2.1. Habitats directive classification 

In this study, we use habitat groups and types according to the HD 
classification (Council of the European Union, 2006; described in detail 
in European Commission, 2013). This classification scheme differenti
ates nine habitat groups with a total of 229 habitat types. The habitat 
types are defined by occurring plant species and species communities, as 
well as location parameters like soils or geomorphological characteris
tics and management characteristics (European Commission, 2013). 

For this study, we select four habitat types of the group natural and 
semi-natural grassland formations (further referred to as grass or 
grassland) and seven forest types. The selected types are presented in 
Table 1. We refer to Council of the European Union (2006) and European 
Commission (2013) for a detailed ecological description of the different 
habitats. The habitat maps of the City of Vienna are available as open 
data (Stadt Wien - https://data.wien.gv.at, 2020). The most recent 
mapping was conducted in 2008 in expert-based field work. 

2.2. Study sites 

We chose the two study sites as representatives of the two main green 
area types in Vienna: hilly, mainly forested alpine foothills in western 
Vienna (A) and floodplains with river meadows and riparian forest 
vegetation along the Danube River (B). 

Study site A (Vienna Woods) is located in the southwest of Vienna. 
The study site covers 28.3 km2 and is situated in the geological unit of 
the “Flyschzone”, and is therefore characterized by clay and sandstone. 
The hilly area is cut by three major valleys in the south, north and 
northeast. The altitude is between 214 m and 515 m above sea level (a.s. 

Table 1 
Habitat types investigated within the two study sites Vienna Woods (A) and Lobau (B), according to the Habitat’s Directive (Council of the European Union, 2006). The 
sign * prior to the name indicates priority habitat types.  

Habitat groups Habitat type (NATURA 
2000 Code) 

Description 

Natural and semi-natural 
grassland formations 

6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (* important 
orchid sites) 

6240 * Sub-Pannonic steppic grasslands 
6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae) 
6510 Lowland hay meadows (Alopecuruspratensis, Sanguisorba officinalis) 

Forests 

9110 Luzulo-Fagetum beech forests 
9130 Asperulo-Fagetum beech forests 
9170 Galio-Carpinetum oak-hornbeam forests 
9180 * Tilio-Acerion forests of slopes, screes and ravines 
91E0 * Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae) 
91F0 Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus excelsior or Fraxinus 

angustifolia, along the great rivers (Ulmenion minoris) 
91G0 *Pannonic woods with Quercus petraea and Carpinus betulus  
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l.). Forests, with the major occurring forest types of oak-hornbeam and 
beech forests, dominate the area. The meadows in between are mainly 
lowland hay meadows. The study site covers the Viennese recreation 
area “Lainzer Tiergarten”, is part of the “Biosphärenpark Wienerwald” 
and entirely classified as Natura 2000 nature protection area. 

Study site B (Lobau) is part of the “Donau-Auen” National Park in the 
riparian forests along the Danube River in the southeast of Vienna. The 
22.9 km2 of study site B are mainly flat with indications of a former 
dominant and now partly regulated braided river system and a flood
plain landscape. The mean altitude is 153 m a.s.l., stretching from 147 m 
to 163 m. The main vegetation is again forests, with a dominance of 
alluvial forests and riparian mixed forests. 

Fig. 1 shows the habitat group and habitat type coverage for both 
study sites. We excluded 13.8 % of the area of study site A and 45.3 % of 
the area of study site B from further analysis, as shown in the habitat 
group pie charts. These areas were either not assigned to a habitat type 
during the initial mapping or excluded due to limited occurrence. The 
threshold for a habitat type to be included was set to a minimum of three 
independent locations of a minimum of 1 ha each within the study site. 
Furthermore, the different locations must be without a buffer of 1 km 
from each other to prevent spatial autocorrelation. 

2.3. Remote sensing data 

As input features for the classification, we use point clouds from ALS, 
and image-based point clouds from aerial photographs (IM) as well as 
data from S1 and S2. In the following sections, the data are described in 
more detail. 

2.3.1. High resolution point cloud data 
The ALS data covers the entire area of the City of Vienna and was 

collected between November 9th and November 24th 2015 under leaf- 
off conditions in eight flight campaigns. Two different sensors were 
used for the data acquisition: a Riegl LMS-Q680i and a Riegl LMS-Q560 
(RIEGL Laser Measurement Systems, Horn, Austria). Both scanners 
provide full waveform data acquisition (RIEGL Laser Measurement 
Systems, 2012, 2010). The median point density for the whole city area 
is 27 echoes/m2 for 97 % with up to 12 echoes per beam. A preliminary 
point cloud classification (ground, vegetation, buildings, high points, 
water bridges, others and errors) was available. 

For deriving the IM point cloud, aerial photographs were used. These 
aerial photographs were acquired during summer 2018 under leaf-on 
conditions and cover the entire area of the City of Vienna. The camera 
used was an Ultracam Eagle Mark 2 from Vexcel. The ground sampling 
distance (pixel size on the ground) was at least 20 cm. The overlapping 
in flight direction was at least 80 %, the overlapping at right angles to 
flight direction at least 30 %. The IM point cloud was created using the 
software MatchT from Trimble (Trimble, 2022). In addition to the 3D 

coordinates, the points are attributed with information from the four 
used spectral channels (red, green, blue, colored near infrared). 

2.3.2. Sentinel data 
The Sentinel satellites are part of the European Commission’s and 

European Space Agency’s (ESA) Copernicus program for earth obser
vation. The data is openly available. 

S1 provides data from an active synthetic aperture radar (SAR) 
sensor. The used tiles are derived from S1 in C band at a pixel spacing of 
10 m from the vegetation period of 2018. In detail, we use the Level 1B 
high resolution ground range detected (GRDH) and Level 1a single look 
complex (SLC) scenes acquired in the Interferometric Wide (IW) swath 
mode. The data from the relative orbits 22 (descending) and 146 
(ascending) was extracted separately. The data was seasonally (February 
to March, June to August, October to November) and annually averaged. 

S2 holds a passive sensor providing multispectral image data. For the 
study, we selected three cloud-free scenes from 2018. The scenes were 
acquired at different stages of the vegetation period on June 2nd, August 
9th and September 28th 2018. For each scene, ten different bands (from 
10 m to 20 m original resolution) were used for further feature 
extraction. 

2.4. Feature extraction 

We derived various features as raster layers for the model input. 
Therefore, we used the software packages OPALS (OPALS Development 
Team, 2022), GDAL (Rouault et al., 2022), SAGA (Conrad et al., 2015), 
QGIS (QGIS Development Team, 2022) and R (R Development Core 
Team, 2022). 

The Sentinel features were party resampled and calculated at 10 m 
grid size, the features from ALS and IM point clouds at 1 m grid size. 
These 1 m grid size features were subsequently resampled to a 10 m grid. 
Therefore, statistical measures (mean, median, standard derivation) are 
derived. All features are transformed and reprojected to MGI / Austria 
GK East (EPSG 31256). An overview of the derived features is given in 
Table 2. In the following paragraphs of this chapter, we describe the 
features that might be unclear or unknown to the reader in more detail 
and give references to publications which show the exact calculations. 

A digital terrain model (DTM), derived from the ALS point cloud, is 
the basis for the feature set of terrain features. Terrain features describe 
the absolute orientation as well as the relative position of a pixel in its 
surrounding. We split the aspect in sine (east–west exposition) and 
cosine (north–south exposition) to avoid the numerical challenges close 
to 0◦ / 360◦ north. The TPI measures the relative slope position of a pixel 
(De Reu et al., 2013), the TWI indicates potential runoff (Sørensen et al., 
2006). We used the preliminary point cloud classification for the water 
surface distances in horizontal and vertical direction. The vertical dis
tance to the closest water surface serves as a proxy for the groundwater 
level. 

Gap fraction, FC and LAI of the ALS feature set are different measures 
for vegetation coverage. The gap fraction shows the proportion of pixels 
with a DSM < 0.02 m in a 10 m radius, the fractional cover is calculated 
as the share of first echoes higher than 1.5 m of all first echoes per m2. 
The LAI is the fraction of leaf area to ground area and approximated by 
the share of first echo points to last and single echo points per m2 

(Morsdorf et al. 2006). The VCI, the understory height and the mean 
maximum echo number give information about the vegetation structure. 
The VCI describes the evenness of the point distribution within a voxel 
column (van Ewijk et al. 2011). Only points with higher than 0.2 m 
above ground are considered. The mean maximum echo serves as a 
proxy for vegetation density over the observed vegetation column. We 
calculated visibility features using the Solar Radiation and Annual 
Insolation Tool of SAGA (Conrad, 2018, 2010). We approximate the 
annual sums of potential radiation and insolation hours by calculating 
the values for a representative day per month. From the full waveform 
analysis, the echo width was extracted at terrain and surface level and 

Fig. 1. The coverage of different habitat types of the two study sites A and B. 
The descriptions of the different classes are shown in Table 1. The excluded 
areas are not considered for the further classification. 
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the ratio between surface and ground amplitude was calculated. The 
echo width serves as a proxy for roughness, the amplitude as a radio
metric property (Fieber et al., 2013). 

From the IM point cloud, the nDSM and the visibility features are 
derived equally to the equivalent ALS features. The idea behind this 
approach is to test the interchangeability of ALS and IM data. Addi
tionally, we used the spectral information of the IM point clouds, i.e., the 
spectral bands blue, green, red, near infrared (NIR) and the derived 
NDVI. 

From S1-data, we extracted features sensitive to phenological char
acteristics of vegetation as well as canopy structures. Higher contribu
tions of VH backscatter are typically seen as an indicator for volume 
scattering in vegetation canopies. Interferometric coherence was esti
mated between subsequent acquisitions with a temporal baseline of six 
days. This feature correlates the reflected phases of the same areas be
tween six days, where low correlation (< 0.3) indicates dynamic sur
faces like water or vegetation. The features slope and correlation are 
calculated for both VV and VH polarization annually. Slope describes the 
relation between radiation incidence angle and backscatter coefficient 
as the regression gradient, while correlation represents the corre
sponding correlation coefficient. These values give hints about vegeta
tion types and densities. The sensitivity of the described features for 
vegetation monitoring was already shown in several studies (Bruggisser 
et al., 2021; Vreugdenhil et al., 2018). Dostálová et al. (2018) show the 
data processing in more detail. 

From the S2 scenes, 23 vegetation indices were derived in addition to 
the original ten spectral bands. An extensive description of the used 
vegetation indices is shown by Immitzer et al. (2019). The changes be
tween the different dates (both for S1 and S2 features) were calculated 
by subtracting the temporally latter from former feature values. 

2.5. Model training, prediction and performance evaluation 

We utilize the derived features as input for a classification based on a 
random forest model (Belgiu and Drăguţ, 2016; Breiman, 2001) with 

recursive feature elimination (RFE) using mean decrease in accuracy as 
described by Immitzer et al., (2012). We implemented the workflow in R 
(R Development Core Team, 2022) using the RandomForest package 
(Liaw and Wiener, 2002). The habitat mapping described in 2.1 serves as 
training as well as test data. 

The workflow is split up into a two-step process as shown in Fig. 2. In 
a first step, the RFE evaluates all different feature combinations. Input 
features are ranked by importance and subsequently reduced until the 
best performing feature combination is selected. We limit the training 
sample to max. 2500 pixels per considered class to create a more 
balanced data set and exclude areas within a 10 m distance from class 
borders to limit boundary conditions. 

In a second step, the optimal feature combination serves as input 
data for a 10-fold spatial LLO-CV setting. For this approach, we create 
the folds spatially and slice each study site in east–west direction into ten 
areas of equal size. One necessary condition for classes to be included is 
that every class considered is present within at least three different sli
ces. We selected the 10-fold spatial LLO-CV approach to exclude the 
effects of spatial autocorrelation when applying the models on the test 
areas (as described by Meyer et al., 2018) and to get an independent 
model-based classification for the whole area of the study sites. For each 
fold of the LLO-CV, training pixels are selected randomly from the nine 
training folds. Again, we set the maximum number of pixels per class to 
2500 and exclude 10 m distance from class borders. Using these pixels, 
we train a model and obtain the out-of-bag (OOB) error as a first mea
sure of accuracy. For a detailed description of the OOB error, see Brei
man (2001). With the trained model, we subsequently predict the whole 
area of the test fold. By changing the test fold, we can predict the whole 
study sites comprehensively with ten model training and prediction 
runs. 

For the RFE as well as for the 10-fold spatial LLO-CV, we set the 
number of trees of the random forest to 500. The number of variables 
used for splitting mtry is set to the rounded down square root of the 
number of input variables. 

We apply this two-step process first on the level of habitat groups to 

Table 2 
Features derived from different remote sensing data. FM: February and March, JJA: June, July and August, ON: October and November. 

∑
shows the number of 

derived features per feature set.  

Feature set Subgroups Features Aggregation and resampling 
∑

Terrain 
features 

(TF) 

Topographic 
features 

Sine of aspect, cosine of aspect, slope [deg], topographic positioning index (TPI), 
topographic wetness index (TWI) 

Mean, median, standard deviation from 1 m 
pixels 17 

Distance to water Horizontal and vertical distance to water [m] Mean from 1 m pixels 

ALS 

Vegetation 
structure 

Normalized digital surface model (nDSM) [m], height quantile 90 % [m], gap 
fraction, fractional cover (FC), understory height [m], leaf area index (LAI), 
vertical complexity index (VCI), maximum number of echoes per beam 

Mean, median, standard deviation from 1 m 
pixels 45 Visibility (from 

DSM - ALS) 
Duration of insolation [h], diffuse, direct and total radiation [kWh/m2] 

Full-waveform 
analysis 

Amplitude ratio surface/ground, pulse width surface [nm], pulse width terrain 
[nm] 

IM 

Vegetation 
structure 

nDSM [m] 

Mean, median, standard deviation from 1 m 
pixels 

30 Visibility (from 
DSM - IM) 

Duration of insolation [h], diffuse, direct and total radiation [kWh/m2] 

Spectral data Blue, green, red, infrared, normalized difference vegetation index (NDVI) 

S1  

Vertically polarized sent – vertically polarized received (VV) and vertically 
polarized sent – horizontally polarized received (VH) backscatter, cross ratio VH/ 
VV, coherence 

FM, JJA, ON, changes from FM to JJA and 
from JJA to ON, separate for each orbit 

44 

Slope VV and VH, correlation VV and VH Yearly, orbits combined 

S2 

Spectral bands B02, B03, B04, B05, B06, B07, B08, B8A, B11, B12 
02.07.2018 (t1), 09.08.2018 (t2), 28.09.2018 
(t3), changes from t1 to t2, changes from t2 to 

t3 
165 Vegetation indices BAI, GCI, GEMI, GI, gNDVI, LCCI, NDRESSWIR, NDVI, NDVI2, reNDVI, REPA, 

RETVI, SAVI, SRBRE1, SRBRE2, SRBRE3, SRNIRB, SRNIRG, SRNIRR, SRNIRRE1, 
SRNIRRE2, SRNIRRE3, WBI – see Immitzer et al. (2019) for further details. 

Total number of features  301  
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classify forest and grassland. In a consecutive step, we use this habitat 
group classification results as mask layers for the second-level classifi
cation of habitat types: the two-step process of RFE and 10-fold spatial 
LLO-CV is performed individually for grassland habitat types and forest 
habitat types. We compare and the final habitat group and type pre
dictions to the reference data and validate the results by extracting 
confusion matrices and accuracy and agreement metrics (i.e., overall 
accuracy, kappa, user’s (UA) and producer’s accuracy (PA), F1-score). 
Additionally, we create maps to investigate spatial patterns of 
misclassifications. 

We estimate the performance of all possible 31 different feature set 
combinations (FSCs) of the feature sets TF, ALS, IM, S1 and S2 to analyze 
the added values of different feature sets and investigate the combina
tion of airborne and satellite-based remote sensing data for habitat 
classification. The described model training and classification is there
fore conducted 31 times. We consider the OOB errors from the trained 
models as well as the overall accuracies to rank the performance of 
different FSCs. The OOB errors are averaged over the 10 folds of each 
FSC. 

The 31 FSCs are grouped to ten single and 21 combined FSCs. Single 
FSCs include either a single feature set or combinations of either 
airborne only (TF, ALS, IM) or satellite-based only (S1, S2) feature sets. 
Combined FSCs include a combination of airborne and satellite-based 
feature sets. We calculate the median OOB error and the median over
all classification error for each classification (habitat groups, forest types 
and grassland types) for single FSCs and combined FSCs separately and 
analyze the significance of the median differences, due to skewed dis
tribution, with a Mann-Whitney-U-Test. 

2.6. Evaluation of the results 

We evaluate the output of the model both in desktop and fieldwork. 

We compare the maps classified by the model to a series of annual 
orthophotos to detect possible dynamics in vegetation. Additionally, we 
investigate chosen areas with differences between reference and classi
fication results in the field. 

3. Results 

3.1. Investigate feature set combinations 

Table 2 shows the results of the comparison of single and combined 
FSCs. The median OOB error is obtained from the ten LLO-CV models, 
the overall classification error from the comprehensive application of 
the trained models on the whole study sites. The FSCs include the fea
tures selected by the individual RFE. We considered both values for the 
habitat group classification and separately for habitat type classification 
of forests and grassland. For all OOB errors and classifications, combined 
FSCs outperform single FSCs in regards to classification accuracy. OOB 
and overall classification errors are lower for combined FSCs for all 
considered classifications, and, with one exception (overall classifica
tion error of grass, study site B), all differences are significant on a 5 % 
significance level. We can therefore state that combining airborne and 
satellite-based remote sensing data leads to better classification results 
than using airborne or satellite-based data only. 

One additional interesting outcome is visible in Table 3: we observe 
great differences between the median OOB error values and the median 
overall classification errors. A detailed look to the results confirms the 
observed trends. We assume this might be a result of spatial autocor
relation of randomly selected training pixels for tree generating and 
OOB testing during the model training. As an additional factor, some 
classes are underrepresented in the model training, although training 
samples were at least balanced regarding to the order of magnitude. 

Fig. 2. Two-step classification workflow. Step 1. Optimizing input feature set by a recursive feature elimination (RFE) within random forest (RF) modelling (see 
Immitzer et al., 2012 for details). Step 2. Using the optimized feature set for training and applying of RF classifier in a 10-fold leave location out cross validation (LLO- 
CV) setup of the whole study area. For both steps, subsamples with max. 2 500 pixel per class are used. Confusion matrices and accuracy estimates are created both 
for out-of-bag (OOB) analysis during the model training and for the independent evaluation on the test sites. We run the workflow first for habitat groups (i.e., 
grassland, forest) and then, based on the group results, individually for different grassland and forest habitat types. 
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3.2. Comprehensive classification results 

In 3.1, we showed the benefit of combining airborne and satellite 
based remote sensing data. Therefore, we are limiting the presentation 
of our further results to the FSC including all input feature sets (TF, ALS, 
IM, S1, S2). The detailed results for all different FSCs are shown in the 
supplements (Table A1). The FSC including all input features does not 
perform best for all classifications, but the differences are negligible and 
result from the randomization during the recursive feature elimination 
and random forest model training. In average of all considered OOB and 
overall classification errors, this FSC shows the best results and therefore 
we can assume that the model is generally robust. 

3.2.1. Habitat group classification 
In the first level of classification, we investigate the discrimination of 

the two habitat groups forest and grassland. Table 4 and Table 5 show 
the results for study sites A and B. For both study sites, the overall 
classification accuracy is higher than 90 % and the kappa for both study 
sites show high agreement values (0.81 and 0.73). The kappa values 
have to be interpreted statistically carefully considering class prevalence 
(Foody, 2020). 

With UA and PA, we consider additionally class-specific accuracy 
measures. The UA is a probability measure: it represents the chance of a 
randomly selected pixel of a predicted class showing the same class in 
the reference data. The PA shows the share of the correctly classified 

Table 3 
Performance analysis of different feature set combinations (FSCs) after recursive feature elimination (RFE). Groups shows the results of the first level classification 
(discriminate grass and forest), forest and grass refer to the second level classification of different grassland habitat types and forest habitat types. The p-value relates to 
the result of the Mann-Whitney U Test for rank sum differences (n = 31, 10 single and 21 combined FSCs).    

OOB error overall classification error   

median single median combined p-value median single median combined p-value 

study site A 
groups 1.9 % 1.5 % < 0.001 4.4 % 4.2 % 0.044 
forest 14.5 % 12.4 % 0.008 49.6 % 41.7 % < 0.001 
grass 9.4 % 5.1 % 0.002 45.1 % 39.9 % < 0.001 

study site B 
groups 2.4 % 2.0 % 0.003 9.4 % 8.8 % 0.003 
forest 15.2 % 9.7 % 0.003 30.8 % 26.7 % 0.007 
grass 9.1 % 2.7 % 0.001 30.8 % 29.5 % 0.125  

Table 4 
Results of the habitat group classification for study site A based on the FSC of all input feature sets. (UA. user’s accuracy = precision, PA: producer’s accuracy = recall).  

study site A observed habitat groups sum (pred.) UA 

grass forest 

predicted habitat groups [pixels] grass 26 165 7866 34 031 76.9 % 
forest 2481 218 577 221 058 98.9 %  

sum (obs.) 28 646 226 443 255 089   
PA 91.3 % 96.5 %    

F1-score 0.835 0.977   

overall accuracy: 95.9 %, kappa: 0.81  

Table 5 
Results of the habitat group classification for study site B based on the FSC of all input feature sets. (UA: user’s accuracy = precision, PA: producer’s accuracy = recall).  

study site B observed habitat groups sum (pred.) UA 

grass forest 

predicted habitat groups [pixels] grass 21 358 9884 31 242 68.4 % 
forest 1900 101 876 103 776 98.2 %  

sum (obs.) 23 258 111 760 135 018   
PA 91.8 % 91.2 %    

F1-score 0.784 0.945   

overall accuracy: 91.3 %, kappa: 0.73  

Fig. 3. Results of the habitat group classification. Sub-figures a-c refer to study 
site A, d-f to study site B. Sub-figures a and d show the reference data, b and e 
the predicted habitat groups. Sub-figures c and f indicate the differences of 
reference data and prediction. 
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reference pixels. The F1-score is the harmonic mean of PA and UA, 
represents a combined class-specific measure and is useful for 
comparing class performances of imbalanced data. For both study sites, 
we can see comparably lower UA values for grassland. Almost 1/4 (study 
site A) and 1/3 (study site B) of the pixels classified as grassland are 
mapped as forests in the reference data set. Comparing to the UA of 
forests, the opposite way of mapped forests classified as grasslands are 
neglectable with values lower than 2 % for both study sites. We can 
therefore assume an overestimation of grassland habitats for both study 
sites. Comparing the F1-scores, we see that the classifier performs better 
for forest habitats. 

Fig. 3 shows the comparison of mapped habitat groups (reference 
data) and the maps of the model classification, including a directly 
comparing binary layer. We can see the spatial patterns of the confusion 
matrices results here. Most misclassified areas are one to three pixel- 
wide belts located at the border regions between grassland and forest 
habitats. Another source of misclassifications are small patches of 
grassland within forests: the classifier recognizes small clearings as 
grassland, while the reference data shows a generalized forest patch. 
Interestingly, single trees or small tree patches on grassland do not show 
up as small forest patches in grassland areas – the overestimation of 
grassland plays well here. 

3.2.2. Habitat type classification 
The second level of classification deals with habitat types within the 

forest and grassland habitat groups. We performed the two-step classi
fication process independently for grassland and forest habitat types and 
combined the result in one confusion matrix and one map series per 
study site. Table 6 and Table 7 show the confusion matrices for study site 
A and B. For study site A, we get an overall accuracy of 63.0 % for nine 
habitat types and a kappa value of 0.43. For study site B, we reach a 
higher overall accuracy of 76.5 % and a kappa value of 0.54 for six 
habitat types. Parts of the overall classification errors are inherited from 
the first level of classification. The training data for the 10-fold spatial 
LLO-CV is depicted from the original mapping, but the prediction is 
made on the habitat group mask resulting from the first level classifi
cation described in 3.2.1. 

The F1-scores reveal large differences in class accuracies. For study 
site A, the F1-scores range from 0.004 (class 9180) up to 0.719 (class 
9170). The F1-scores of the habitat types of study site B show a smaller 
variety than the corresponding values of study site A ranging from 0.244 
(class 6240) up to 0.869 (class 91F0). High F1-scores tend to occur more 
often for classes with a higher number of observed habitat pixels of a 
certain habitat type. Correlating the sum of observed habitat types and 
the F1-score for both study sites, a positive correlation of p = 0.62 is 
reached. The correlation of the sum of observed habitat types and the UA 
shows even higher correlation of p = 0.72. One explanation is that, 

although the training data was (partly) balanced, the greater variety of 
training pixels coming from a larger pool of independent habitat sites 
strengthens the classifier. 

Fig. 4 shows the comparison of mapped habitat types (reference 
data) and the maps of the model classification with a binary layer 
comparing the two maps. In contrast to the habitat groups, there are 
obvious patterns of misclassification. Study site A shows large areas as 
well as small patches of differences between reference and classified 
maps more or less evenly distributed over the whole area. Study site B 
reveals hot spots of differences in the center region and in the north. A 
closer look on class level reveals some patterns: an observation we can 
make in both study sites is the overestimation of class 91E0 (Alluvial 
forests) close to water bodies. Furthermore, the maps reveal numerous 
differing pixels in habitat type border regions. While the reference data 
shows clear borders, the habitat type boundaries of the classified map 
are frayed. 

3.3. Evaluation of the results 

The evaluation of the results considers the mapped differences be
tween reference data (i.e., mapped habitat groups and types) and model 
predictions (i.e., classified habitat groups and types) shown in Fig. 4, c 
and f. One challenge of the study that is important to be considered in 
this context is the different acquisition periods of remote sensing data for 
the model (2015 – 2018) and reference data (2008). We distinguish the 
differences between mapped and classified habitat groups and types 
between three different categories: 1) model classification errors, 2) 
initial mapping mistakes or inaccuracies 3) real changes of habitat 
groups or types. Following, we describe the evaluation of selected 
examples. 

The focus of the desktop evaluation based on orthophoto inspection 
was on habitat groups. We can trace back some of the discrepancies of 
forest and grassland habitat groups with a closer look at the maps: one 
challenge arises with rasterizing the reference data that was originally 
provided in a vector. We can find extrapolations of up to half a pixel 
between two different classes and up to one pixel on external borders of 
the study site. Additionally, we could find ambiguous mapping strate
gies of forest/grassland borders (stem or canopy, with buffers in both 
direction) when comparing the vector data to orthophotos. These ob
servations explain the misclassified belts described in 3.2.1. and can be 
seen as a combination of model classification errors and initial mapping 
inaccuracies. Other misclassification can be traced back to classification 
errors only: we found young forest stands misclassified as grassland. This 
might be a result of the low average height in the nDSM. Furthermore, 
we found explicit examples of initial mapping mistakes of habitat 
groups: areas, which can be clearly identified as forests in annual 
orthophoto series starting from 2006, are mapped as grassland in the 

Table 6 
Results of the habitat type classification for study site A based on the FSC of all input feature sets. (UA. user’s accuracy = precision, PA. producer’s accuracy = recall). 
Misclassifications with grey background are inherited from the first level classification (see Table 1 for class definitions).  

study site A observed habitat types [pixels] sum (pred.) UA 

6210 6410 6510 9110 9130 9170 9180 91E0 91G0 

predicted habitat types [pixels] 6210 3139 746 2714 22 1180 2539 26 199 222 10 787 29.1 % 
6410 228 259 99 0 54 171 0 12 6 829 31.2 % 
6510 3944 798 14 238 12 394 2067 10 699 253 22 415 63.5 % 
9110 5 0 10 18 1343 1727 83 74 29 3289 0.5 % 
9130 283 59 201 1221 44 585 30 384 782 236 520 78 271 57.0 % 
9170 609 112 580 520 19 961 93 951 905 632 2488 119 758 78.5 % 
9180 2 0 1 131 218 970 7 10 15 1354 0.5 % 
91E0 60 47 343 223 1400 5765 111 4584 673 13 206 34.7 % 
91G0 77 20 72 39 908 3826 33 159 46 5180 0.9 %  

sum (obs.) 8347 2041 18 258 2186 70 043 141 400 1957 6605 4252 255 089   
PA 37.6 % 12.7 % 78.0 % 0.8 % 63.7 % 66.4 % 0.4 % 69.4 % 1.1 %    

F1-score 0.328 0.180 0.700 0.007 0.601 0.719 0.004 0.463 0.010   

overall accuracy: 63.0 %, kappa: 0.43  
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reference data. 
We checked the habitat type maps in the field in October 2021 in 

both study sites for selected areas. Field evaluation revealed both areas 
of model classification errors and differences between the reference data 
and the situation in the field (differences of category 2 and 3). Dividing 
initial mapping errors and inaccuracies from real habitat changes turned 
out to be challenging for certain habitat types. We could identify areas of 
clear initial mapping errors, but we assume that some detected differ
ences (for example the frayed habitat type boundaries) can be traced 
back to habitat shifts and habitat changes since the initial mapping of 
2008. 

A comprehensive and therefore quantifiable evaluation of the dif
ferences between mapped and classified habitat types and groups for the 
whole study sites was not possible in the scope of the study. Therefore, 
we cannot quantify the differences according to the categories of dif
ference 1) − 3), but we assume the dominant shares are model classi
fication errors. 

4. Discussion 

4.1. Investigation of different feature set combinations 

We could clearly show that the combination of airborne and satellite- 
based remote sensing data is superior to airborne only as well as 
satellite-based only approaches for habitat classification in forest land
scapes. Our findings are therefore in accordance with previous studies 
combining ALS and satellite-based data for tree species and forest clas
sifications, like ALS and Landsat data for wildlife habitat classification 
(Nijland et al., 2015), ALS and S2 for tree species classification (Plakman 
et al., 2020) or ALS and QuickBird multispectral imagery for forest 
species classification (Ke et al., 2010). All studies highlighted the 
improvement in accuracy of the combined data approach. With our 
study, we can confirm the findings for habitat mapping and show that 
the differences are significant for forest habitat types and habitat groups. 

For grasslands, we could show the significance only for one study 
site. This finding consists with study on grassland habitat discrimination 
using S2 time series: adding terrain information (DTM) to S2 data does 
not increase the overall accuracy, but F1-scores of single classes (Tar
antino et al., 2021). The structure of grassland habitats tends to be less 
complex with a lower vegetation height. Therefore, we expect that ALS 
structure features have less explanatory power. Another impact is that 
simple structure changes like mowing can be detected by S1 coherence 
features (De Vroey et al., 2021) as well. 

4.2. Out-of-bag error vs Overall classification error 

For the ranking of the performance of different FSCs, we evaluated 
both OOB errors and overall classification errors and observed notable 
differences. For the chosen FSC of all feature sets, the OOB error and the 
overall classification error diverge by up to 6.9 percentage points for 
habitat groups, 24.5 percentage points for forest types and 27.8 per
centage points for grassland types, where always the OOB error provides 
the lower values (i.e. more optimistic results). This outcome is contrary 
to previous studies (Immitzer et al., 2019; Lawrence et al., 2006; Vuolo 
et al., 2018; Zhong et al., 2014) stating that OOB errors are comparable 
to assessments based on a separate dataset for validation, presupposing 
that the reference data are well-distributed, representative and inde
pendent. In this context, we have to state that for our pixel-based 
approach, the training observations (pixels) in our models are to a 
large degree spatially dependent and therefore auto-correlated. This is 
especially true for small groups with only a few occurrences in the study 
site. We called for only three independent locations per class. Therefore, 
we expect auto-correlation within training data, although having a large 
number of training pixels (due to the defined prerequisites at least 2000 
before boundary buffer elimination) per class. These spatial dependent 
training pixels can influence the results of bagging within the random 
forest model. This is negligible for ranking FSCs as done in 3.1, but for 
absolute accuracy assessment, we rely in our study on cross validation 

Table 7 
Results of the habitat type classification for study site A based on the FSC of all input feature sets. (UA: user’s accuracy = precision, PA: producer’s accuracy = recall). 
Misclassifications with grey background are inherited from the first level classification (see Table 1 for class definitions).  

study site B observed habitat types [pixels] sum (pred.) UA 

6210 6240 6510 91E0 91F0 

predicted habitat types [pixels] 6210 9454 1648 1244 1487 4914 18 747 50.4 % 
6240 905 648 48 306 767 2674 24.2 % 
6510 717 35 6659 628 1782 9821 67.8 % 
91E0 209 128 160 6142 12 514 19 153 32.1 % 
91F0 994 184 225 2780 80 440 84 623 95.1 %  

sum (obs.) 12 279 2643 8336 11 343 100 417 135 018   
PA 77.0 % 24.5 % 79.9 % 54.1 % 80.1 %    

F1-score 0.609 0.244 0.733 0.403 0.869   

overall accuracy: 76.5 %, kappa: 0.54  

Fig. 4. Results of the habitat type classification. Sub-figures a-c refer to study 
site A, d-f to study site B. Sub-figures a and d show the reference data, b and e 
the predicted habitat types. Sub-figures c and f indicate the differences of 
reference data and prediction. 
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rather than OOB errors. For the cross validation, we chose the 10-fold 
spatial LLO-CV as described by Meyer et al. (2018) to avoid spatial 
overfitting and make the overall accuracy robust. We propose further to 
consider this. 

4.3. Classification accuracy 

The overall accuracy of our model-based classification reaches 63.0 
% for nine habitat types of study site A (six forest, three grassland types) 
and 76.5 % for five habitat types of study site B (two forest, three 
grassland types). Comparing the results directly to other studies on 
habitat classification is challenging, as input data, considered habitat 
types as well as study designs and scale vary. Nevertheless, the results 
are in line with similar studies on classification of HD habitat types. 
Bässler et al. (2011) achieve overall accuracies of 68.8 % and 72.6 % for 
four forest habitat types using ALS data. Demarchi et al. (2020) reach 
overall accuracies between 65.2 % and 77.4 % for three grassland 
habitat types with hyperspectral airborne images and ALS data, Zlinszky 
et al. (2014) show an overall accuracy of 68 % for 10 grassland classes 
and 75 % for five grassland classes using ALS data. Pesaresi et al. (2022) 
use S2 time series, topography and lithology as input for classifying 
eleven habitat types of different groups and reach an overall accuracy of 
85.6 %. Räsänen et al. (2014) based their habitat classification on a 
different classification scheme and reached an overall accuracy of 79.1 
% for 28 habitat types in a boreal forest landscape using high resolution 
satellite imagery, CHM and DTM. 

We found that imbalanced class occurrences in the overall data have 
negative effects on class-specific accuracies for underrepresented clas
ses. This is shown by comparably very low F1-scores for rare habitat 
types. These results reflect those of other studies (Immitzer et al., 2019; 
Sheeren et al., 2016). We showed that balancing training samples does 
not efficiently counteract the issue, as the individual observation (in our 
case pixels) are (spatially) dependent. This points to the importance of 
(at least group wise) independent training observations, not only inde
pendence between training and test data. Our minimum number of three 
independent locations of a minimum size of 1 ha (equals 1 000 observed 
pixels per location) turned out to be too little for a sound classification of 
the rare habitat types. One approach would be to buffer pixels within the 
training areas to avoid at least direct neighboring pixels. Therefore, it 
has to be discussed, what buffer on what scale guarantees pixels to be 
independent. Small classes are thus further reduced in size. 

In 3.3 we addressed the challenges of different acquisition dates 
between reference data and model input data. We identified inaccura
cies and errors of different sources in the reference data; therefore, ac
curacy estimates require a careful interpretation. 

4.4. Evaluation of the results and usability for operational mapping and 
monitoring 

Fig. 1 shows the share of the study site areas we used for our study: 
13.8 % of study site A and 45.3 % of study site B were excluded from 
further analysis. These areas were either not assigned to a distinct class 
in the reference data or belong to rare classes and therefore offer too 
little data to train the model. The class accuracy results revealed that, 
from the model’s perspective, even more classes should be excluded due 
to infrequent occurrence. Within the classification, we reduced the in
fluence of spatial autocorrelation with the spatial partitioning of 
training and testing data. Nevertheless, training and testing area are still 
within the same landscape element, therefore the model accuracies only 
account for similar regions. We note that satisfactory area-wide habitat 
classification, including rare habitat types, cannot be achieved with our 
proposed approach. 

The conditions described in the paragraph above make a discussion 
of the general usability of model-based habitat classification in opera
tional use necessary. Despite all the limiting factors, we could reach 
good results for frequently occurring classes. All classes with more than 

12 000 pixels in the study site reached F1-scores greater than 0.6. Hence, 
the trained models can at least support initial classification of regions 
similar to the investigated study sites. The models can reveal areas of 
common habitats and indicate areas with need for expert-based classi
fication. For this, it can be helpful to show classification probabilities 
rather than an absolute assignment of a pixel to one class and apply the 
classification on homogeneous segments rather than pixels. Addition
ally, we showed that the model-based classification could assist in 
monitoring and evaluation of reference data. We could reveal initial 
mapping mistakes and indications of habitat shifts and changes. For 
monitoring, we can again state that our tested model can support expert- 
based fieldwork by pointing out areas worth investigating. 

4.5. Limitations 

The pixel-based approach of this study sets the minimum mapping 
unit of habitat types to squares of 100 m2. We chose this approach in line 
with other studies working on habitat classification described in Chapter 
1 Introduction. The benefits are the possibility for a straightforward 
classification without the need to define further homogeneity criteria or 
area sizes for mapping units. We identified the challenges and limits 
related to this approach clearly in this study, i.e., inaccuracies at boarder 
regions and scattered patterns. Another challenge of the pixel-based 
approach is the fusion of different data sources at different resolutions 
to a common grid. This leads to resample effects, especially as the raw 
data is initially provided in different coordinate reference systems. The 
results of the pixel-based approach could possibly be improved by 
morphological operations or label smoothing on the final maps to reduce 
salt-and-pepper effects (Li et al., 2019; Schindler, 2012). A different 
possibility would be the delineation of homogeneous segments prior to 
classification to use an object-based approach (Hernando et al., 2012; 
Räsänen et al., 2014). The challenge of this approach is to identify 
measures of homogeneity for object segmentation in the context of 
habitats, which are characterized by high biodiversity value. 

The presented classification performs best on frequently occurring 
habitat types. Therefore, a clear limitation we state is the classification 
accuracy for habitat types with limited occurrence in the training data. 
Very rare types within the study sites were excluded prior to the model 
training and are therefore not considered at all in this study. As the 
monitoring of rare habitats is often of high interest, this is a clear 
drawback of the proposed approach. Considerations to address these 
limitations are to include classification probabilities to the mapping. By 
using class probabilities rather than assigning distinct classes to the 
pixels, rare habitats could probably be still be included in the model and 
classification uncertainties can be revealed. 

A clear limitation of our presented approach is the fact, that the 
model is trained on very local conditions. Therefore, we only expect it to 
be useful to classify habitats in neighboring areas with similar topo
graphic, hydrological and structural conditions. The support for local 
applications is anyway still valuable. For a more generalized and larger- 
scale mapping and monitoring of biodiversity we refer to the possibility 
of remote sensing data to estimate essential biodiversity variables 
(Skidmore et al., 2021). 

5. Conclusion 

In this study, we could show the benefit of combining airborne and 
satellite-based remote sensing data for habitat classification. We could 
show the significance of the combination of the data sources for habitat 
groups and forest habitat types. The high temporal resolution of Sentinel 
data provides information about dynamics, the high geometric resolu
tion of airborne data gives insight in vegetation structure and topo
graphic and spectral information on a smaller scale. Both information is 
useful and complementary for characterizing habitats. 

We combined all feature sets from Sentinel-1 (S1), Sentinel-2 (S2), 
airborne laser scanning (ALS) and image-based point cloud (IM) data to 
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train a random forest model and predict the overall study sites using a 
10-fold spatial leave-location-out cross validation (LLO-CV). With the 
presented workflow, we derived confusion matrices of different habitat 
types as well as habitat maps. We achieved overall accuracies of 63 % to 
76.5 % for up to nine different habitat types per study site and class 
accuracies with F1-scores from 0.60 to 0.87 for frequently occurring 
forest and grassland habitat types. Additionally, we showed the capa
bility of model-based classification maps to identify initial mapping 
errors in reference data and to monitor habitat distribution. In summary, 
we can state that habitat classification by trained models on pixel scale 
has a great potential to support expert-based habitat mapping and 
monitoring in forest landscapes. 
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Immitzer, M., Neuwirth, M., Böck, S., Brenner, H., Vuolo, F., Atzberger, C., 2019. 
Optimal Input Features for Tree Species Classification in Central Europe Based on 
Multi-Temporal Sentinel-2 Data. Remote Sens. 11, 2599. https://doi.org/10.3390/ 
rs11222599. 

A. Iglseder et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.jag.2022.103131
https://doi.org/10.1016/j.jag.2022.103131
https://doi.org/10.1016/j.jag.2015.04.014
https://doi.org/10.1016/j.jag.2015.04.014
https://doi.org/10.1007/s10531-010-9959-x
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/rs13040798
https://doi.org/10.3390/rs13040798
https://eunis.eea.europa.eu/references/2435
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.5194/gmd-8-1991-2015
https://saga-gis.sourceforge.io/saga_tool_doc/6.4.0/ta_lighting_2.html
https://saga-gis.sourceforge.io/saga_tool_doc/6.4.0/ta_lighting_2.html
https://saga-gis.sourceforge.io/saga_tool_doc/7.6.1/ta_lighting_7.html
https://saga-gis.sourceforge.io/saga_tool_doc/7.6.1/ta_lighting_7.html
https://doi.org/10.1016/j.ecolind.2016.02.057
https://doi.org/10.1016/j.geomorph.2012.12.015
https://doi.org/10.3390/rs13030348
https://doi.org/10.3390/rs13030348
https://doi.org/10.3390/rs12111842
https://doi.org/10.3390/rs12111842
https://doi.org/10.1080/01431161.2018.1479788
https://doi.org/10.3390/rs13030337
https://doi.org/10.3390/rs13030337
https://eur-lex.europa.eu/EN/legal-content/glossary/natura-2000.html
https://eur-lex.europa.eu/EN/legal-content/glossary/natura-2000.html
https://doi.org/10.1016/j.rse.2019.111536
https://doi.org/10.1016/j.rse.2019.111536
https://doi.org/10.1016/j.isprsjprs.2013.05.002
https://doi.org/10.1016/j.isprsjprs.2013.05.002
https://doi.org/10.1016/j.rse.2019.111630
https://doi.org/10.1016/j.rse.2019.111630
https://doi.org/10.3390/rs14030541
https://doi.org/10.1016/j.ecoinf.2017.01.005
https://doi.org/10.14358/PERS.78.9.991
https://doi.org/10.1016/j.isprsjprs.2006.05.002
https://doi.org/10.1016/j.isprsjprs.2006.05.002
https://doi.org/10.3390/rs4092661
https://doi.org/10.3390/rs11222599
https://doi.org/10.3390/rs11222599


International Journal of Applied Earth Observation and Geoinformation 117 (2023) 103131

11

Ke, Y., Quackenbush, L.J., Im, J., 2010. Synergistic use of QuickBird multispectral 
imagery and LIDAR data for object-based forest species classification. Remote Sens. 
Environ. 114, 1141–1154. https://doi.org/10.1016/j.rse.2010.01.002. 
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