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Abstract 
Context  Forest microclimate influences biodiversity 
and plays a crucial role in regulating forest ecosystem 
functions. It is modified by forest management as a 
result of changes in forest structure due to tree har-
vesting and thinning.
Objectives  Here, we investigate the impacts of 
even-aged and uneven-aged forest management on 
stand- and landscape-level heterogeneity of forest 

microclimates, in comparison with unmanaged, old-
growth European beech forest.
Methods  We combined stand structural and topo-
graphical indices derived from airborne laser scan-
ning with climate observations from 23 meteoro-
logical stations at permanent forest plots within the 
Hainich region, Germany. Based on a multiple linear 
regression model, we spatially interpolated the diur-
nal temperature range (DTR) as an indicator of for-
est microclimate across a 4338 ha section of the forest 
with 50 m spatial resolution. Microclimate heteroge-
neity was measured as α-, β-, and γ-diversity of ther-
mal niches (i.e. DTR classes).
Results  Even-aged forests showed a higher 
γ-diversity of microclimates than uneven-aged and 
unmanaged forests. This was mainly due to a higher 
β-diversity resulting from the spatial coexistence 
of different forest developmental stages within the 
landscape. The greater structural complexity at the 
stand-level in uneven-aged stands did not increase 
α-diversity of microclimates. Predicted DTR was sig-
nificantly lower and spatially more homogenous in 
unmanaged forest compared to both types of managed 
forest.
Conclusion  If forest management aims at creating 
a wide range of habitats with different microclimates 
within a landscape, spatially co-existing types of dif-
ferently managed and unmanaged forests should be 
considered, instead of focusing on a specific type of 
management, or setting aside forest reserves only.
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Introduction

Forest microclimate plays an integral role for for-
est ecosystem processes (Aussenac 2000; De Frenne 
et al. 2021). It influences heat and energy exchanges 
and thereby affects basic physiological functions of 
individual organisms as well as ecosystem functions, 
such as soil respiration, evapotranspiration and nutri-
ent cycling (Bonan 2015; Clarke 2017). Hence, the 
local microclimatic conditions within forest ecosys-
tems, rather than macroclimatic means of a region, 
are relevant for the performance, diversity, composi-
tion, and spatio-temporal distribution of forest organ-
isms, as well as their growth, reproduction, and mor-
tality (Bramer et al. 2018; Zellweger et al. 2019). It is 
therefore important to better understand the drivers of 
forest understory microclimate and how it is impacted 
by forest management, particularly against the back-
ground of climate change and biodiversity decline.

Regional climate is modified by the topogra-
phy and forest structure, which jointly constrain the 
microclimate of a site (De Frenne et al. 2021). Topo-
graphic variables that influence microclimate include 
elevation and exposition as well as the slope of the 
area and its relative position within the landscape 
matrix (e.g. valley bottom vs. hilltop, proximity to 
water bodies) (Jucker et al. 2018a; Macek et al. 2019). 
Effects of forest structure on forest microclimate are 
primarily determined by canopy height and canopy 
openness, the species composition, distance to forest 
edge as well as the horizontal and vertical complexity 
of a forest stand (Ehbrecht et al. 2017, 2019; Kovács 
et al. 2017).

It is well understood that forest management alters 
below-canopy microclimatic conditions by modify-
ing the structural features of a stand (Blumröder et al. 
2021; Ehbrecht et  al. 2019). Disturbances through 
timber harvest change the local light conditions, tem-
perature buffering capacity, rainfall interception, and 
stand-level transpiration, thereby impacting soil and 
air temperatures as well as water budgets (Chen et al. 
1999).

Temperate broadleaved forests in Central 
Europe are usually managed under the principles 

of continuous cover forestry (Röhrig et  al. 2020). 
Approaches of continuous cover forestry range 
from coarse-grained, even-aged (EA) management, 
focused on age class cohorts in larger patches (i.e. 
shelterwood system), to fine-grained, uneven-aged 
(UEA) management. In UEA management, single 
stems of mature trees with a certain target diame-
ter are cut or desirable trees are promoted through 
liberation cuttings (Schall et  al. 2018a, b). UEA-
management promotes stand-level structural hetero-
geneity, which is reflected in multiple canopy lay-
ers resulting from an uneven age and size of trees, 
as well as a continuous canopy cover (Bauhus et al. 
2009). In contrast, EA-management results in a 
mosaic of largely single- or two-layered stands of 
different developmental stages with trees of simi-
lar ages, thereby promoting a higher between-stand 
heterogeneity, but lower structural heterogeneity at 
stand level. The differences in stand structure result-
ing from the spatial grain of the two alternative 
management approaches likely translate into differ-
ences in below canopy microclimate variability.

While silvicultural guidelines in Europe and 
North America nowadays advocate UEA forest 
management over EA management, the impact of 
the two forest management regimes on biodiver-
sity remains a matter of scientific debate (Giessen 
et al. 2013; Messier et al. 2015; Nolet et al. 2018). 
Consequently, a better understanding of the impacts 
of even-aged versus uneven-aged management on 
landscape-level microclimate heterogeneity at var-
ying spatial scales is needed and can improve our 
understanding of forest management impacts on 
biodiversity.

Here, we investigate and model within- and 
between-stand as well as landscape-level micro-
climate heterogeneity—measured as α-, β-, and 
γ-diversity of thermal niches for a 4338 ha section of 
the Hainich European beech forest. The main objec-
tive of this study is to better understand the impacts 
of forest management on forest microclimate across 
spatial scales.

For this purpose, we combine airborne laser scan-
ning (ALS) derived raster data of topographical and 
stand structural metrics with spatially-referenced 
information on forest stand features and in-situ cli-
mate observations. Based on statistical relationships 
between the DTR and forest structural as well as top-
ographic variables, we model and predict DTR across 
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the study area for EA, UEA and UNM forests covered 
using the ALS data.

With our analyses, we aimed at testing the follow-
ing hypotheses:

1.	 Even-aged forest management results in lower 
α-diversity, but higher β- and γ-gamma diversity 
of forest microclimates compared to uneven-aged 
or unmanaged forests.

2.	 Uneven-aged forest management results in higher 
α-diversity, but lower β- and γ-gamma diversity 
compared to even-aged and unmanaged forests.

3.	 Unmanaged old-growth forests show lower diur-
nal temperature ranges than managed forests.

Materials and methods

Study region

The study was conducted within the framework of the 
Biodiversity Exploratories (www.​biodi​versi​ty-​explo​
rator​ies.​de), a large-scale and long-term research 
initiative to investigate the impacts of land-use on 
biodiversity and associated ecosystem functions and 
services (Fischer et al. 2010). The study site Hainich-
Dün is located in Thuringia, Central Germany (51º 
16′ N, 10º 47′ E). With approximately 16,000 ha, the 
Hainich is one of the largest contiguous European 
beech dominated forests in Central Europe (Ehbrecht 
et al. 2019; Fischer et al. 2010). Elevations range from 
245 to 537 m above sea level. At the time of ALS data 
acquisition in summer 2015, mean annual precipita-
tion in the region ranged from 500 to 800  mm, and 
mean annual temperatures ranged between 6.5 and 8 
ºC (Nauss et al. 2015).

The Hainich presents a perfect study landscape to 
investigate structural and microclimatic differences 
resulting from the different spatial grain of forest 
management, as both even-aged and uneven-aged, 
as well as unmanaged old-growth European beech 
forests can be found under comparable site condi-
tions. The forest plots of the Biodiversity Explorato-
ries were selected along a gradient of management 
intensity, ranging from unmanaged stands in Hainich 
National Park (UNM), single tree selection systems 
(UEA management), to shelterwood systems, reflect-
ing the different developmental stages under EA 

forest management (Fischer et al. 2010; Schall et al. 
2018a, b).

The unmanaged forests in the southern part of the 
Hainich region was declared a national park in 1997 
as part of the UNESCO world heritage site “Prime-
val Beech Forests of the Carpathians and the Ancient 
Beech Forests of Germany” and are characterized by 
old-growth European beech stands. However, it needs 
to be taken into account that the stands of the Hainich 
National Park are not yet characterized by the struc-
tural features of primary forests, as they still show a 
footprint from former forest management. Stands are 
up to 250 years old, whereby management (coppice-
with-standards and later on transformation to high 
forest systems) was ceased up to 70 years ago (Mund 
2004; Schall et al. 2018a, b; Willim et al. 2022). Fur-
ther details on forest management practices for EA 
and UEA and land-use history of UNM stands of the 
Hainich National Park are provided in Schall et  al. 
(2018a, b) and Mund (2004).

Managed and unmanaged stands within the study 
landscape are strongly dominated by European beech 
(Fagus sylvatica L.), partially mixed with other 
broadleaved species, such as European ash (Fraxi-
nus excelsior L.), Sycamore maple (Acer pseudopla-
tanus L.), Hornbeam (Carpinus betulus L.) and/or 
Small-leaved lime (Tilia cordata Mill.) (Mund 2004). 
Further information on stand age and stand struc-
tural characteristics for the study plots is provided in 
Table 6, Sect. 7.1 of the supporting information (SI). 
Differences in topography between the management 
systems are discussed in Sect. 7.2. of the SI).

Data acquisition and variable selection for 
landscape‑level microclimate modelling

Microclimate data

We used the diurnal temperature range, maximum, 
minimum and mean temperature as indicators of for-
est microclimate. The temperature data was obtained 
in hourly intervals with sensors mounted 2 m above 
ground (MELA KPC 1/5-ME temperature sensor, 
MELA Sensortechnik GmbH, Germany) (Nauss et al. 
2015). For statistical analysis and the development of 
microclimate models, the daily data from 23 mete-
orological stations was first aggregated to mean val-
ues for the summer months (June, July and August), 
and then averaged for the investigation period from 

http://www.biodiversity-exploratories.de
http://www.biodiversity-exploratories.de
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2014–2016 (Ehbrecht et  al. 2016). DTR was calcu-
lated as the difference between daily maximum and 
minimum temperature. DTR, maximum and mini-
mum temperature, as well as mean temperature were 
tested as dependent variables in a multiple linear 
regression (MLR) model explaining variability in 
microclimate (see supporting information, Sect.  7.4, 
Figs.  10–13). The ALS data was aquired in a flight 
campaign in summer 2015. By including the years 
before and after the ALS flight, a reasonable num-
ber of climate observations was included, while only 
minor changes in stand structural features, resulting 
from tree harvests, could be expected.

Airborne laser scanning data

All ALS data was provided through the remote sens-
ing database (RSDB). For a detailed description of 
the functionality of RSDB see Wöllauer et al. (2020). 
The scanning flights of the Hainich took place in July 
2015 with a Q780 Riegel Sensor, at an operating fre-
quency of 400 kHz from approximately 950 m above 
ground, with an average point density of 36.24 pts. 
m−2 (Magdon and Kleinn 2016; Seidel et  al. 2020). 
The flight covered a total area of 13,378 ha, 4,388 ha 
of which were European beech forest included in the 
analysis (see Fig.  4). All points were classified into 
ground and non-ground returns and a digital ter-
rain model (DTM) was fit to the ground returns. 
This resulted in a raster file of 1 m2 spatial resolu-
tion, where the pixel values represent height above 
sea level of the ground surface. Similarly, a digital 
surface model (DSM) was computed using the high-
est z-coordinates of each 1  m x 1  m grid cell, after 
removal of isolated returns. Subtracting DTM from 
DSM resulted in a canopy height model (CHM), a 
raster file with cells representing heights of vegeta-
tion and other non-ground returns measured from the 
ground level. Subtracting the DTM from each point 
value resulted in a normalized point cloud of the veg-
etation, where z-values of points correspond to their 
height above ground (Fig. 1).

DTM and CHM were subsequently used to calcu-
late a set of stand structural and topographical metrics 
(see Table 1), assumed to modify forest microclimate. 
Details on metric computation are given in the refer-
ence list for each metric.

Understorey microclimate can be affected by clear-
ings made tens of meters from forest gaps or edges 

(Chen et al. 1999; Ewers and Banks-Leite 2013). To 
capture the effect of canopy conditions in the vicinity 
of each meteorological station at an appropriate scale, 
all metrics were calculated for 50 × 50  m extents 
(pixel size) (sensu Jucker et al. 2018b).

Model selection

We tested the relationship between ALS metrics (as 
independent variables) and the microclimate indica-
tors (as dependent variables) using linear regres-
sion models (see Fig.  2 for DTR and supplement 
Figs. 14–16 for the other temperature variables). All 
statistical analysis was done in R, version 3.5.2. (R 
Core Team, 2021).

We selected four topographic metrics that are 
known to impact air temperature and other climate 
variables due to changes in atmospheric pressure and 
site exposure (Bennie et  al. 2008; Dobrowski 2011; 
Jucker et  al. 2018a), and six canopy structural met-
rics, which have been shown to affect the microcli-
mate below the canopy through shading, interception 
or modified air-flow (Bramer et  al. 2018; Ehbrecht 
et  al. 2019; Jucker et  al. 2018b). Selected variables 
are summarized in Table 1 (see supplementary infor-
mation Sect. 7.2 for further details).

In order to develop a multiple linear regression 
(MLR) model explaining variability in below canopy 
temperature, we tested all possible combinations 
of explanatory variables, where collinearity did not 
exceed the threshold of r <|0.7|, as defined by Dor-
mann et  al. (2013). MLRs were rejected if one pre-
dictor variable was not significant (p > 0.05). The 
models with different variable combinations were 
then ranked according to their Akaike Information 
Criterion (AICc) and the MLR with lowest AICc was 
used in the subsequent analysis (see Table 2). Addi-
tionally, an automated model selection using the 
“dredge” function, as implemented in the R pack-
age MuMIn (Bartoń, 2013), was used to confirm the 
manual model selection. Subsequently, we used hier-
archical partitioning to assess the contributions of 
each predictor variable to the overall explained vari-
ance using the R package hier.part (Walsh and Nally 
2020). We focused on DTR in subsequent analyses to 
model the stand- and landscape-level heterogeneity of 
forest microclimate, as DTR was shown to be a strong 
indicator of forest microclimate, accounting for both, 
maximum and minimum temperature (Ehbrecht et al. 
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Fig. 1   Normalized point clouds and metrics values of selected exemplary forest plots of 100 m × 100 m (1 ha) size. The colour-scale 
is based on z-values of points above ground level. The scalar bar also depicts their distribution



908	 Landsc Ecol (2023) 38:903–917

1 3
Vol:. (1234567890)

2019). In order to upscale DTR values over the entire 
landscape covered by the ALS flight, a raster map 
with 50  m spatial resolution was computed using 
ALS-derived raster files of the selected explanatory 
variables.

Calculation of landscape level microclimate 
heterogeneity indices

In order to test our hypotheses that forest manage-
ment affects microclimate heterogeneity, we calcu-
lated model predicted α-, β-, and γ- diversity of DTR 
classes from the computed DTR raster, following the 
framework of diversity partitioning based on effec-
tive numbers, as described in Hill (1973) and Jost 
(2006). Here, α-diversity (Dα) describes the average 
within-patch, β-diversity (Dβ) the between-patch, and 
γ-diversity (Dγ) the overall-heterogeneity of microcli-
matic niches. We calculated diversity for each group 
(EA, UEA and UNM) as exponential Shannon index 
(1D), following Jost (2007) (see also supplementary 
information Sect. 7.4).

To calculate α- and β-diversity for different scales, 
we assigned 4, 9, and 16 pixels to a patch (plot) 
respectively, by overlaying square grids with side 
length 100 m, 150 m, and 200 m over the extent of the 
DTR raster. Hereby, only those patches which were 
fully contained within a certain management system 
were included in the analysis of microclimate hetero-
geneity. In order to avoid edge-effects, we excluded 
all pixels within a 50 m buffer from the forest edge.

Predicted DTR values were aggregated to DTR-
classes by rounding to the next 0.25 °C. In the context 
of this study, aggregated DTR classes can be inter-
preted as thermal niches. We calculated within-patch 
α-diversity of thermal niches (1Dα) for each patch size 
separately. Similarly, overall γ-diversity (1Dγ) was 
calculated from abundance matrices of DTR classes 
per management system (i.e. the pooled sample) and 
for each neighbourhood size separately. All diversity 
calculations were carried out using the vegan package 
in R Studio (Oksanen, 2019). We then compared dif-
ferences in means and distributions of DTR between 
management systems using one-way ANOVA and 
post-hoc Tukey test.

Furthermore, we applied non-metric multidimen-
sional scaling (NMDS) to the dataset using the vegan 
package in R-Studio (Dixon, 2003; Oksanen, 2019). 
NMDS is used in multivariate statistics to ordinate 
(dis-)similarities between site observations and was 
used here as a tool to assess the β-diversity of thermal 
niches between the three management systems.

Results

ALS-based metrics of forest structure and topogra-
phy explained the variability of forest microclimate 
within the studied plots. While the canopy structural 
indices explained between 36% (VC) and 70% (FHD) 
of the variance in DTR, topographic variables were 
less important for the variability in microclimate in 

Table 1   Description of stand structural and topographical metrics used in this study

ALS-based variable Description

Elevation Mean height of ground above ellipsoid, based on DTM raster pixels (Wöllauer et al. 2020)
Slope Based on DTM raster pixels bilinear regression [%] (Wöllauer et al. 2020)
Sin(Aspect) Based on DTM raster pixels bilinear regression [sin(rad)]: Positive numbers represent south and 

negative numbers north (Jucker et al. 2018a)
Topographic position Index (TPI) The relative position of a pixel within the landscape based on DTM ranging from negative 

(concave terrain, e.g. gulleys) to positive (convex terrain, i.e. ridges) (Evans et al. 2021; Jucker 
et al. 2018a)

Vegetation cover (VC) % of canopy returns higher than 5 m above ground level (based on CHM) (Wöllauer et al. 2020)
Mean top of canopy height (TCH) Mean of the CHM for each pixel [m] (Wöllauer et al. 2020)
Vertical distribution ratio (VDR) Normalized measure of vertical height distribution: TCH divided by maximum vegetation height 

(Müller et al. 2018)
Foliage height diversity Derived from point cloud and penetration rates of canopy, understorey and regeneration strata 

(MacArthur and MacArthur 1961)
Leaf area index (LAI) Calculated from normalized point cloud using (Detto et al. 2015; Getzin et al. 2017)
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the Hainich and only elevation (R2 = 0.19) and the 
sinus of aspect (R2 = 0.20) were significantly corre-
lated with DTR (Fig.  2, supplementary information 
Figs. 14–16 for other temperature variables).

The best performing multivariate model explained 
82% of variance in DTR, leveraging LAI, TCH and 
elevation as explanatory variables. Elevation con-
tributed 20% to the overall explanatory power of the 
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Fig. 2   Linear regression models of ALS-derived topographi-
cal and canopy structural metrics and mean diurnal tempera-
ture range (DTR), measured at 23 plots in even-aged (EA) 
uneven-aged (UEA) and unmanaged forests (UNM), during the 

vegetation periods of 2014–2016. The coefficient of determina-
tion (R2) and the equation of the linear regression model are 
shown for each variable but slope and TPI, which were not sig-
nificantly correlated (p < 0.01) with DTR in the Hainich
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model, compared to 52% by LAI and 28% by TCH 
(Table 2, Fig. 3).

Figure 4a depicts a map of model predicted DTR 
across the study area. On average, predicted DTR was 
highest in EA forests (8.16  °C), followed by UEA 
forests (8.12  °C), and lowest in UNM forest in the 
National Park (7.46 °C) (p < 0.01, Fig. 4c).

Table 3 summarizes α- β- and γ-diversity of ther-
mal niches between EA, UEA and UNM forest for 
three different patch sizes (1 ha, 2.25 ha, and 4 ha). 

Distributions of α-diversity of thermal niches are 
shown in Fig. 5.

Overall γ-diversity of thermal niches was high-
est in EA on all scales, but only marginally higher 
than UEA at the 4 ha scale. 1Dα was highest in UEA 
at the 1 ha scale, but not significantly different from 
EA on all three scales, while 1Dα was higher in EA 
at the 2.25 ha and 4 ha scale. However, microclimatic 
α-diversity of both EA and UEA was significantly 
higher than in UNM for all three scales, indicating 
a generally positive effect of management on micro-
climate heterogeneity on plot-level. While signifi-
cant differences of microclimatic α-diversity between 
managed and unmanaged are only marginal at a 1 ha 
scale, they become more pronounced on greater spa-
tial scales. Dβ was highest in EA forest at 1  ha and 
2.25 ha scales, but similar to UEA at the 4 ha scale.

We assessed relative dissimilarities of microcli-
mates between the three management approaches by 
plotting a subsample of the DTR-map in multidimen-
sional space and then re-projecting it into two dimen-
sions by means of NMDS (Fig.  6). The subsample 
shown here is based on the abundance matrix used 
to calculate Dα. Each point represents a plot for each 
scale, respectively. The ordination shows that UNM 
forests in the NP feature a different microclimate 
than both types of production forests EA und UEA. 
The latter two largely overlap (are similar). EA for-
ests have a larger standard deviation of the projected 

Table 2   Coefficient of determination (Adj. R2), Akaike infor-
mation critierion (AICc), difference in AICc between the 
respective model and the “best” model (ΔAICc), and root mean 
squared error (RMSE) of each MLR model predicting DTR at 
23 meteorological stations within the Hainich

Model (lm(DTR ~ x) Adj. R2 AICc ΔAICc RMSE Rank

Eleva-
tion + LAI + TCH

0.82 9.96 0.00 0.22 1

Eleva-
tion + LAI + VDR

0.80 12.72 2.76 0.24 2

Elevation + LAI 0.76 14.64 4.68 0.27 3
Eleva-

tion + FHD + VDR
0.76 16.73 6.77 0.26 4

Eleva-
tion + FHD + TCH

0.76 17.16 7.20 0.26 5

FHD + VDR 0.73 17.63 7.66 0.28 6
FHD + TCH 0.72 18.54 8.58 0.29 7
FHD 0.69 19.19 9.23 0.31 8
Eleva-

tion + TCH + VC
0.71 21.07 11.11 0.29 9

Eleva-
tion + VDR + VC

0.69 22.59 12.63 0.29 10

LAI + VDR 0.66 22.62 12.66 0.32 11
LAI + TCH 0.66 22.94 12.97 0.32 12
LAI 0.59 25.04 15.08 0.36 13
Elevation + VDR 0.60 26.31 16.35 0.34 14
VDR + VC 0.56 28.94 18.98 0.36 15
VDR 0.51 29.21 19.25 0.39 16
Elevation + VC 0.55 29.45 19.49 0.37 17
Elevation + TCH 0.52 30.60 20.64 0.38 18
TCH + VC 0.52 30.65 20.69 0.38 19
TCH 0.38 34.71 24.75 0.44 20
VC 0.33 36.46 26.50 0.46 21
Eleva-

tion + Sin(aspect)
0.35 37.54 27.58 0.44 22

Sin(aspect) 0.16 41.68 31.72 0.51 23
Elevation 0.15 41.97 32.00 0.51 24

Fig. 3   Hierarchically partitioned contributions of predic-
tor variables to the overall explanatory power of the selected 
model
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Fig. 4   a Map of model-predicted DTR for a 4388  ha sec-
tion of the Hainich covered by an airborne laser scan (ALS) 
in 2015. One pixel corresponds to 50 × 50 m (0.25 ha). Pixels 
within a 50  m buffer from the forest edge and outside of the 
latitudinal range of the plots were excluded from the analysis. 
b Overview of management systems of the study area (conif-
erous plantations and young secondary forest in the national 
park were excluded). c Distributions of predicted DTR values 

as boxplots by management system. The number of pixels in 
each management system are shown (n). Average DTR values 
are indicated by a white dot and medians by a black line within 
the box (interquartile range. All three means were significantly 
different from each other (p < 0.001), as indicated by different 
letters. d Histogram of DTR-classes (thermal-niches) by man-
agement system (bin-width = 0.125 °C)
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Table 3   α-, β-, and 
γ-diversity of thermal 
niches (1D). DTR-classes 
were aggregated by 
rounding to the next 
0.25 °C

Compact letter display 
(cld) indicates significant 
differences in means

Plotsize Type of 
management

Number of 
plots (n)

Mean 1Dα  ± SD cld 1Dβ
1Dγ

1 ha = 2 × 2 pixel EA 441 2.30 0.69 b 3.19 7.35
UEA 1457 2.37 0.72 b 2.87 6.81
UNM 1708 2.16 0.71 a 2.63 5.67

2.25 ha = 3 × 3 pixel EA 142 3.15 0.87 b 2.32 7.33
UEA 528 3.10 0.81 b 2.16 6.71
UNM 665 2.81 0.87 a 1.91 5.38

4 ha = 4 × 4 pixel EA 55 3.50 0.97 b 1.93 6.76
UEA 240 3.51 0.84 b 1.91 6.70
UNM 322 3.12 0.91 a 1.70 5.31

Fig. 5   Comparison of α-diversity of thermal niches (1Dα), 
between EA, UEA, and UNM forest for three different plot 
sizes. Plots (n) were only included in the analysis if all pixel 
of a plot lay within a respective management system. White 

points indicate the mean, black lines the median of distribu-
tions. Outliers outside of the whiskers are indicated by a white 
dot. Significant differences (ANOVA; p < 0.05) are indicated 
by different letters

a) Plot-size 1 ha (2x2 pixel) b) Plot-size 2.25 ha (3x3 pixel) c) Plot-size 4 ha (4x4 pixel) 

Fig. 6   NMDS ordination for three different plot-sizes: The 
outer ellipsoids depict the minimal volume of each forest man-
agement system in multi-dimensional space (i.e. the projected 

“area” in 2D), such that all points (i.e. plots) lie just inside or 
on the boundary of the ellipsoid
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distance of points as well as a larger minimal volume 
in multidimensional space.

Discussion

Our results show that microclimate-heterogeneity in 
European beech forests is largely determined by the 
type of forest management and the resulting differ-
ences in forest structure. Silvicultural treatments such 
as thinning and tree harvest shape stand structures, 
which was more important for explaining the vari-
ability of microclimates in the study area than topog-
raphy (Fig. 3) (Ehbrecht et al. 2016, 2017; Juchheim 
et al. 2017). We found that forest management results 
in significant differences of α-, β-, and γ-diversity 
of microclimates in comparison with unmanaged 
forests. Landscape-level microclimate heterogene-
ity was highest in EA forests, because stands of dif-
ferent developmental stages and forest structures 
-ranging from thickets and pole woods, to immature 
and mature stands- featured a large variability of 
DTR across the different stands, leading to a higher 
β-diversity, and thereby γ-diversity of microclimates 
(Table 3).

Since the plots of the Biodiversity Exploratories 
did not cover sites with steep slopes or strongly undu-
lating terrain, the observed impact of slope and aspect 
and topographic position on forest understorey micro-
climate was limited (Fischer et al. 2010). This limita-
tion must be kept in mind when interpreting predicted 
DTR for raster pixel in areas of topographically more 
extreme terrain, such as hilltops, steep slopes or val-
ley bottoms (see also Sect. 7.2 in the Supplementary 
Information for parts of the prediction area that were 
outside the topographical range covered by our plots). 
However, the well-understood relationship between 
altitude, air-pressure, and temperature, was accounted 
for in the model due to the inclusion of elevation as 
explanatory variable (Körner 2007). Since the effects 
of forest structure on microclimate can be expected to 
be even more pronounced in topographically less het-
erogeneous landscapes (e.g. lowland E. beech forest), 
we deem our results to be transferable to other man-
aged beech forest in central Europe.

Due to a higher variability and intermingling of 
different tree sizes, multiple-layered stands under 
UEA management are characterized by a higher 
structural complexity on plot or stand level than 

most developmental stages under EA management 
(Ehbrecht et  al. 2016). However, a higher structural 
complexity on stand level did not translate into a 
significantly higher α-diversity of microclimates in 
comparison with EA management. Being considered 
the “archetype” of continuous cover forestry (sensu 
Pretzsch, 2009), UEA management is characterized 
by a continuous maintenance of canopy cover. A 
reduction in canopy cover in upper canopy layers due 
to harvesting of mature trees may be compensated for 
by trees crowns occupying mid- to lower canopy lay-
ers and vice versa. i.e., a higher structural complex-
ity on stand level may result in a significantly, though 
marginally lower mean DTR, but not necessarily in 
a higher α-diversity of microclimates in comparison 
with EA management. These findings are in line with 
Ehbrecht et al. (2019), who pointed out that structural 
characteristics other than canopy openness contribute 
marginally to variations in DTR.

NMDS ordination (Fig.  6) clearly showed that 
both types of managed forests differed distinctly from 
unmanaged forest with regards to their microclimate 
heterogeneity, while both EA and UEA forests were 
relatively similar to each other. The unmanaged Euro-
pean beech stands (UNM) in the Hainich National 
Park have developed from formerly managed stands 
into coherent closed-canopy, old-growth forest (Mund 
2004). These old-growth stands show a high struc-
tural complexity and significantly lower canopy open-
ness on stand level (Ehbrecht et  al. 2017), but little 
variability of forest structure at larger scales. While 
the very low canopy openness (and thus high LAI) 
and high canopy height may explain the overall sig-
nificantly lower mean DTR, the low variability of for-
est structures at larger spatial scales may explain the 
lower γ-diversity of microclimates. The relatively low 
variability of forest structures most likely explains 
the dissimilarity in microclimates in comparison with 
stands under EA and UEA management. However, it 
should be noted that the structure of European beech 
stands within the forest reserve is still influenced by 
former management and not yet characterized by 
more pronounced structural heterogeneity due to 
natural disturbance and/or tree mortality. Natural dis-
turbances and individual tree mortality may lead to 
the formation of canopy gaps of different sizes in the 
future, thereby creating more variable microclimatic 
conditions. Already existing smaller canopy gaps may 
have not been detected by the ALS data due to the 
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spatial resolution of 50 × 50 m. Still, a more fine-scale 
assessment of 3D forest structure based on terres-
trial laser scanning did not reveal a pronounced spa-
tial heterogeneity of canopy openness (Willim et  al. 
2022).

Heterogeneity of microclimates within a landscape 
is known to be an important driver of local biodiver-
sity (Stein et  al. 2014). Enhancing landscape-level 
heterogeneity of microclimates can therefore be seen 
as strategy in forest management to promote overall 
species diversity (Schall et  al. 2020; Schütz 2002). 
In this regard, our results suggest a positive effect of 
management on landscape-level microclimate het-
erogeneity, with the highest γ-diversity of microcli-
mates in EA forests. Thereby, our results may help to 
explain the findings of the multi-taxa species inven-
tory conducted in the Hainich-Dün region (Schall, 
et al. 2018a, b). The inventory showed that EA forests 
in fact featured the highest multi-taxa γ-biodiversity, 
which was likely driven by differences in stand struc-
ture, and in turn, light availability and below canopy 
microclimatic conditions between stands of different 
developmental stages or age classes (β-diversity).

On the contrary, our analysis showed that mean 
DTR was significantly lower in unmanaged, old-
growth forest compared to managed forests, which 
might be especially relevant for the conservation of 
taxa that depend on stable and less variable microcli-
matic conditions. DTR in the Hainich National Park 
was on average 0.70 °C lower than in EA forest and 
0.66 °C lower than in UEA forest, suggesting a higher 
thermal buffering capacity in closed canopy old-
growth forests than in managed forests. In this regard, 
forest nature reserves such as the Hainich National 
Park, where European beech forests can develop into 
old-growth-stages, play an important role in alleviat-
ing pressure on species threatened by climate change 
(Frey et  al. 2016). Against the background of cli-
mate change, understorey microclimate is considered 
more important for performance and survival of for-
est dwelling species than macroclimate (De Frenne 
et al. 2021). The temperature buffering effect of forest 
canopies may partially decouple change rates in mac-
roclimate from change rates in understorey microcli-
mate (Bertrand et al., 2016).

In the light of the recent calamities in European 
beech forest following drought throughout Germany 
and Central Europe, drastic changes in forest structure 
can be expected in some areas in the future (BMEL 

2020; Leuschner 2020), which will also impact the 
microclimate heterogeneity of affected stands. The 
methodology of predicting microclimate variables by 
combining vegetation structure and topography indi-
ces derived from ALS observations with in-situ mete-
orological data, allows a direct comparison of the 
results from 2015 presented here with updated infor-
mation on stand structure and below canopy weather 
records. Future research should therefore focus 
on investigating how management- and mortality-
induced changes of three-dimensional forest structure 
affect microclimate in the Hainich and other Euro-
pean beech forests. Furthermore, the role of micro-
climate as a predisposing factor for beech calamities 
could be investigated by overlaying fine-scale maps of 
microclimate parameters with the spatial distribution 
patterns of vitality loss and mortality in European 
beech forests. Thus, the methodology presented offers 
new ways of monitoring the effects of both silvicul-
tural interventions and natural disturbances on forest 
structure, and how they interact with regional climate 
changes in shaping understorey microclimate at dif-
ferent points in time. In future studies, our model may 
be refined by taking topographically more heteroge-
neous sites and edge effects into account as well as 
considering smaller spatial resolutions of ALS data to 
account for smaller canopy gaps.

Conclusion

If a goal of forest management is to create a broader 
range of habitat types and microclimates aiming at 
biodiversity conservation, a spatial coexistence of 
differently managed and unmanaged stands within a 
landscape should be considered, instead of focusing 
on a specific type of forest management or setting 
aside forest reserves, only. EA management resulted 
in overall higher γ-diversity of microclimates due 
to higher between-patch β-diversity, most probably 
resulting from the spatial coexistence of different 
developmental stages within the landscape. Com-
pared to both types of managed forests, unmanaged 
forest showed the lowest diurnal variations in forest 
microclimate on plot level. Thus, unmanaged forest 
reserves may act as refugia for species that require a 
microclimate with lower fluctuations in below-canopy 
air temperatures and thereby play an important role in 
landscape-level biodiversity conservation.
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