
Vol.:(0123456789)

European Journal of Forest Research (2024) 143:635–649 
https://doi.org/10.1007/s10342-023-01641-1

ORIGINAL PAPER

Terrestrial laser scanning vs. manual methods for assessing complex 
forest stand structure: a comparative analysis on plenter forests

Yannik Wardius1 · Sebastian Hein1 

Received: 27 September 2023 / Revised: 20 November 2023 / Accepted: 30 November 2023 / Published online: 12 January 2024 
© The Author(s) 2024

Abstract
In continuous cover forestry, plenter silviculture is regarded as an elaborated system for optimizing the sustainable production 
of high-quality timber maintaining a constant but heterogeneous canopy. Its complexity necessitates high silvicultural 
expertise and a detailed assessment of forest stand structural variables. Terrestrial laser scanning (TLS) can offer reliable 
techniques for long-term tree mapping, volume calculation, and stand variables assessment in complex forest structures. 
We conducted surveys using both automated TLS and conventional manual methods (CMM) on two plots with contrasting 
silvicultural regimes within the Black Forest, Germany. Variations in automated tree detection and stand variables were 
greater between different TLS surveys than with CMM. TLS detected an average of 523 tree stems per hectare, while CMM 
counted 516. Approximately 9.6% of trees identified with TLS were commission errors, with 6.5% of CMM trees being 
omitted using TLS. Basal area per hectare was slightly higher in TLS (38.9  m3) than in CMM (38.2  m3). However, CMM 
recorded a greater standing volume (492.7  m3) than TLS (440.5  m3). The discrepancy in stand volume between methods 
was primarily due to TLS underestimating tree height, especially for taller trees. DBH bias was minor at 1 cm between 
methods. Repeated TLS inventories successfully matched an average of 424 tree positions per hectare. While TLS adequately 
characterizes complex plenter forest structures, we propose enhancing this methodology with personal laser scanning to 
optimize crown coverage and efficiency and direct volume measurements for increased accuracy of wood volume estimations. 
Additionally, utilizing 3D point cloud data-derived metrics, such as structural complexity indices, can further enhance plenter 
forest management.

Keywords Terrestrial laser scanning · Conventional forest inventory · Plenter forest · Continuous cover forest · Automated 
tree mapping

Abbreviations
ALS  Airborne laser scanning
Automated TLS  Automatic measurements within 

PCD from TLS
CCF  Continuous cover forest
CMM  Conventional manual method
DBH  Diameter at breast height
DTM  Digital terrain model
ICP  Iteratively closest point

PCD  3D point cloud data
PLS  Personal laser scanning
RMSE  Root-mean-square error
RSS  Residual sum-of-squares
Semi-automated TLS  Manual measurements within 

PCD from TLS
TLS  Terrestrial laser scanning

Introduction

Management of plenter forests is traditionally focusing on 
achieving a continuous yield of tree volume through an ideal 
forest equilibrium state with a targeted standing growing 
stock and target tree diameter. Such a state is character-
ized by a slightly varying distribution across different sized 
trees, which is mainly determined by the target production 
goal in tree stem diameter, site conditions, and tree species 
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composition (Schuetz 2001; O’hara et al. 2007). Compared 
to other systems of un-even-aged silviculture, a plenter 
forest is a more specific type of a continuous cover forest 
(CCF). Plenter forests exhibit a high degree of flexibility, 
particularly in forest management for timber production. 
This flexibility is shown in their operational responsive-
ness to market conditions and forest growth patterns, due 
to the greater stability inherent in their structure, allowing 
for quick adaptations of harvesting frequency and intensity 
(Lenk and Kenk 2007; Knoke 1998; Schuetz 2001). When 
compared to even-aged forests, plenter forests allow for 
shorter rotation periods, and application on smaller areas, 
making them suitable for owners of small forest plots, and 
easier planning compared to clear-cut forests, when suffi-
cient knowledge on stock and growth is provided. The costs 
of wood production have also shown to be lower (Zingg 
et al. 2009). Using principles of thermodynamics, Seidel 
and Ammer (2023) argue that complex forests, characterized 
by multiple canopy layers and a diversity of tree ages and 
sizes, possess greater photosynthetic capabilities which in 
turn improves thermodynamic processes and consequently 
increases the forest’s adaptability to environmental changes 
and resilience to environmental stressors. In addition, plenter 
forests are also expected to be more resilient to wind and 
snow break than evenly structured forests (Díaz-Yáñez et al. 
2017).

Nevertheless, plenter forests reach such advantages due 
to a very high degree of structural complexity, comprising 
many classes of tree sizes within a short spatial distance 
making stand inventories demanding in technical and time 
resources. As an early method of inventory, the control 
method (Ger.: “Kontrollmethode”) was established in the 
mid-nineteenth century to monitor this balance (Kurth 
1954). However, this conventional form of plenter forest 
management faces several challenges, including the need 
for high-quality inventories, silvicultural expertise, and 
knowledge of forest growth and site properties (Dvorak 
2000). This can limit the popularity of plenter forest systems, 
as seen in Germany where only 2% of the forested land area 
is managed using plenter forest techniques (Bartsch et al. 
2020). Limited knowledge and skills among foresters and 
forest workers, as well as the lack of resources, were also 
identified as some of the main obstacles to a widespread 
adoption of CCF and plenter forest systems in Europe 
(Mason 2022).

Today, advanced forest inventories, particularly in laser 
scanning technology, have enabled the use of automated 
methods to estimate single-tree parameters from three-
dimensional point cloud data (PCD). The utilization of 
airborne laser scanning (ALS) has been adopted by some 
inventories in Germany, while terrestrial laser scanning 
(TLS) is nowadays being recognized for its capability to 
provide detailed insights into the structure and function of 

forest ecosystems beyond the limitations of manual methods 
(Calders et al. 2020; Liang et al. 2016). Conventional plenter 
forest inventories rely on expensive manual data collection 
for individual trees, including evaluations of growth, 
wood volume, and tree stem assessments. Supplementing 
these inventories with three-dimensional PCD could save 
time and resources by using automated methods to collect 
and analyze such data. Basic tree parameters such as tree 
height, diameter at breast height (DBH), and position can 
be extracted from the PCD, allowing for the estimation of 
stem volume and basal area (Hopkinson et al. 2004; Lovell 
et al. 2003). The traditional method of manual tree growth 
measurement, using increment drills, can not only be 
harmful to the probed trees, but also lacks precision (Calders 
et al. 2020). To overcome these limitations, nondestructive 
laser scanning methods offer the opportunity for establishing 
long-term growth and yield plots with accurately mapped 
and monitored trees and thus calculations of tree volume 
increment at the individual tree level over time (Ritter et al. 
2017).

Our main goal is to examine the feasibility of automated 
measurement methods using TLS for conducting inventories 
in highly structured, complex and dense plenter forests. 
We therefore conducted a survey on selected long-term 
monitoring plots in a mixed coniferous plenter forest, 
comparing conventional manual methods (CMM) to 
automated methods via TLS. Specifically, we aim to compare 
measurements of individual tree parameters, including DBH, 
tree height, and stem volume, with stand-level metrics for 
standing wood volume and basal area. To evaluate the 
feasibility of establishing a long-term monitoring system of 
tree growth, we repeated the measurements for each method 
and compared the rates of successful tree detections as well 
as the precision and accuracy in determining tree positions 
and identifying the same trees over time.

Material and methods

Research site

All inventories were conducted in a mixed-species coniferous 
forest near Loßburg/Freudenstadt County within the Black 
Forest, state of Baden-Wuerttemberg, Germany. From his-
torical records it is known (Dannecker 1955) that the local 
forests have been managed according to plenter principles 
for over 100 years. The study area is located at 750–780 m 
a.s.l. with a gentle 5° SE-facing slope, as measured on site. 
We sourced historical climate data between 1970 and 2000 
(version released in January 2020) from WorldClim (Fick and 
Hijmans 2017) with a 30-s resolution, revealing an average 
annual temperature of 7.1 °C and precipitation of 1593 mm 
for the research site. The measurements were taken in two 
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long-term growth and yield plots of 50 × 100 m each, one 
named N (no thinning operations over the last 30 years) and 
the other named H (last thinned in 2007). In 2021, a minor 
harvest (salvage cutting) was carried out in plot N, removing 
four trees of 0.24, 0.59, 0.64, and 0.68 m DBH, respectively. 
The plots were established in 2018 with the following informa-
tion on site conditions: plot N is strongly acidic, clayey sand, 
while plot H is a strongly acidic, moderately fresh sandstone 
soil, according to the monitoring by the Forest Research Sta-
tion of Baden-Wuerttemberg. The total research area of 1 ha is 
composed of 78% Silver fir (Abies alba), 21% Norway spruce 
(Picea abies), and 1% European beech (Fagus sylvatica).

Manual measurements

Both long-term monitoring plots were accurately demarcated 
according to standard principles of forest growth and yield 
science (Pretzsch 2009): The coordinates of the four corners 
of each plot were obtained by repeatedly measuring them with 
a Garmin handheld GPS device. The location of each tree 
within the plots was determined by measuring the azimuth and 
distance from a clearly visible reference point in the landscape 
nearby. Each tree was numbered, and the DBH ≥ 0.07 m of all 
trees was measured using a caliper (at 1.3 m stem height). The 
last available DBH and tree position was recorded in 2022, 
with previous measurements taken in 2018. Tree height of 
40 trees per species and plot, selected to cover the full DBH 
spectrum, was also available from the 2018 measurement 
campaign: Three height measurements were taken for each 
tree, and the mean value obtained from the Vertex IV was 
finally recorded.

The height of the remaining trees was estimated using the 
following regression curve proposed by Prodan (2014) for 
plenter forests:

where ai (i = 0, 1, 2) are regression coefficients.

H = 1.3 +
DBH2

a0 + a1DBH + a2DBH
2

Terrestrial laser scanner measurements

Measurements on both plots using TLS systems were 
conducted in 2021 using a Leica BLK 360 (BLK) and 
repeated in 2022 using a higher-end model, the Leica RTC 
360 (RTC) with a point measurement rate approximately 
three times higher than the BLK and a promoted ranging 
accuracy of 1.9 mm compared to the BLK’s 4 mm at a 10-m 
scanning distance (Table 1). The TLS system was placed 
along a grid of 10 × 10 m, aiming to acquire at least 66 scans 
per plot. With 74 scans on plot N and 71 on plot H for BLK, 
and 67 for plot N and 70 for plot H for RTC, a few extra 
scans were necessary to fully capture spots of high tree 
density, particularly where significant natural regeneration 
was present. As reference objects, mainly spherical objects 
with a 0.2-m diameter as well as black and white markers 
were used attached to a 2-m-tall sighting rod. For processing 
and registering raw 3D point cloud data (PCD), we used 
the Leica Cyclone Register. The coordinates of the four 
measured plot corners were used to georeference the PCD.

3D point cloud data analysis

DBH, tree height and tree position

For the entire processing of the PCD, we used the software 
R (R Core Team 2023). The analysis was conducted using 
a consistent R script where only the input PCD files were 
varied, ensuring a uniform approach in the data process-
ing and analysis stages. After loading the PCD into R, the 
first step was to filter the PCD based on intensity values. A 
threshold was set by determining the 90th percentile of the 
intensity values and only retaining points above this thresh-
old. This way, most of the green vegetation was expected to 
be removed from the PCD. To normalize the PCD, a digital 
terrain model (DTM) was created using the k-nearest neigh-
bor (KNN) approach with an inverse-distance weighting 
(IDW) from the R package LidR (Roussel et al. 2020). Then, 
the height of all points in the PCD was adjusted relative to 

Table 1  Details on point cloud data acquired for this study for each plot (“H” and “N”) and each TLS system used to scan them

Plot H N H N

Acquisition time 2021, October 2022, October
Laser scanner Leica BLK360 Leica RTC360
Field of view 360° (horizontal)/300° (vertical) 360° (horizontal)/300° (vertical)
Range Min. 0.6–up to 60 m Min. 0.5–up to 130 m
Point measurement rate Up to 360,000 pts/sec Up to 2,000,000 pts/sec
3D point accuracy 6 mm @ 10 m/8 mm @ 20 m 1.9 mm @ 10 m/2.9 mm @ 20 m
Scanned area 12,644  m2 6068  m2 14,404  m2 15,148  m2

Number of points (million) 500.91 500.42 500 500.31
Point density (points/cm2) 3.96 8.24 3.47 3.3
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the ground-derived DTM. Finally, the ground points were 
removed from the data, resulting in trees placed on a flat 
surface. In order to identify clusters finally including stems 
of individual trees, the OPTICS (ordering points to iden-
tify the clustering structure, Ankerst et al. 1999) algorithm 
was applied to the X and Y coordinates to create a reach-
ability plot. After that, clusters were extracted by using the 
density-based spatial clustering of applications with noise 
method (DBSCAN, Ester et al. 1996). Clusters with a point 
count below a specific threshold or an extent under a set 
height were removed. To remove further points as noise and 
separate individual objects that were assigned to the same 
cluster (such as multiple stems within one cluster), the pre-
vious process of cluster extraction using OPTICS followed 
by DBSCAN was repeated for each cluster individually. For 
this purpose, the algorithms were applied to the X, Y and 
Z coordinates. Each resulting cluster is expected to contain 
one individual tree stem. The original PCD includes a 10-m 
buffer zone around the research plot area. To ensure that 
the detected tree stems are included in the plot, a polygon 
was constructed using the four corner points of the plot. By 
using a point in polygon function, all stems outside the plot 
boundaries were accurately identified and excluded from 
further analysis.

The calculation of tree stem DBH was conducted 
following the approach proposed by Gollob et al. (2020). 
The tree stems were stratified into 0.15-m-thick overlapping 
layers, and the Z coordinate of each layer was discarded. 
The center of each layer was determined by fitting an ellipse 
to the layer’s points. The Cartesian coordinates were then 
converted to polar coordinates. For each point, the distance 
and azimuth to the center were calculated. A generalized 
additive model (GAM) with a smoothing spline was used 
to model the stem cross section based on the distances and 
azimuth angles. The diameter of each layer was calculated 
and subsequently used, along with the layer’s height above 
ground level, in a linear model to predict the diameter at 
1.3 m height. The center of the stem cross section at 1.3 m 
height was also used as the stem’s position.

To determine the tree height, a 2-m radius circular 
clipping area was extracted from the height-normalized 
original PCD, resulting in a cylinder-shaped section of 
the PCD. To identify the central tree and remove any non-
desired objects, clusters were identified using the OPTICS 
and DBSCAN algorithms in multiple steps. Non-desired 
clusters were filtered based on their size and position within 
the cylinder. Lastly, the height of the tree was estimated as 
the Z value of the highest point in the remaining cluster. 
In addition to the automatic measurements within the PCD 
via automated algorithms, tree height and DBH from PCD 
were also measured manually. Each clipped tree was loaded 
into CloudCompare v2.11.3 (CloudCompare Team 2020), 
where the DBH was calculated using overcross virtual 

caliper measurements at roughly 1.3 m height. Tree height 
was determined by measuring the distance between the stem 
base and the highest point that, on visual inspection, could 
be seen as part of the same tree.

Calculating key metrics for forest management

To compare forest stand parameters at the plot level, we 
calculated a variety of common key metrics frequently used 
in forest management. These were based on the previously 
acquired individual tree metrics of tree height and diameter 
at breast height (DBH). They include standard statistical 
metrics trees per ha, mean tree height and mean DBH, along 
with the following:

with h as tree height and n = 100 ×
(

Plot area (ha)

1 ha

)

.

with g as the individual tree cross-sectional area.

with V  as the individual tree stem volume, determined using 
the BDAT library in R (Kublin 2003), which is an adaptation 
of the original Fortran program developed for estimating 
various tree-related parameters, including volume, 
employing taper functions. For the volume calculations, tree 
DBH, height, and species were provided as inputs.

Matching tree IDs from automated TLS—and manual 
measurements

Both CMM and automated TLS provided the positions for 
each tree stem on the plot, georeferenced using the WGS 84 
coordinate system and UTM zone 32N. In order to monitor 
individual tree growth over time, CMM can match trees 
by numbering each stem and thus simply matching a tree 
by the same number. In order to automatically match trees 
from PCD, stems were matched based on their position and 
DBH. To minimize deviations in tree positions, the point 
datasets containing the tree stem positions for each plot and 
method of measurement, respectively, were aligned using 
the iteratively closest point (ICP) search method (Besl and 
McKay 1992). The ICP algorithm minimizes the distances 
between the tree stem positions of two datasets from 
identical plots but different methods of measurement, by 
iteratively finding a rigid transform that aligns the two-point 
datasets as closely as possible.

Top Height =

∑n

i=1
hi

n
,

Basal area(ha) =

� ∑

ig(ha)

Plot area(ha)

�

,

Standing Wood Volume(ha) =

�

∑n

i=1
Vi

Plot area(ha)

�

× 1 ha,
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In order to match tree stems, we created a distance matrix 
between all tree stems of both point datasets, generating a 
preliminary match based on the closest distance between 
tree stems. Threshold values were defined to eliminate 
matches between tree stems with significantly different 
DBH or positions. After checking for duplicate matches 
due to missing or unidentified tree stems and deviations in 
position and DBH estimation, duplicates were eliminated 
by iteratively looping the algorithm through all duplicate 
matched tree stems, removing all but the one with the 
smallest deviation in tree stem position and DBH. Then, 
the remaining unmatched tree stems were matched with the 
next candidate from the matrix, which potentially created 
new duplicates. This process continued until no duplicates 
or implausible matches remained.

Manual verification of automated measurements

To test the reliability of the automated tree detection, a 
2-m-thick horizontal slice of the height-normalized PCD 
was analyzed for commission and omission errors. For 
this, the coordinates for each automatically identified tree 
were imported into CloudCompare v2.11.3 and used to 
verify whether an object was a tree correctly identified 
with a DBH equal to or above the 0.07 m threshold, a tree 
correctly identified but below the said threshold, a non-tree 
object incorrectly identified as a tree (commission error), or 
a tree that was not identified at all (omission error). Trees 
measured during the CMM that could neither be found 
within the group of correctly identified trees nor among 
the omitted trees inside the delineated research area were 
attributed to edge effects. This refers to trees that were 
excluded due to discrepancies between the physically drawn 
border and the virtual border within the PCD.

To assess the quality of the automated tree metrics 
measurements, a circular clipping region from the original 
PCD, centering on the position of the tree, was imported into 
CloudCompare v2.11.3 where subsequent measurements for 
DBH and height were conducted. Although the trees were 
captured with a TLS and their positions were determined 
using automated methods, tree metrics were measured 
manually. Hence, these measurements are termed “semi-
automated TLS.”

Results

Tree stem detection, stem position and matching 
stems

In the 2018 CMM survey of the plenter forest plots, plot N 
contained 264 trees with a DBH ≥ 0.07 m, while plot H had 
258 trees. During the second manual survey in 2022, a slight 

reduction in tree counts was observed. Upon surveying the 
research site, we confirmed that this was largely influenced 
by minor harvest interventions and tree mortality.

Automated TLS identified 2.7% more trees from PCD 
compared to CMM. PCD generated with the BLK detected 
17.4% more trees within the survey areas than those obtained 
with the RTC. On average, 9.6% of the tree stems identified 
using automated TLS are considered commission errors, 
whereas 6.5% of trees were omitted. Only the smallest frac-
tion of the commission errors was composed of non-tree 
objects. The impact of commission errors was more promi-
nent in PCD by the BLK model compared to the RTC model, 
which had a higher rate of omission errors. The distribution 
of detection outcomes comprising commission errors, omis-
sion errors, and correct detections is illustrated in Fig. 1, 
complemented by corresponding descriptive statistics in 
Table 2.

On average, a corresponding tree from CMM was found 
for 80% (σ = 8.5%) of all trees identified from PCD by auto-
mated matching of trees. Conversely, 81% (σ = 7.3%) of the 
trees measured by CMM were subsequently identified auto-
matically in the PCD. Repeated measurements using the two 
different TLS models led to a match of 212 trees on average, 
which equals 87% of the trees detected by the RTC and 74% 
of the trees using the Leica BLK (Fig. 2).

Trees identified from PCD, which could not be matched 
with those from CMM, were found to be overrepresented 
near the borders of the survey plots. 25% of these unmatched 
trees, as identified from PCD, were situated 1.86 m or closer 
to the nearest survey plot border. Conversely, 25% of all 
trees cataloged in the manual survey plots were, on aver-
age, located 5.57 m or less from the closest boundary of 
the respective survey plot. On a theoretical plot, where all 
trees would be distributed absolutely evenly, 25% of the 
trees would be located at a distance of 3.43 m from the plot 
boundary (Fig. 3).

Following repeated inventories using the same 
measurement methods on identical plots, the precision of 
determining tree stem locations was found to be higher with 
TLS than with CMM. Trees measured repeatedly with TLS 
exhibited an average error of 0.16 m (σ = 0.08 m), while 
CMM demonstrated an average error of 3.9 m (σ = 2.06 m) 
(Table 3).

To examine the potential for error propagation in tree 
position measurements during CMM, we conducted a test 
to determine the correlation between differences in stem 
location and their distance to the boundary of the survey 
plot. Results demonstrated a slightly positive, statistically 
significant correlation on plot H (r = 0.119, p = 0.014), 
suggesting that during CMM, the discrepancies in repeated 
stem position measurements increased slightly with 
proximity to the plot border. For plot N, the correlation 
was more pronounced (r = 0.311) and highly significant 
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(p < 0.001), indicating a stronger potential for measurement 
errors in tree positions with respect to the distance from the 
edge of the plots.

Single‑tree parameters: tree DBH, height, 
and volume

DBH estimations from automated TLS closely align with 
those observed in CMM, with a root-mean-square error 
(RMSE) of 0.04 m and an average error of 0.01 m. Nota-
bly, there are a few outliers that overestimate the manually 
measured DBH by 0.1–0.2 m (Fig. 4 a). For tree height esti-
mations using TLS, a distinctly negative trend is observed 

compared to CMM as tree height increases. While deviations 
from CMM for tree heights below 20 m are relatively small, 
with an RMSE of 2.03 m and a mean error of 0.03 m, they 
shift to a significantly negative range for tree heights above 
30 m, with an RMSE of 5.6 m and a mean error of − 4.53 m. 
Consequently, the heights of taller trees are substantially 
underestimated by automated TLS measurements, with 
extreme values up to − 10 m, whereas the heights of shorter 
trees are estimated more accurately (Fig. 4a). The automated 
TLS estimations of DBH from the Leica BLK360 were, on 
average, 0.01 m lower than those of the RTC360 (p = 0.013). 
Furthermore, tree heights estimated by the BLK360 were 
0.62 m lower than by the RTC360 (p = 0.09), as detailed in 
Table 4.

When examining the height–diameter relationship 
across different tree measurement techniques, the measure-
ment techniques follow the order of semi-automated TLS 
(RSS = 433.2), CMM (RSS = 495.9), to automated TLS 
(RSS = 910.6) in terms of variability, with the automated 
TLS demonstrating a higher RSS value. However, accord-
ing to the Wilcoxon rank sum test, these differences were 
statistically not significant (p values > 0.05). Despite TLS’s 
higher mean deviation and RSS, the relationship between 
tree height and DBH remained consistent, evidenced by the 
stable coefficients in our model (Regression curve proposed 
by Prodan 2014), a0 = 0.0004, a1 = 0.0099, a2 = 0.0171), 
indicating dependable predictions (Fig. 5).

Plenter structure and stand parameters

Each measurement method successfully illustrated the dis-
tinctive curve characteristic of a plenter forest, revealing not 
only its general shape, but also the nuanced variations within 
the curve (Fig. 6). However, automatic TLS measurements 
assigned less trees into small DBH classes compared to 
CMM. In the CMM inventories from 2018 and 2022, 43.2 
and 39.3% of the measured trees exhibited a DBH smaller 

Fig. 1  Number of trees automatically detected using TLS for both the 
BLK and the RTC models across different plots (“H” and “N”). The 
data are segmented into correctly identified trees and various error 
types. Negative bars indicate trees omitted from the dataset

Table 2  Descriptive statistics on the distribution of tree detection out-
comes for different plots and employed TLS models

Trees of a low DBH under the 0.07  m threshold which have been 
included in the analysis data due to an overestimation of their DBH 
are listed under “Commission Error (Tree).” All other false positive 
tree detections are listed as “Commission Error (Non-Tree)”

BLK RTC Mean

H N H N

Correct 267 258 270 216 253
Omission error 5 7 13 28 13
Commission error (Non-Tree) 9 8 7 0 6
Commission error (Tree) 14 22 5 0 10
Edge effect 7 2 18 14 10
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than 0.15 m, respectively. In contrast, surveys using automated 
TLS detected a lower proportion of trees with DBH < 0.15 m: 
BLK—34.1%, RTC—35.5%. Conversely, medium-diameter 
trees were detected more frequently using TLS, where 36.9% 
of trees identified by the BLK and 40.7% by the RTC models 
had a DBH between 0.2 and 0.54 m. These findings contrast 
with the CMM surveys conducted in 2018 and 2022, which 
reported 31.6 and 32.5% of trees within this DBH range, 
respectively. The discrepancies in DBH distribution between 
the two measurement methods are smaller for trees with larger 
DBH. For trees with a DBH greater than 0.55 m, the per-
centages recorded by CMM in 2018 and 2022 were 11.3 and 
10.1%. Meanwhile, automated TLS measurements with the 
BLK and RTC registered 9.7 and 10.2% of trees within this 
DBH range (Fig. 6). The CMM and automated TLS meas-
urement techniques were compared for differences in tree 
stem counting, basal area, and standing wood volume estima-
tion. CMM found an average of 516 tree stems per hectare, 
slightly fewer than the 523 tree stems per hectare detected by 
TLS, which showed varying results. The RTC TLS showed a 

tendency to underestimate the basal area by 7.7 and 4.5% when 
compared to the 2018 and 2022 CMM inventories. In contrast, 
the BLK overestimated the basal area by 7.7 and 14.4% for 
the same periods. Regarding standing wood volume, average 
CMM estimates outpaced RTC and BLK TLS estimates by an 
average of 23.3 and 3.9%, respectively. Differences in mean 
DBH, mean tree height, and top tree height followed similar 
trends to those observed at the individual tree level (Fig. 4), 
with the mean DBH being on average 0.012 m higher when 
measured using automated TLS. Tree heights were underes-
timated by automated TLS, with a mean underestimation of 
1.6 m for mean tree height and a larger underestimation of 
4.1 m for the top tree height (Table 5).

Fig. 2  Automatically matched trees between CMM and automated TLS (a) and between the two different TLS models, RTC and BLK (b)
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Discussion

Automated tree mapping for long‑term monitoring 
plots

Automated tree detection

Most commission errors identified using the BLK model 
were attributable to trees below the DBH threshold of 
0.07 m that were wrongfully included in the dataset due to 
overestimation of their DBH. Equivalently, Bienert et al. 
(2018) noted a tenfold increase in overall commission 
errors, constituting 57% of detected trees in a plot resem-
bling the structure of a plenter forest, largely attributing it 
to a high density of young understory trees. Commission 
errors of this type could be facilitated, among other fac-
tors, by the high density of branches present at the DBH 
measurement point of 1.3 m, particularly in young trees 

found within the survey plots. Frequently, these trees are 
situated within dense vegetation cones, further compli-
cating an accurate measurement of the DBH. This error 
type was more prominent with the lower-end BLK model, 
where stronger noise within the PCD could have contrib-
uted significantly to the error, exerting a greater effect 
on trees with lower DBH. Another significant category 
of tree detection errors stemmed from edge effects. In 
three out of four instances, trees were erroneously incor-
porated from areas outside the specified survey plots, and 
in one instance, trees from within the survey plot were 
mistakenly positioned outside of it. This introduces an 
additional error source that is less influenced by forest 
structural attributes, such as tree density, or the intrin-
sic qualities of the PCD, which encompass point density, 
noise, and tree stem completeness. Instead, it is mainly 
attributed to inaccuracies in defining the boundaries of 
the test area and potentially due to variations in the pre-
cision of scan co-registration within the PCD. Another 
manifestation of edge effects, which entails shifts in PCD 
quality, could be the increased error rates in tree detection 
toward the plot’s edge, as noted by Ritter et al. (2017). 
In this study, both commission and omission errors esca-
lated with a reduction in the buffer size surrounding their 
survey area. Consequently, both tree detection errors with 
origins in PCD quality and those without may have influ-
enced the trend of an increasing number of unmatched 
trees observed in our study (Fig. 3). A crucial factor that 
might influence the rate of successful tree detections 
is the forest structure, particularly since plenter forests 

Fig. 3  Distance of unmatched remaining trees, from PCD measured 
by automated TLS, to the closest survey plot border. Dotted and 
dashed vertical lines represent the first (25%) and second (50%) quan-

tile of all trees closest to the plot border for Plot N and Plot H for 
both BLK and RTC. Solid vertical lines are added as a reference for 
an ideally even distribution of trees on a theoretical plot

Table 3  Average deviation and standard deviation (SD) of tree posi-
tions after being measured repeatedly for both CMM and automated 
TLS

Methods Plots Mean position 
deviation (m)

SD (m)

Automated TLS H 0.077 0.155 0.139 0.084
N 0.239 0.068

CMM H 3.387 3.902 2.102 2.059
N 4.552 2.017
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are characterized by their unique structure, marked by 
a high proportion of trees with small diameters. Previ-
ous research has indicated that dense forests with a con-
siderable presence of understory trees frequently lead to 
undetected tree locations. A study conducted by Gollob 
et al. (2019) investigated the effects of the number and 
distance of scan positions on tree detection rates in TLS 
surveys. Employing a rectangular grid with a 10-m edge 
length, they noted tree detection rates fluctuating between 
66.6% (DBH ≥ 0.05 m) and 83.5% (DBH ≥ 0.15 m). These 
data suggest that trees within the lower DBH classes are 

more prone to being overlooked, a situation that resonates 
with the predominant tree population in the plenter for-
est survey plots. Despite the significant presence of trees 
with lower DBHs in our study, highlighted by a median 
DBH of only 0.17 m, the number of accurately identified 
trees and the associated error magnitudes (composed of 
omission and commission errors) largely align with the 
outcomes of similar studies. Yang et al. (2016) reported 
average commission and omission error rates of 10.8 and 
12.9%, respectively, whereas Ritter et al. (2017) docu-
mented lower error rates of 2.7 and 5.7% for omission 

Fig. 4  DBH and tree height 
deviations between automated 
TLS and CMM (a) and between 
automated TLS- and semi-auto-
mated TLS measurements (b). 
The red dashed line is the CMM 
as reference measurement. The 
solid blue line shows the esti-
mated relationship between the 
x and y variables, based on the 
locally weighted running line 
smoother (loess) method with a 
span parameter of 0.5. The gray 
shaded area represents the 95% 
confidence interval around this 
estimate

Table 4  Differences between 
tree metrics of automated 
TLS and CMM measurements 
for different TLS systems 
(BLK = Leica BLK360, 
RTC = Leica RTC360) and 
between the two different TLS 
systems

p values were calculated using the Wilcoxon rank sum test

TLS system and measurement method Tree height DBH

p value Mean 
difference (m)

p value Mean 
difference 
(m)

RTC automated TLS–CMM  < 0.001 − 1.72  < 0.001 0.015
BLK automated TLS–CMM 0.006 − 2.33  < 0.001 0.012
BLK automated TLS–RTC automated TLS 0.09 − 0.62 0.013 − 0.01
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and commission errors, respectively. It is worth not-
ing that both cited studies were executed in stands with 
fewer understory trees compared to the plenter forest plots 
investigated in our study.

Automated tree mapping

The average distances between pairs of matched tree 
positions, when manually measured, were found to 
be twenty-six times greater than those measured 
by automated TLS. This suggests a relatively high 
precision in determining tree locations from PCD. In a 
benchmarking project conducted by Liang et al. (2018), 
a similar automated tree-matching method was employed, 
utilizing tree location and DBH as primary matching 
parameters. Match-finding iterations were repeated 
based on duplicates and unmatched trees. They reported 
RMSE values for stem locations ranging from 5 cm in 
“easy” complexity plots to 10 cm in “difficult” ones. 
The structural appearance and DBH class distribution 
of their “difficult” category share similarities with the 
plenter forest. In the medium complexity plots, Liang 
et al. (2018) achieved a match between trees in 88% of 
cases, while in difficult complexity plots, the match rate 
was 66.2%. Similarly, our study demonstrated an 81% 
match rate for manually measured reference trees with 
automatically TLS-derived trees, and match rates of 87 
and 74% between repeated automated TLS measurements.

Limitations in assessing automated tree detection 
and mapping

Unlike in the studies carried out by Liang et al. (2018) and 
Ritter et al. (2017), our study design did not incorporate a 
dedicated measure to ascertain the precision of automated 
tree pairing, which could potentially impact the reliability 
of our findings. Moreover, the irregular structures observed 
in the plenter forest stands might have resulted in varying 
distances between scanner locations. This variation could 
have led to inhomogeneous point densities across the 
study area. Although high peaks of local point densities 
were mitigated by voxelization, areas of particularly low-
point densities remained, possibly increasing the chance 
of omission errors. This might have been particularly 
evident with plot N, which exhibited the highest frequency 
of omission errors. The omission of 28 trees in a single 
plot might have been exacerbated by a missing scan in the 
scanner position grid, resulting in a 20 × 20 m area within 
the PCD devoid of any TLS deployment. Lastly, the analysis 
revealed divergent patterns in the omission and commission 
error ratios between the different models utilized.

Single‑tree parameters

Tree height estimation

Our study revealed a tendency toward underestimation of 
tree height in automated TLS measurements. This under-
estimation becomes particularly noticeable for trees above 

Fig. 5  Scatter plot between 
DBH and tree height for 
CMM, automated TLS, and 
semi-automated TLS. P values 
of a Wilcoxon rank sum test 
with continuity correction for 
predicted tree height based on 
the applied multiple regression 
mode and residual sum-of-
squares (RSS) of model fitting
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Fig. 6  Distribution of DBH for different measurement methods. a 
Kernel density estimation distribution of DBH for different measure-
ment methods. The smooth curves represent the estimated probabil-
ity density function of the DBH for each method: TLS measurements 
using the BLK model (“automated TLS (BLK),” n = 568), TLS meas-

urements using the RTC model (“automated TLS (RTC),” n = 486), 
CMM from a survey in 2018 (“CMM 2018,” n = 522) and CMM from 
a survey in 2022 (“CMM 2022,” n = 510). b Boxplots for all DBH 
measurements methods, including outliers and a 95% confidence 
interval for the median

Table 5  Comparison of key forest management metrics between automated TLS and CMM measurement methods and their respective surveys. 
Means are calculated as the average of the two respective surveys

The mean error evaluates the consistency of measurements between two surveys for the same plots. This is achieved by calculating the average 
difference in measurements for each plot across the two surveys
*Mean height and top tree height error for CMM cannot be calculated because no separate measurements of tree height were conducted for the 
2022 inventory

Survey method Trees per ha Basal area 
 (m2 ×  ha−1)

Standing wood volume 
 (m3 ×  ha−1)

Mean tree 
height (m)

Mean DBH (m) Top tree 
height 
(m)

Automated TLS
Survey using RTC360 479.0 35.9 407.5 15.9 0.255 28.9
Survey using BLK360 567.0 41.9 473.5 15.2 0.261 28.9
Mean 523.0 38.9 440.5 15.5 0.258 28.6
Mean error 44.0 3.0 34.5 1.99 0.029 0.51
CMM
Manual survey (2018) 522.0 38.9 502.1 17.1 0.246 32.9
Manual survey (2022) 510.0 37.6 483.2 17.1 0.247 32.7
Mean 516.0 38.2 492.7 17.1 0.246 32.8
Mean error 6.0 0.7 0.8 * 0.028 *
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the third quantile when sorted by volume. Notably, a bias 
of − 4.53 m was observed for trees over 30 m in height, as 
measured automatically by TLS. This error is likely attrib-
uted to a decrease in PCD density at higher elevations, lead-
ing to individual points at those heights being unrecognized 
as part of the targeted tree. The presence of an overall nega-
tive bias in tree height estimation is a common phenomenon 
reported in various studies. This bias has been observed 
using diverse methods in a benchmarking study by Liang 
et al. (2018), the application of a voxel-based region grow-
ing crown segmentation algorithm by Tockner et al. (2022) 
and 3D cylinder fitting, as described by Moskal et al. (2011).

Tree DBH estimation

When comparing automated TLS to CMM and semi-
automated TLS measurements, it was found that the 
estimations of DBH for trees exhibited a slight positive bias. 
The sources of bias in DBH estimates derived from TLS 
measurements can vary and result in either underestimation 
or overestimation of tree DBH. Common errors can 
arise from occlusion effects on the stem cross-section or 
difficulties in accurately separating stem cross-sections from 
attached branches or nearby vegetation. In this study, the 
latter source of error may have had a more significant impact 
than occlusion effects. Previous studies have reported that 
increased noise in TLS data can lead to a positive bias in 
DBH estimations, particularly for small trees with a DBH 
less than 10 cm (Gollob et al. 2020), as well as in plots with 
dense vegetation (Liang et al. 2018). These factors are likely 
to contribute to the observed slight positive bias in DBH 
estimations from automated TLS measurements in our study.

Key metrics of plenter forest management

The DBH distribution within the forest stand exhibits a 
characteristic “reverse-J-shaped” curve, typical for a plenter 
forest. This pattern remains consistent regardless of whether 
the trees are measured with TLS or by CMM, highlighting 
features such as the noticeable indention within the 40-cm 
DBH class range, which is present in all measurements. 
The omission of small-dimension trees in automated 
TLS measurements is likely due to overlooked trees. This 
suggests that automated TLS measurements are effective in 
capturing the structural characteristics of a plenter forest, 
essential for planning future harvest operations to sustain the 
equilibrium state of the plenter forest structure. For foresters 
and forest owners, growing stock is a standard metric for 
timing harvest operations and assessing volume. In our 
study, basal area was found to be a more reliable indicator 
of growing stock compared to standing wood volume. Both 
basal area and standing wood volume are subject to errors in 
tree detection. However, the notable underestimation of tree 

height by automated TLS particularly affects standing wood 
volume measurements. Similarly, the top tree height, another 
metric based on individual tree height in forest stands, is 
adversely affected by this underestimation. This error in tree 
height measurement by automated TLS could lead to the 
underestimation of the forest stand’s site index.

TLS device‑related differences in measurements

The TLS devices used in this study are from different price 
ranges, with the Leica RTC360 being the higher-end model 
compared to the Leica BLK360. The RTC model offers 
improved technical specifications, which could potentially 
enhance measurement results and precision. The BLK 
model’ maximum range of 60 m is notably shorter than the 
RTC’s range of 130 m, which might imply a disadvantage 
in tree height measurements. However, differences in height 
measurements between the devices were not statistically 
significant, with the BLK showing a slight negative bias. The 
dense grid of TLS placements seemed to mitigate the BLK’s 
shorter range. In terms of DBH estimation, differences were 
minor at 0.01 m but still statistically significant. Despite 
the RTC’s higher 3D point accuracy, the results indicated 
lower accuracy for this model when considering CMM 
measurements as the gold standard. It is crucial, however, 
to consider additional factors that could have influenced 
these estimations, such as the precision of individual TLS 
scan registrations, the positioning and number of scanner 
placements within the forest plot, which could introduce 
user error, and TLS calibration. Given that the study was 
conducted on only two research plots, the influence of the 
previously mentioned error factors might have masked any 
inaccuracies attributable to the technical specifications of 
the TLS models used.

Future prospects for TLS applications in complex 
forests

Our experience indicates that using TLS reduces forest 
measurement time compared to manual methods, albeit 
requiring additional post-processing of the PCD. However, 
further optimization of the scanning process is possible by 
employing mobile technologies such as unmanned aerial 
vehicles (UAVs) or personal laser scanning systems (PLS) 
equipped with simultaneous localizations and mapping 
(SLAM) technology. Approaches using PLS not only prove 
to be time-efficient, but also hold promising advantages in 
tree- and plot-level estimates, as reported by Gollob et al. 
(2020) and Bauwens et al. (2016). Gollob et al. (2020) 
reported that the scanning process of a plot was completed 
4.7 times faster with PLS and SLAM than with a TLS. 
PLS also improved tree detection rates to 96%, compared 
to TLS’s 78.5%, mainly due to reduced occlusion effects. 
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Bauwens et al. (2016) compared the stem cross-section 
closure at 1.3 m height, finding a complete closure for 
91% of trees using PLS, compared to 42% using TLS, 
but reported limitations of PLS in capturing tree canopies 
beyond 15–20 m. Limitations in scanning the tree canopy 
were also found in our study, despite the application of TLS. 
Enhanced coverage of the forest canopy can be achieved 
by combining UAV and TLS data, although it is more 
time-consuming (Donager et al. 2018; Terryn et al. 2022; 
Brede et al. 2017; Tian et al. 2019). While enhancing forest 
canopy coverage could indeed improve height estimates and 
subsequently volume predictions via allometric models, it is 
possible to measure tree volume directly, bypassing potential 
errors in DBH and height estimations. An additional 
challenge with allometric models is that some require tree 
species as an input parameter. Though there exist methods 
employing UAV multispectral ortho-images to identify 
tree species (Kampen et al. 2019; Feng et al. 2019), they 
could potentially compromise efficiency. More direct and 
practical approaches for estimating tree volume include 
voxel-based methods, cylinder fitting, and quantitative 
structure models (Bienert et  al. 2014; Raumonen et  al. 
2013; An and Froese 2023). Furthermore, it is important to 
explore the capabilities of laser scanning beyond duplicating 
measurements gathered by CMM. Developing techniques to 
extract relevant information from PCD for stand description 
can offer new opportunities to refine standard inventory 
practices. Studies from recent years have examined the 
potential of 3D point cloud data for characterizing forest 
structure and complexity, including techniques to quantify 
individual tree complexity using fractal analysis (Seidel 
2018), evaluate the influence of tree characteristics on forest 
complexity (Seidel et al. 2019) and develop indices for stand 
structural complexity linked to biodiversity and ecosystem 
functioning (Ehbrecht et  al. 2017). Stiers et  al. (2020) 
developed a scaled index that describes the ideal structure 
specifically of a CFF and compared it with even-aged forest 
stands. Approaches like this could enable novel methods to 
quantify differences between the current state of a CCF stand 
structure and an ideal target structure, thereby guiding forest 
management operations more effectively.

Conclusion

In this study, we evaluated the use of TLS for long-term 
monitoring in a complex, highly structured and dense 
plenter forest. Our research has shown promising results, 
particularly in the accuracy of estimated single-tree 
parameters, DBH and tree height, and also yielding satis-
factory accuracy for tree volume estimation. Stand-level 
parameters, such as stand volume and basal area, showed 

minor discrepancies primarily due to edge effect errors in 
tree detection. However, given the challenging conditions 
of conducting such a study in a densely structured for-
est, the tree detection rate was found to be adequate when 
compared to similar studies. Although some inaccuracies 
were observed, these do not undermine the potential of 
automated measurements like TLS for conducting pre-
cise forest inventories. We suggest enhancements, such 
as refining methodological approaches for tree detection 
and improving estimation of single tree parameters. In 
order to minimize commission errors in areas with dense 
understory vegetation, a denser rectangular measurement 
grid smaller than 10 × 10 m employing should be consid-
ered. According to previous studies, utilizing PLS systems 
holds promise for reducing both the omission of automati-
cally detected trees and discrepancies in tree height and 
volume estimations. However, inaccuracies in individual 
tree measurements were not solely a result of gaps in the 
PCD, but also stemmed from the inadequate harnessing of 
the available data through current algorithms. Hence, the 
development and implementation of more refined algo-
rithms may facilitate the utilization of the PCD, thereby 
enhancing the accuracy of the outcomes. Adoption of 
automated methods such as TLS could be viable in com-
plex forest structures like plenter and conversion or res-
tauration forests, leading to more accurate and efficient 
inventories, followed by optimized strategies for sustain-
able forest management.
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