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No compromise in efficiency from the co-
application of a marine and a terrestrial
CDR method

Yiannis Moustakis 1 , Hao-Wei Wey2, Tobias Nützel1, Andreas Oschlies 2,3 &
Julia Pongratz1,4

Modelled pathways consistent with the Paris Agreement goals to mitigate
warming typically include the large-scale application of Carbon Dioxide
Removal (CDR), which can include both land- andmarine-basedCDRmethods.
However, the Earth system responses and feedbacks to scaling up and/or
combining different CDR methods remain understudied. Here, these are
assessed by employing two Earth SystemModels, with amultifactorial setup of
42 emission-driven simulations covering the whole spectrum of Afforestation/
Reforestation (0-927 Mha) and of Ocean Alkalinity Enhancement (0-18 Pmol)
over the 21st century. We show that global carbon flux responses scale linearly
when different CDR methods are scaled up and/or combined, which suggests
that the efficiency of CDR is insensitive to both the amount of CDR and the
CDRportfolio composition. Therefore, combiningCDRmethods, which seems
beneficial for diversifying risks and remaining below sustainability thresholds,
does not compromise the efficiency of individual applications.

Along with stringent emission reductions, Carbon Dioxide Removal
(CDR) deployment is required to limit warming to 2 °C, or 1.5 °C rela-
tive to pre-industrial levels1. A preventive CDR capacity of several
hundred GtCO2 is necessary, which would allow for scaling up
deployment if needed, to protect and hedge against unexpected high-
warming outcomes this century2. Given the footprint of CDR on
energy-water-land systems, diverse portfolios including both land- and
marine-based methods such as Afforestation/Reforestation (AR) and
Ocean Alkalinity Enhancement (OAE) should be considered3, and it is
thus crucial to understand how scaling up and/or combining them
works within the interactive Earth system.

Besides reducing atmospheric CO2 and thereby global tempera-
tures (biogeochemical cooling), CDR also triggers complex carbon-
climate feedbacks4–7. In particular, the gradients of CO2 in the air-sea and
air-leaf continua are reduced, reducing air-sea CO2 exchange, and pho-
tosynthetic uptake respectively8. Therefore, enhancing the terrestrial
carbon sink reduces the ocean sink, and vice versa, compared to a
counterfactual no-CDR scenario. If we thus define the removal efficiency
(%)ofCDRas thedecrease in atmospheric carbondividedby the increase

in the land (ocean) carbon following the application of a land- (marine-)
based CDRmethod9, this should be less than 100%. Such “compensating
fluxes” disconnect the carbon sequestration one could theoretically
measure in the field from the realized atmospheric CO2 reduction, which
has crucial implications for monitoring, reporting, and verifying CDR8.

Earth System Models of Intermediate Complexity (EMICs) have
shown that removal efficiency is stronglydependent on the state of the
Earth system and the emissions scenario, whereas the amount of CDR
application (and thereby scaling up CDR) is less important9. This
expectation is based on scenarios where negative emissions are pre-
scribed as permanent removal directly from the atmosphere, and
where the removed carbon does not interact with the Earth
system4,10,11. This setup is representative of methods like Direct Air
Carbon Capture and Storage where removed carbon is stored in geo-
logical formations and does not interact with the rest of the carbon
cycle within the timescales of interest. In AR, carbon sequestration is
climate- and CO2-dependent and cannot be a priori known, while the
removed carbon remains in the interactive carbon cycle7. Planting
forests also triggers complex biogeophysical effects by changing the

Received: 14 January 2025

Accepted: 8 May 2025

Check for updates

1Ludwig-Maximilians-Universität in Munich, Munich, Germany. 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany. 3Kiel University,
Kiel, Germany. 4Max Planck Institute for Meteorology, Hamburg, Germany. e-mail: yiannis.moustakis@geographie.uni-muenchen.de

Nature Communications |         (2025) 16:4709 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4448-2967
http://orcid.org/0000-0002-4448-2967
http://orcid.org/0000-0002-4448-2967
http://orcid.org/0000-0002-4448-2967
http://orcid.org/0000-0002-4448-2967
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-8295-4013
http://orcid.org/0000-0002-8295-4013
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59982-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59982-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59982-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59982-x&domain=pdf
mailto:yiannis.moustakis@geographie.uni-muenchen.de
www.nature.com/naturecommunications


properties of the land surface such as albedo and roughness, and thus
altering the surface energy and water fluxes12,13. Similar considerations
apply to OAE, which includes the addition of alkaline materials to the
ocean surface, thereby increasing the dissolution of atmospheric CO2

into the sea14. The amount of ocean carbon uptake is dependent on
factors such as ocean circulation patterns, wind speed, surface ocean
carbonate chemistry, and atmospheric CO2 concentrations, which
affect gas-exchange kinetics, and cannot be a priori known15,16.

High-complexity Earth System Models (ESMs), which capture
these feedbacks6,7, are therefore needed to confirm whether the
removal efficiency remains insensitive to scaling up and/or combining
CDR regardless of the methods employed. Even if this held true, the
CO2 removal from combining methods may not be simply the sum of
the individual removals, as their combined effect could differ from the
linear assumption of independent application. Using an EMIC, Keller
et al.5 suggested that combining AR, OAE, and Ocean Iron Fertilization
yields a strongly saturating response of the removal, however this has
not been put to the test with an ESM yet. Similarly, scaling up the CDR
application by e.g., a factor of two, would not necessarily translate to a
doubling of the CO2 removal. Such a linearity would require that car-
bon uptake per unit of CDR application, is also insensitive to the
amount of CDR deployment. Schwinger et al.15 recently demonstrated
that this basically holds true forOAE, but this hasnot been investigated
for AR, or for combined deployments of different CDR methods.

To enhance confidence into our results, we study the scaling up and
combination of AR and OAE using two ESMs, namely the Max Planck
Institute for Meteorology Earth System Model (MPI-ESM)17, and the
Flexible Ocean and Climate Infrastructure (FOCI)18, run in an emission-
driven configuration where atmospheric CO2 is not prescribed, but
dynamically calculated19. In particular, we use an AR scenario featuring
up to 927 Mha of AR by 2099 following Moustakis et al.7, and an OAE
scenario featuring up to 18 Pmol of OAE over the coastlines globally by
2099, which are also combined and/or halved, while following the fossil
fuel emissions of the Shared Socioeconomic Pathway SSP3-7.0 (i.e., a
scenario with positive emissions throughout this century). This yields a
multifactorial setup of 7 scenarios and 42 simulations in total (Table 1,
Fig. 1). We show that global carbon flux responses scale linearly when
different CDR methods are scaled up and/or combined, which suggests
an insensitivity of the removal efficiency to both the magnitude of the
CDR perturbation itself and the CDR portfolio composition.

Results and discussion
Scaling up CDR leads to linear responses in carbon fluxes
In the halfAR scenario, land carbon (Cland) increases by 258 GtCO2

(Figs. 2, S1-2) and Cland uptake reaches 56 GtCO2/100 Mha by 2099

(Figs. 3, S3–4). An increase of Cland uptake/100 Mha across time could
be expected given the cumulative effect of continuous carbon
sequestration by forest planted early on, which is dependent on the
characteristics of re/afforested land. Here, reforestation is prioritized
over afforestation, and thus landwith higher sequestration potential is
converted early on7. However, this increasemostly reflects the effectof
increasing atmospheric CO2 concentrations on photosynthesis20. The
dependencyonCO2 concentrations becomes evidentwhen comparing
with the findings of Moustakis et al.7, who used the same setup albeit
under the lower SSP5-3.4os emissions, and reported a lower value of
~40 GtCO2/100 Mha by 2100.

Doubling the amount of AR deployment results in a minor
decrease in Cland uptake/100Mha reaching 54 GtCO2/100Mha (Figs. 3,
and S3–4 for model-specific results), and thus Cland scales linearly
reaching 503 GtCO2 (Fig. 2), which is only ~3% lower than linear
expectations (2*halfAR), with linearity holding across time (Figs. S5–7).
This could be expected, given that all land use transitions are halved,
and thus the halfAR and AR scenarios contain identical fractions of
converted productive and less productive land7. However, in the AR
scenario atmospheric CO2 levels are ~27 ppm less by 2099 compared
to halfAR, which could suggest a lower CO2 effect on forests. Still, this
difference only gradually builds up, whereas ambient CO2 levels in all
scenarios by the end of the century are in a range (>700 ppm) where
the slope of photosynthetic gain per ppm of CO2 increase in JSBACH3
(the land surface model of both ESMs employed here, see Methods) is
rather saturated21. Therefore, the additional loss of fertilization in the
AR scenario as atmospheric CO2 levels decrease is weak, and seems to
be compensated for by the resulting carbon-climate feedbacks and the
associated stronger biogeochemically-induced cooling22.

In the halfOAE scenario, ocean carbon (Cocean) increases by 262
GtCO2 (Figs. 2, S1–2), and the Cocean uptake/Pmol by ~0.14 GtCO2/Pmol
for every 10 ppm increase in atmospheric CO2, reaching 33 GtCO2/Pmol
by 2099 (Figs. 3, S3–4). Given this sensitivity and the ~30ppmdifference
between halfOAE and OAE, scaling up OAE does not substantially affect
Cocean uptake/Pmol. Lenton et al.23 applied the same amount of alkalinity
under the Representative Concentration Pathway RCP8.5 and RCP 2.6
and reported ~34 and ~26GtCO2/Pmol respectively, also suggesting that
Cocean uptake/Pmol increases with increasing atmospheric CO2

concentrations15. Despite this, usingMPI-ESM (CMIP5 version) González
& Ilyina24 reported a lower uptake (~30 GtCO2/Pmol) than the one
reported here, even though emissions were higher (RCP8.5). However,
this followed the application of 114 Pmol of alkalinity, which is sig-
nificantly higher than the 8 and 16 Pmol appliedhere. In fact, Feng et al.25

reported that over an extremely wide range of OAE applications span-
ning from 5 to 151 Pmol, uptake decreases from 32 to 27 GtCO2/Pmol.

Table 1 | The table shows the detailed characteristics of the employed Carbon Dioxide Removal (CDR) scenarios featuring
Afforestation/Reforestation (AR) and Ocean Alkalinity Enhancement (OAE) and how linear expectations are formulated

Scenario AR by
2099 (Mha)

Alkalinity by
2099 (Pmol)

Assess linearity com-
pared to:

Removal Efficiency (%) Clanduptake GtCO2ð Þ
100Mha

Coceanuptake GtCO2ð Þ
Pmol

REF – – – – – –

halfAR 463.5 – – ΔChalfAR�REF
atmo

ΔChalfAR�REF
land

ΔChalfAR�REF
land

Mha=100
–

AR 927 – 2 * halfAR ΔCAR�REF
atmo

ΔCAR�REF
land

ΔCAR�REF
land

Mha=100
–

halfOAE – 8 – ΔChalfOAE�REF
atmo

ΔChalfOAE�REF
ocean

– ΔChalfOAE�REF
ocean
Pmol

OAE – 16 2 * halfOAE ΔCOAE�REF
atmo

ΔCOAE�REF
ocean

– ΔCOAE�REF
ocean
Pmol

halfMixed 463.5 8 halfAR + halfOAE – ΔChalfMixed�REF
land
Mha=100

ΔChalfMixed�REF
ocean
Pmol

Mixed 927 16 (1) 2 * halfMixed
(2) AR +OAE

– ΔCMixed�REF
land

Mha=100
ΔCMixed�REF

ocean
Pmol

The table also shows how the removal efficiency andcarbon uptakeper unit ofCDR application are expressed as a function of changes in atmospheric (Catmo), land (Cland), andocean (Cocean) carbon.
For every scenario, 3 ensemble members for each Earth System Model (ESM) are available, spanning from 2015 to 2099.
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Given the above, unless vastly different application rates are considered,
Cocean uptake/Pmol can be considered insensitive to scaling upOAE, and
dependent on ambient CO2 concentrations. This leads to a linear Cocean

increase26 holding across time (Figs. S5–7), and reaching 521 GtCO2 in
the OAE scenario (Figs. 2, S1–2), which differs by <1% from linear
expectations (2*halfOAE).

Overall, our results suggest that the carbon uptake per unit of
CDR application is rather insensitive to scaling up the application,
and therefore the land (ocean) carbon flux responses in AR
(OAE) are linear, since even ambitious deployment -as is the case
here- impacts atmospheric CO2 by amounts small compared to
those of different emission scenarios. Future studies should inves-
tigate to what extent linearity holds for scenarios featuring strongly
reduced emissions. Under lower atmospheric CO2 concentrations,
the Cland and Cocean uptake might show less muted responses to
CDR-induced changes in atmospheric CO2, which might distort the
linearity.

Removal efficiency is insensitive to scaling up CDR
In halfAR and AR the decrease in atmospheric carbon (Catmo) reaches
220 and 429 GtCO2 respectively by 2099 (Figs. 2, S1–2), yielding a
removal efficiency of 85% in both scenarios and both models (Figs. 3,
S3–4), which is the result of Cocean compensating fluxes mostly over
the Southern Ocean (Figs. 4, S8–9). This is significantly higher than the
74% reported in Moustakis et al.7 under SSP5-3.4os emissions, sug-
gesting that removal efficiency increases with increasing emissions4.
Using MPI-ESM (CMIP5 version), Sonntag et al.27,28 reported a 83%
removal efficiency under RCP8.5 following a Cland increase of 793
GtCO2 (Table S1). Loughran et al.29 reported 95% under SSP5-8.5 with
ACCESS-ESM1-5 after a Cland increase of 92 GtCO2 (Table S1). Using
HadGEM2-ES, Koch et al.30 reported a significantly lower removal
efficiency under RCP2.6 reaching 55%, following a Cland increase of 121
GtCO2 (Table S1). Wey et al.6 reported a range of 75-88% across 7 ESMs
under SSP5-8.5 (2040-2060 average), following a Cland increase of
113 ± 30 GtCO2 (multi-model mean ± one standard deviation)
(Table S1).

In the halfOAE and OAE scenarios, the decrease in Catmo reaches
225 and 455 GtCO2 respectively by 2099 (Figs. 2, S1–2), translating to a
removal efficiency of 86 and 87% (Figs. 3, S3–4). This is the result of the
Cland compensating fluxes over eastern Asia, the U.S.A., and the tropics
(Figs. 4, S8–9). Recently, Jeltsch-Thömmes et al.19 reported a removal
efficiency of 73% with UVic EMIC under SSP5-3.4os and 87% with the
Bern3D v2.0 EMIC by 2100 (Table S1). The emerging insensitivity
contradits Palmiéri and Yool26, who showed with UKESM that under
SSP5-8.5 emissions halving or doubling OAE application rates, or
changing the depth of application, causes the removal efficiency to
strongly vary from 57 to 103%, despite the linear Cocean increase
(Table S1). This likely is due the lack of ensemble members therein,
because in all cases but one, the CDR perturbation is small (<100
GtCO2), and internal variability likelymasks the signal. This agreeswith
our findings showing that removal efficiency is highly variable by
~2050, when Catmo reduction is still weak (Fig. 3).

Wey et al.6 reported a range of 84–91% across 4 ESMs under SSP5-
8.5 (2040-2060 average), following a Cocean increase of 128 ± 2 GtCO2

(multi-model mean± one standard deviation) (Table S1). Sonntag
et al.28 reported a removal efficiency of 96% under RCP8.5 with MPI-
ESM (CMIP5 version) following a Cocean increase of ~3453 GtCO2 by
2099 (Table S1). Under RCP8.5, Lenton et al.23 reported an average
removal efficiency of 98%, which is reduced to 84% under RCP2.6
(TableS1). Therefore, similar to the caseofAR, removal efficiency likely
depends on the emission scenario when OAE is applied. Feng et al.25

reported a removal efficiency between 85% and 92% with UVic EMIC,
and showed that it decreased linearly with increasing amounts of
Cocean uptake (Table S1). However, this included up to 151 Pmol of
alkalinity, and our results suggest that for a smaller range of alkalinity
addition (up to 16 Pmol), the removal efficiency is rather insensitive to
increasing application rates. Nevertheless, uncertainty remains
regarding the magnitude of CDR perturbation that can be considered
strong enough to affect the removal efficiency. For example, Jones
et al.4 reported small variations up to 5% when quadrupling the mag-
nitude of CDR, despite it being even bigger than the cumulative
emissions in the underlying RCP2.6 scenario.

Fig. 1 | Simulation forcings. (Top) Themap shows the Afforestation/Reforestation
(AR) pattern expressed in forest cover fraction change by 2099 in the AR/Mixed
scenarios. For the halfAR/halfMixed scenarios, the spatial pattern is the same, albeit
halved. The line plot shows the global forest area increase (inMha) across time. The

details of the pattern can be found inMoustakis et al.7 (Bottom) Themap shows the
coastline gridcells where alkalinity is added. The line plots show the cumulative
amount of alkalinity addition (in Pmol) across time.
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Given the above, our results suggest that the removal efficiency
is rather insensitive to the rate of application for both
methods. Therefore, the linearity of carbon flux responses across
time is due to the emerging insensitivity of both the carbon uptake
per unit of CDR application and the removal efficiency to scal-
ing up CDR.

Is OAE more efficient than AR in removing carbon?
Our setup allows for a direct comparison of the removal efficiency
between the two methods, which in OAE is slightly higher by 1–2%
(Figs. 3, S3–4). When OAE is applied, the land surface has overall less
forest cover compared to the AR scenario, and thus the land has less
capacity to sequester carbon and compensate for the increasing
Cocean. Therefore, in the AR and OAE scenarios the Earth system is in
different states that may offer different capacities for redistributing
carbon and compensating. This contradicts Sonntag et al.28, who
reported a 96% removal efficiency for OAE and 83% for AR. However,
their study included vastly different amounts of CDR, featuring a 793
GtCO2 Cland increase for AR, and a 3453 GtCO2 Cocean increase for OAE
(Table S1). Similarly, Keller et al.5 reported a removal efficiency of 80%
for AR (480 GtCO2 Cland increase) and 92% for OAE (664 GtCO2 Cocean

increase) using UVic EMIC under RCP8.5, despite the Cland and Cocean

uptake amounts not being vastly different.

It should be noted that the removal efficiency metric is more
indicative of the strength of the land (ocean) compensation as a
response to a given increase in Cocean (Cland) rather than the efficiency
of the CDRmethod itself. This is due to the fact that the net change in a
sink where a CDR method is applied includes not only the carbon
uptake through CDR itself, but also other concurrent compensating
fluxes over that given sink. For example, in the halfAR and AR sce-
narios, a consistent weakening of the Amazon carbon sink is obtained
in both models (Figs. 4, S8–9). Similarly, even though ocean carbon
uptake over the coastlines emerges clearly when OAE is applied, con-
current compensating fluxes over the Southern Ocean are evident in
both models, especially in the OAE scenario (Figs. 4, S8–9).

Strictly separating the CDR sequestration from the total change in
a sink is not a trivial task, and would require additional simulations or
model development. For OAE, in both models added alkalinity is
naturally transported to adjacent gridcells resulting in increased CO2

uptake, for example across the Bay of Bengal and Western Indian
Ocean, and the South Atlantic Ocean (Figs. 4, S8–9). With our simu-
lations this cannot be separated from CO2 uptake over the gridcells of
OAE application. Additionally, the carbon increase in an ocean gridcell
where OAE is applied also depends on changing climate and atmo-
spheric CO2 levels31, and isolating the naturally occurring flux would
require additional concentration-driven simulations15. Similarly for AR,

Fig. 2 | Carbon sequestration. The left column panels show the timeseries of
intermodel average change in (top) atmosphere, (middle) land, and (bottom)ocean
carbon for all the different Carbon Dioxide Removal (CDR) scenarios compared to
REF (GtCO2). The shading around the mean shows the minimum-maximum range
across bothmodels and all ensemblemembers. To aid interpretation, in themiddle
and right column panels the barplots show snapshots for 2060 and 2099. The bar

height corresponds to the intermodel average, and the gray vertical lines show the
minimum-maximum range across both models and all ensemble members, while
the individual data points are also plotted. The multiplication and plus signs indi-
cate expectations from scaling up CDR application and combining methods
respectively, based on linearity assumptions (see Table 1). To aid visualization, the
vertical axis is flipped in the top panel.
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the carbon fluxes of the new forest cannot be separated from already
standing forest, which naturally responds to AR, as also do all vege-
tation types in a gridcell where AR is applied. Separating the carbon
sequestered through CDR would thus require a configuration separ-
ating the new forest, and concentration-driven runs aimed at quanti-
fying the feedback from reduced atmospheric CO2 concentrations.

Given the above, we argue that despite removal efficiency in OAE
being slightly higher, this does not suggest that OAE reduces Catmo

more efficiently than AR.

Linear carbon-cycle responses to combining CDR methods
Our results suggest that the global carbon fluxes scale linearly also
when combining CDR methods (Figs. 2, S5–7). In the Mixed scenario,
Catmo reduction reaches 856 GtCO2 by 2099 (Figs. 2, S1–2), due to the
Cland and Cocean increase of 421 and 435 GtCO2 respectively. In the
halfMixed scenario Catmo reduction is 443 GtCO2, due to the Cland and
Cocean increase of 219 and 224 GtCO2 respectively (Figs. 2, S1–2). Catmo

reduction in the halfMixed and Mixed scenarios is ~0.4% and ~3% less
than linear expectations, respectively. This is rather negligible and is
dominated by the variability of the terrestrial carbon sink (Figs. S5–7).
However, it could point towards a tendency of the Earth system to
yield potentially saturating responses in case strong enough pertur-
bations are imposed to the Earth system, thus starkly reducing

ambient atmospheric CO2 levels, as discussed above. Our results sug-
gest that at the global level there is little interaction between AR and
OAE, despite the biogeophysical effects of AR on hydroclimatic
variability and potential changes in the freshwater flux into the ocean,
which are rather lower-order effects. The linearity of responses
reported here contradicts Keller et al.5, which is the only study that has
investigated combining CDR methods so far, albeit with an EMIC. In
particular, they reported that combining AR, OAE, and Ocean Iron
Fertilization under RCP8.5 yields by 2100 a Catmo reduction which is
~23% (308 GtCO2) less than linear expectations. This saturation does
not hold for 2030, when Catmo reduction is only ~5% (22 GtCO2) less.
Their overall perturbation to the Earth system includes a ~ 19% higher
Catmo reduction than the one reported here, reaching ~1017 GtCO2 by
2100, but we cannot assess whether this difference can be a reason for
disagreement. Notably, in their study, the strongest deviation from
linearity is obtained for the Cocean, yielding 33% and 35% less by 2030
and 2099 respectively, whereas in our study the ocean emerges as the
most strongly linear and less variable sink in both models. This could
imply that the inclusion of Ocean Iron Fertilization distorts linearity,
but further research is needed.

Importantly, the insensitivity of carbon uptake per unit of CDR
application to scaling up application rates holds not only in the (half)
AR and (half)OAE scenarios, but also between the halfMixed andMixed

Fig. 3 | Removal efficiency and uptake per unit of Carbon Dioxide Removal
(CDR) application. The left column panels show the timeseries of intermodel
average: (top) removal efficiency (see Methods, Table 1), (middle) land carbon
uptake (GtCO2) per 100Mha of planted forest, and (bottom) ocean carbon uptake
(GtCO2) per Pmol of alkalinity added to the ocean surface. In all cases, uptake and
removal refer to changes in carbon stocks compared to REF. The shading around

the mean shows the minimum-maximum range across both models and all
ensemble members. To aid interpretation, in the middle and right column panels
the barplots show snapshots for 2060 and 2099. The bar height corresponds to the
intermodel average, and the gray vertical lines show theminimum-maximum range
across bothmodels and all ensemblemembers, while the individual data points are
also plotted.
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scenarios. Therefore, linearity holds for scaling up CDRmethods even
in the portfolio case (Figs. S5–7). In particular, Cland uptake/100Mha in
the halfMixed andMixed scenarios reaches 47 and 45 GtCO2/100Mha,
respectively, while Cocean uptake/Pmol is 28 and 27 GtCO2/Pmol
(Figs. 3, S3–4). Even though the carbon uptake per unit of CDR appli-
cation for both methods is lower in the (half)Mixed scenarios than
their single-CDR counterparts, this is not due to differences in atmo-
spheric CO2 concentrations. This becomes evident in the halfMixed
scenario, where the carbon uptake per unit of CDR application for AR
and OAE is still lower than the values obtained in the AR and OAE
scenarios, respectively, despite the trajectory of atmospheric CO2

being similar across all three scenarios.
Even though theCDR sequestration cannot be isolated, there is no

consistent reduction acrossmodels in sequestered carbonover sites of
forestation or over the ocean gridcells where OAE is applied when the
(half)AR and (half)OAE are combined (Figs. 4, S8–9). This implies that it
is rather the emerging compensating fluxes that reduce the AR and
OAE carbon uptake per unit of CDR application under the (half)Mixed
scenarios, and not the capacity of each method itself in sequestering
carbon locally, which is insensitive to small changes in ambient CO2

concentrations. For example, the weakening of the Amazon and
Southern Ocean sinks is also evident in the (half)Mixed scenarios in
both models (Figs. 4, S8–9).

As a result, the emerging linearity of the carbon fluxes under the
(half)Mixed scenarios suggests a linear behavior of compensating
fluxeswhen combining individualCDRmethods. This wouldmean that
the insensitivity of removal efficiency to the amount of CDR pertur-
bation holds not only when scaling up an individual CDR method, but
also when a perturbation is induced by the introduction of a different
method. This suggests that the removal efficiency of CDR is not
compromised at theportfolio case. Even though the removal efficiency
cannot be quantified here, there is no apparent reason indicating that
this should not hold. Nevertheless, future studies should further
investigate to what extent it is the CDR sequestration itself, the com-
pensating fluxes, or both, that facilitate linearity. Future studies should
further validate our results by exploring diverse portfolios that
incorporate a broader range of CDR methods, assessing whether
interactions between specific methods can occur, potentially off-
setting linearity.

Implications of linearity for project-level estimates
Here, we argue that despite the emerging linearity of global and regional
carbon fluxes, caution is needed when considering project-level esti-
mates. Deviation from linearity is evident locally (Figs. 4, S8–9) and is
stronger over land, due to the emerging complex, non-linear local and
non-local feedbacks especially when AR is considered8,12,32,33, but is still

Fig. 4 | Carbon fluxes at the gridcell level. The maps within the shaded box show
the intermodel average difference in cumulative carbon flux (kgCO2/m

2) between
eachCarbonDioxideRemoval (CDR) and theREF scenarioby 2099. Apositive value
(shown in blue) indicates carbon sequestration on land and ocean compared to
REF, while a negative value (shown in brown) suggests that the land or ocean
carbon sink is reduced compared to REF. To aid interpretation, the hatching
highlights the regions with a negative value less than −0.5 kgCO2/m

2. The maps
outside the shaded box show the deviation from linear expectations (see Table 1),

as noted in the titles. A different scale and colormap are used, with positive values
(shown in green) indicating that the realized flux (sequestration or weakening
compared toREF) is higher than the linear expectation (sequestrationorweakening
compared to REF) (see Table 1). For example, in gridcells where both the realized
and expected flux are negative (weakening compared to REF), a positive value
suggests that the realized weakening is less strong in magnitude as the expec-
ted one.
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small compared to the amounts of carbon sequestered, and does not
have distinct spatially organized features that are consistent across
models. For example, the models disagree over the linearity of fluxes
across the forestation sites in Asia after scaling up AR, with FOCI
showing a more consistent less-than-linear flux (Figs. S8–9). Similarly,
scaling up AR results in more than linearly scaled sequestration over the
U.S.A. in MPIESM (Figs. S8–9). The uncertainty of Cland fluxes becomes
evident for both models, by the apparent differences between the two
patterns of divergence from linearity that are available for the Mixed
scenario. Therefore, sequestration estimates for individual forestation
projects obtained by multiplying fixed forest carbon densities with the

area of application cannot yield accurate results. Even though such
estimates could still likely serve as a first order approximation, they
should be treated with caution. Since the dependency of the Cland

uptake/100 Mha on the background climate and CO2 trajectory is
strong, approaches that use transient forest carbon densities to estimate
carbon accumulation based on future climate and CO2 levels should be
preferred34.

Cocean fluxes in the (half)OAE scenarios scale linearly also locally,
especially over the regions where the bulk of sequestration has
occurred (Figs. 4, S8–9). This is consistent across bothmodels, despite
in FOCI a higher ocean resolution being employed, adding confidence

Fig. 5 | Warming mitigation. (Top) For every Carbon Dioxide Removal (CDR)
scenario the lineplots show the timeseries of the intermodel average difference in
globally averaged 2m temperature (°C) compared to the mean temperature under
REF. The shading around the mean shows the minimum-maximum range across
bothmodels and all ensemblemembers. To aid interpretation, the boxplots on the
right show yearly values of globally averaged temperature between 2090 and 2099
pooled from both models and all ensemble members. The whiskers show the
5th–95th percentiles of pooled values. The model-specific 2090–2099 averages are
shown with the colored circles, and the intermodel average with the horizontal

black lines. (Bottom) The maps show the intermodel average difference in average
2090–2099 2m temperature (°C) between each CDR and the REF scenario. Stip-
pling highlights statistical insignificant differences. Statistical significance is
declared over gridcells where: (a) the twomodels agree on the sign of the change,
and (b) at least one model shows a statistically significant difference at the 10%
significance level based on a two-tailed Student’s t test adjusted to account for
temporal lag-1 autocorrelation67. For each gridcell and model, the test is applied
over the yearly data pooled together from all ensemble members for the given
period.
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to our results. Given the difficulty in directly monitoring verifying and
reportingOAE35, ourmodeling results imply that linear estimates could
be useful for rough first order approximations of OAE uptake when
scaling up application in real life. However, model estimates for OAE
can still be uncertain and require further experimental validation35.

It should be noted that the linearity reported here emerges after
increasing the magnitude of CDR application over the exact same
gridcells. However, thismight not be the casewhen scaling up the CDR
deployment includes applying the additional alkalinity and/or estab-
lishing the additional forests over different regions. This is due to the
fact that different regions can yield different rates of Cocean uptake/
Pmol for OAE16 and of Cland uptake/100 Mha for AR, since forests can
have different capacities to sequester carbon across different
regions7,36. However, when it comes to removal efficiency, our results
suggest that it is insensitive to the magnitude of the CDR perturbation
and there is no apparent reason why this should not hold in cases
where scaling up CDR includes different regions of deployment.
Overall, increasing the model’s resolution could improve the repre-
sentation of climatic variability37, thus offering useful insight into
carbon flux responses over land gridcells, where deviation from line-
arity is stronger (Fig. 4). However, a coarser resolution (as is the case
here) can still offer qualitatively similar results with little biogeo-
chemical error compared to higher resolutions38, thus capturing the
(non)linearity of Cland responses over land gridcells on average.

Warming mitigation
Here, similar levels of CDRamounts are applied under the same carbon
emissions, which suggests that the sensitivity of global temperature to
changes in atmospheric CO2 levels is similar in all scenarios39. In the
halfAR and AR scenarios, average 2090–2099 temperature is reduced
by 0.09 ± 0.1 °C (mean± standard deviation, estimated by pooling
yearly data) and 0.2 ± 0.11 °C respectively (Figs. 5, S10–11), which cor-
responds to ~0.05 °C warming mitigation per 100 GtCO2 of Catmo

reduction (considering Catmo by 2095), matching the climate sensi-
tivity of the REF experiment. In both scenarios and models, even
though biogeophysically-induced warming likely partly offsets the
overall stronger biogeochemical cooling7, warming does not strongly
emerge locally (Figs. 5, S10–11). In halfAR, cooling emerges over North
America, Africa, and Latin America, while cooling is widespread in the
AR scenario in both models. Efficiency in mitigating warming is lower
than the 0.07 °C/100 GtCO2 in Moustakis et al.7, since the SSP5-3.4os
scenario they employed has lower atmospheric CO2 levels, and thus a
higher sensitivity of the radiative forcing to changes in atmospheric
CO2 concentrations

39. Previous studies have suggested similar levels of
warming mitigation following large-scale AR application. Using MPI-
ESM (CMIP5 version), Sonntag et al.27 reported a 0.27 °C cooling under
RCP8.5 following 800 Mha of AR and 100 Mha of avoided deforesta-
tion. Under high emissions, Arora & Montenegro40 showed a 0.25 °C
warming mitigation with an ESM, following 1,010 Mha of AR. Dooley
et al.41 reported a warming mitigation up to 0.25 °C under a low
overshoot scenario. Following SSP5-8.5 emissions and SSP1-2.6 land
use pattern featuring large-scale AR, Loughran et al.29 reported no
effect of temperature based on 6 ESMs for a resulting 37-220 GtCO2

Catmo reduction range.
In the halfOAE and OAE scenarios a widespread cooling signal

occurs in both models, and warming mitigation reaches 0.14 ± 0.13 °C
and 0.22 ±0.12 °C, respectively (Figs. 5, S10–11), corresponding to an
efficiency in mitigating warming of 0.07 and 0.05 °C /100 GtCO2. This
is higher than the 0.04 °C /100 GtCO2 based on Keller et al.5, and the
0.02 °C /100GtCO2basedonLenton et al.23, albeit underhigherRCP8.5
emissions. Other studies have reported cooling of even ~1.5 oC, but
following vastly higher total alkalinity addition to the ocean24,28. Even
though the absence of AR-induced biogeophysical effects on tem-
perature could imply that OAE is more efficient inmitigating warming,
our results donot showa statistically significant differencebetweenAR

and OAE, or halfAR and halfOAE in both models, and larger ensemble
sizes would be required for any signal to robustly emerge. In the
halfMixed and Mixed scenarios, warming mitigation reaches
0.20 ± 0.13 °C and 0.42 ± 0.14 °C respectively (Figs. 5, S10–11), corre-
sponding to an efficiency inmitigating warming of 0.05 °C/100 GtCO2.
In the halfMixed scenario, widespread cooling occurs over parts of the
Northern hemisphere, the tropics, and Antarctica, while in the Mixed
scenario, cooling is dominant globally in bothmodels (Figs. 5, S10–11).

Overall, our results suggest that scaling up and/or combining CDR
methods yields a roughly linear increase in the mitigation of global
warming, which is the result of the nearly constant transient climate
response to cumulative net positive CO2 emissions42. However, this does
not hold at the gridcell-level, where the complex non-linear dynamics of
both the biogeophysical and biogeochemical effects of CDR application
on surface energy and moisture fluxes are at play32,33,43. Nevertheless,
examiningmodel-specific results (Figs. S10–11) suggests that patterns of
biogeophysically-induced warming tendencies -even though statistically
insignificant- tend to emerge also after scaling up AR or combining it
withOAE, and are expressed either as a net warming or aweaker cooling
(e.g., warming tendency over the Sahel region in MPI-ESM (Fig. S10)).
This suggests that, despite temperature responses being non-linear,
such features can still persist when scaling up and/or combining CDR
methods. Nevertheless, in the absence of large ensemble sizes, tem-
perature responses at the gridcell level can be masked by internal
variability.

Outlook
Our study is a thorough attempt to disentangle the dynamics of CDR
portfolios, by employing two ESMs. Global carbon fluxes respond lin-
early to CDR perturbations, due to the insensitivity of the carbon
uptake per unit of CDR application and the removal efficiency to both
the magnitude of the CDR perturbation, and the portfolio
composition44. Our results suggest greater flexibility in designing
sustainable CDR portfolios that incorporate both land- and marine-
based CDRmethods, since combining methods does not compromise
the removal efficiency of individual applications globally, even in the
presence of emerging feedbacks. This flexibility can be advantageous
for managing risks and ensuring that future CDR deployment remains
within ecologically and socially acceptable levels3,45.

With CMIP7 on the horizon, and as IAMsand ESMsare introducing
more CDRmethods36,46, we call for an increased focus on diverse CDR
portfolios and the emerging carbon-climate feedbacks, which can only
be facilitated by including more emission-driven simulations44. Apart
from validating our results, future studies should also employ setups
tailored to isolating CDR sequestration fromcompensating fluxes, and
investigate other trajectories as well, especially overshoot ones, which
can feature complex sink-to-source transitions and asymmetries4,11,47.

Methods
Models employed
We employ two coupled ocean-land-atmosphere ESMs, namely MPI-
ESM (MPI-ESM-1-2.01p7-LR)17, and FOCI18. MPI-ESM has been partici-
pating in the Coupled Model Intercomparison Projects including
phase 6 (CMIP6), and has been widely applied, studied, and evaluated
against observations and other ESMs48–50. MPI-ESM has already been
used for studies including AR and OAE7,24,27,28,51. MPI-ESM employs
ECHAM652 as the atmospheric component with a T63 (1.9°) horizontal
resolution and 47 vertical atmospheric layers, JSBACH353 as the land
component with a T63 (1.9°) horizontal resolution, MPIOM54 as the
ocean component employing a bipolar grid with 1.5° resolution and 40
vertical layers, and HAMOCC655,56 as the marine biogeochemical
component. FOCI is the successor of the Kiel Climate Model57 and
employs ECHAM6 as the atmospheric component with a T63 (1.9°)
horizontal resolution and 95 vertical atmospheric layers, JSBACH3 as
the land component with a T63 (1.9°) horizontal resolution, NEMO58 as

Article https://doi.org/10.1038/s41467-025-59982-x

Nature Communications |         (2025) 16:4709 8

www.nature.com/naturecommunications


the ocean component employing a tripolar ORCA05 grid with a reso-
lution of 0.5°, which corresponds to 55.6 km near the equator and 46
vertical layers, and MOPS59 as the marine biogeochemical component.

Given the above, FOCI and MPI-ESM feature the same land and
atmospheric components, albeit with increased vertical atmospheric
resolution in FOCI. The two models have different ocean and marine
biogeochemical components, while FOCI has also a higher horizontal
and vertical ocean resolution. Higher ocean resolution is crucial for
properly capturing alkalinity diffusion, transport and mixing towards
deeper sea layers and adjacent areas60, and this has motivated us to
create a mini-ensemble of two models that significantly differ in the
ocean component, despite sharing the same atmospheric (with dif-
ferent vertical resolution) and land components.

Simulation setup
Our experimental setup includes a Reference (REF), and amultifactorial
set of scenarios where AR and OAE are scaled up and/or combined,
following the Shared Socioeconomic Pathway SSP3-7.0 emissions sce-
nario. For every scenario, an ensemble of three realizations is run from
2015 to 2099 with each model. Both models are run in an emission-
driven coupled ocean-land-atmosphere setup. In the REF simulation,
land use, land management and related land-cover change (hereafter
called “land use”) remain constant at 2015 levels, and no land use tran-
sitions occur. Following Moustakis et al.7, the dynamic vegetation
module of JSBACH is switchedoff for bothmodels, and thus there are no
biogeographic changes in the cover fractions of the natural plant func-
tional types (as could occur, e.g., in response to global warming),
allowing for the full isolation of the AR effects on the Earth system.

In the AR simulation, land use follows the scenario developed by
Moustakis et al.7, which includes AR in the range of country pledges61,62,
reaching 595 Mha and 927 Mha of AR by 2060 and 2099, respectively.
The employedARpattern is basedon information froma large number
of IAM-generated scenarios63, which are further constrained and dis-
aggregated at the gridcell level guided by restoration potential64,65 and
ecosystem integrity66 maps (see Moustakis et al.7 for more details on
scenario development).

To create an OAE scenario of comparable magnitude to AR, we
apply as much alkalinity as is needed to roughly match the additional
land sequestration in AR compared to REF. To do so, we first diagnose
the dependency of the rate of Cocean uptake/Pmol of OAE on ambient
CO2 concentrations15, by running a simulation similar to REF, where
0.17 Pmol/year of alkalinity are applied globally from 2015 onwards. In
turn, the intermodel average ocean carbon uptake per Pmol alkalinity
is estimated for every 10-year period, and is used to determine the
average rate of alkalinity addition needed to match the cumulative
additionalAR sequestrationon land for that period. This average rate is
continuously applied during this period in the OAE scenario. In total,
this adds up to 16 Pmol of alkalinity by 2099. Following the approach
of Feng et al.25, alkalinity is continuously and homogeneously applied
over the ice-free coastline gridcells globally, which are considered to
roughly correspond to the national Exclusive Economic Zones (EEZ)
extending seaward 200 nautical miles (~370 km) from the coastline.
OAE application close to the coastlines ensures proximity not only to
the sea, but also to low-cost renewable electricity, and alkaline
feedstock60. As evident in Fig. 2, ocean carbon sequestration under the
OAE scenario successfully follows land carbon sequestration under AR.

To investigate the effects of scaling up AR, an additional scenario
(halfAR) has been created, where half of AR is applied. In this scenario,
the spatiotemporal characteristics of the applied AR pattern are not
altered compared to the AR scenario, but rather every land use tran-
sition is merely halved in size. As a result, in the halfAR scenario 297.5
Mha and 463.5 Mha of forestation are reached by 2060 and 2099
respectively. Similarly for OAE, an additional scenario (halfOAE) has
been created, where half of the alkalinity is applied at every timestep
over the same gridcells, reaching 8 Pmol by 2099. Finally, to

investigate the joint effect of combining AR and OAE, a scenario
(Mixed) has been created where both AR and OAE are employed.
Similarly, a scenario (halfMixed) where both halfAR and halfOAE are
employed has also been developed. A list of all scenarios and their
characteristics is presented in Table 1.

With this setup, given that the REF and the various CDR sce-
narios only differ with respect to the application of CDR itself, the
difference between any of the CDR scenarios and REF reflects the
isolated effect of that particular CDR application on the Earth sys-
tem. At the same time, the difference between halfAR and AR,
halfOAE and OAE, and halfMixed and Mixed scenarios reflects the
effect of scaling up CDR methods or portfolios. It should thus be
noted that all carbon fluxes reported here are estimated as the dif-
ference of any given CDR scenario with respect to the mean REF
carbon content. In particular, for every CDR scenario, we calculate
the intermodel average difference in atmospheric (Catmo), land
(Cland), and ocean (Cocean) carbon content compared to the REF
scenario across time. Model-specific results are presented in the
figures of the Supplementary Material.

Linearity of carbon flux responses and removal efficiency
To assess the linearity of carbon fluxes in the scenarios where CDR is
scaled up and/or combined, the deviation of the realized fluxes is
compared to the fluxes obtained based on linearity expectations, as
shown in detail in Table 1.

Removal efficiency (%) is expressed as the decrease in Catmo in a
given CDR scenario compared to REF, divided by the increase in Cland

(Cocean) under AR (OAE) compared to REF (Table 1). Removal efficiency
is conceptually similar to the perturbation airborne fraction intro-
duced by Jones et al.4, however, as discussed inmore detail in themain
text, the denominator is the total change in Cland (Cocean) under AR
(OAE), and not the carbon sequestration through AR (OAE) alone that
should be excluding concurrent compensating fluxes within the land
(ocean). Given this definition, removal efficiency is not estimated for
the case of the Mixed and halfMixed scenarios.

Even thoughestimates of removal efficiency basedonpast studies
are reported here, it should be noted that these have not been directly
reported in these studies. These estimates are rather inferred from the
data available in all publications. A table with the details on the esti-
mates of removal efficiency based on previous studies is shown in the
Supplementary Material (Table S1).

Statistical treatment
For each model and scenario the statistical significance of changes in
2m temperature during 2090–2099 (Fig. 5) at each gridcell is initially
inferred at the 10% significance level. To do so, yearly mean tempera-
ture values from all 3 ensemble members during that period are
pooled together, and a two-tailed Student’s t test adjusted to account
for lag-1 temporal autocorrelation67 is applied between thepooleddata
of the CDR and the REF scenario. However, when both models are
considered, statistical significance is declared over gridcells where: (a)
both models agree on the sign of the change, and (b) at least one
model shows a statistically significant difference.

Data availability
A repository with data supporting this publication has been published
in Zenodo at: https://doi.org/10.5281/zenodo.15130372.

Code availability
The Max Planck Institute’s Earth SystemModel (MPI-ESM-1-2.01p7-LR)
is made available under a version of the MPI-M software license
agreement (the license and information on how to access the code can
be found here: https://code.mpimet.mpg.de/projects/mpi-esm-
license). FOCI is available at: https://zenodo.org/records/6772175.
Python 3.11.2 has been used for all data analysis.
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