Betula platyphylla and Betula costata are important species in mixed broadleaved-Korean pine (Pinus koraiensis) forests. However, the specific ways in which their growth is affected by warm temperatures and drought remain unclear. To address this issue, 60 and 62 tree-ring cores of B. platyphylla and B. costata were collected in Yichun, China. Using dendrochronological methods, the response and adaptation of these species to climate change were examined. A “hysteresis effect” was found in the rings of both species, linked to May–September moisture conditions of the previous year. Radial growth of B. costata was positively correlated with the standardized precipitation-evapotranspiration index (SPEI), the precipitation from September to October of the previous year, and the relative humidity in October of the previous year. Growth of B. costata is primarily restricted by moisture conditions from September to October. In contrast, B. platyphylla growth is mainly limited by minimum temperatures in May–June of both the previous and current years. After droughts, B. platyphylla had a faster recovery rate compared to B. costata. In the context of rising temperatures since 1980, the correlation between B. platyphylla growth and monthly SPEI became positive and strengthened over time, while the growth of B. costata showed no conspicuous change. Keywords: Tree rings, Betula platyphylla, Betula costata, Climate response, Moving correlation, Extreme drought