Titel
Impact of forest management and soil compaction on soil GHG fluxes of a temperate forest
Verfasser
Erscheinungsort
Vienna
Verlag
Erscheinungsjahr
2022
Seiten
2 S.
Material
Sonderdruck
Digitales Dokument
Standardsignatur
12981S
Datensatznummer
40003203
Quelle
Abstract
Temperate forests are a considerable sink for methane (CH4), carbon dioxide (CO2) and the emissions of nitrous oxide (N2O) and nitric oxide (NO) are low. Apart from the tree species composition, forest management itself can have a significant long-term influence and act as a driver on the GHG budget, particularly through soil compaction.
To assess the impact of tree species composition, thinning and soil compaction on the GHG budget, we measured GHG soil fluxes in a one-year campaign in a forest located in the catchment of the “Münichbach”, south-west to Vienna, Austria (N 48°07’16”, E 16°02’52’’, 510 m MASL). The soil is classified as Dystric cambisol over sandstone which is known to be sensitive for compaction and has a low recovery capacity. The mean air temperature in the campaign year (2019) was 9.7 °C and the annual precipitation was 820 mm. The experimental setup consisted of four treatments reflecting the heterogeneity of the catchment: a mixed stand (F) which was not thinned since 1913
consisting of beech, spruce, and larch; a pure beech stand last thinned in 2002 (L); a pure beech stand last thinned in 2013 (M), and the skid trails (R) that pass through the area of treatment M. For each treatment, five randomly distributed plots were selected, each equipped with three static chambers. The gas sampling was conducted manually at intervals of 3 weeks. Methane and N2O in the gas samples were analysed by gas chromatography, those of NO by a soil core incubation approach using a chemiluminescence detector. Fluxes of CO2 were measured in-situ with an EGM-4 environmental gas monitor (PP Systems).