Field mesocosms can overcome the simplicity and deficiencies of laboratory based experimental designs. This study deals with a number of possible side effects of a mesocosm technique that involves deep-freezing of soil monoliths to eliminate soil fauna, wrapping in nets of various mesh-size to control faunal immigration and replanting in the field. We used Berlese-Tullgren sets in the field to directly inoculate mesocosms with microarthropods. After 6 months of exposure, the number of collembolans equalled control level whereas immigration and inoculation of oribatids accounted for only 30 % of the control. The number of ciliates, their distribution into feeding groups, and the numbers of nematodes, tardigrades and rotifers were not significantly affected by the elimination of mesofauna. We also did not detect significant treatment specific effects on microclimatic conditions within the litter layer of the mesocosms. Furthermore, we compared the monolith approach with a technique using sieved soil as a time-saving alternative. Water capacity and infiltration rate of mesocosms made of sieved soil did not differ from mesocosms made of monoliths, but NH4+ losses were significantly higher in sieved soil when defaunated by deep-freezing. We conclude that the investigated mesocosm technique has little side effects and recommend the use of monoliths in mesocosm studies.