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Abstract
Afforestations provide cost-effective and environmentally friendly protection against natural hazards, compared to technical 
measures. In Austria, more than 3000 afforestation sites for hazard protection covering 9000 ha have been established between 
1906 and 2017, mainly for snow avalanche protection. The actual protective effect depends on avalanche predisposing fac-
tors and land cover, i.e. whether forest is present. In this study, predisposing factors and land cover classes were identified 
and analysed in selected afforestation sites. The protective effect of forest was attributed to the presence of forest cover and 
tree species. Using RGB images with a ground resolution of 20 × 20 cm, nine land cover categories have been distinguished 
by means of supervised classification with the random forest algorithm. Those land cover categories were classified with 
an overall accuracy of 0.87–0.98 and Kappa-values, ranging between 0.81 and 0.93. Images were filtered using a 3 pixel by 
3 pixel majority filter, which assigns each cell in the output grid the most commonly occurring value in a moving window 
centred on each grid cell. This filter further increased the overall accuracy by removing noise pixels while preserving the fine 
elements of the classified grid. Our results indicate a protective effect for about half of the analysed afforestation sites. The 
dominance of the land use class “Meadow” at most sites with little avalanche protection effect suggests grazing as a limiting 
factor. The spatial information provided with the described method allows to identify critical areas in terms of avalanche 
protection even years after the initial afforestation.

Keywords  High elevation afforestation · Random forest model · Protective forest · Avalanche protection · Remote sensing 
data · Aerial images

Introduction

In alpine regions, the protective function of forests is an 
important ecosystem service—reducing the risk of natural 
hazards like snow avalanches, rockfall, landslides or tor-
rential floodings on humans and infrastructural facilities 
(Freudenschuss et al. 2021; Poratelli et al. 2020; Scheidl 
et al. 2020a, b; Sebald et al. 2019; Teich et al. 2019) and 

forests reduce runoff because of increased rainfall inter-
ception and increased transpiration during dry periods 
(e.g.: Andréassian 2004). In Austria, such forests, typically 
referred to as protective forests (Makino and Rudolf-Miklau 
2021), have a share of 20.5%, and in the province of Tyrol 
they nowadays even have a share of around 50% (Amt der 
Tiroler Landesregierung, Gruppe Forst 2020). This is partly 
due to extensive reforestation projects at higher elevations, 
since the late 1960’s (WIFO 1963) aiming at either sup-
plementing or even substituting technical avalanche miti-
gation structures within avalanche release zones (Senn and 
Schönenberger 2001; Heumader 2000). Afforestations for 
hazard protection are thought to have a better cost–bene-
fit ratio compared to solely technical protection measures 
(Mößmer 1998) and lower environmental impacts as well 
as higher adaption capacities to changing conditions (Albert 
et al. 2017; Nesshöver et al. 2017; Gasperl 2014). In Austria, 
more than 3000 afforestation sites have been established till 
today, covering about 9000 ha (Scheidl et al. 2021).
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Afforestations for hazard protection were, however, not 
always successful, even though they were installed under 
consideration of the wind-snow-ecogram (“Wind-Schnee-
Ökogramm”) introduced by Aulitzky (1963). The wind-
snow-ecogram takes microclimatic conditions into account 
by observing herbaceous species indicating wind-blown 
sites and sites with a very long snow cover duration; if such 
indicator plants are observed in the field, no trees are planted 
on the respective sites; thus, trees are only reforested on the 
climatically most favourable sites, easily recognisable by the 
ground vegetation. This is because regeneration at the tim-
berline is exposed to extreme conditions and survival rates 
for tree growth at high altitudes are low because of harsh 
environmental conditions (Çolak 2003). Low temperatures, a 
short photoperiod, limited nutrient uptake from raw humus, 
snow bending, frost desiccation and pests (e.g. snow mould) 
become limiting for tree establishment (Körner 2012; Çolak 
2003; Heikkinen et al. 2002).

The success of afforestations for hazard protection in 
Austria, however, has not been evaluated at a larger scale and 
it has not been tested if they fulfil the protective function, 
other than by regional site visits. This is because the number 
of afforestation sites is large, they are situated in remote 
areas and field assessment of all afforestations is therefore 
not cost-efficient. About 520 of these afforestation sites are 
also thought to have transitioned from the initial stage to a 
young stage raising the question of silvicultural management 
strategies such as precommercial thinning and thinning that 
maintain an acceptable level of protection by preserving tree 
and stand stability (Scheidl et al. 2021) and only few system-
atic studies have investigated silvicultural adaption strategies 
for “advanced” reforestations.

The factors determining the protective effect of a forest 
to minimise the risk of triggering avalanches are reasonably 
well known (Bebi et al. 2009). First, avalanches are only 
released in areas, that have a basic disposition for trigger-
ing events. The disposition for avalanches depends on slope, 
plan curvature and ruggedness (Bühler et al. 2013). Second, 
the forest has a mitigating effect on avalanche release by 
increasing the stability of the snowpack due to anchoring 
effects of trees, by interrupting the continuity of weak snow 
layers through snow interception from the canopy and by 
providing more favourable radiation and temperature con-
ditions of the snow surface (Sykes et al. 2022). Thus, the 
protective capacity of mountain forests is generally assessed 
by the size and distribution of forest gaps, tree density and 
crown closure (Teich et al. 2012).

Disposing factors and forest parameters can be assessed 
using digital elevation models and remote sensing data. Mul-
tisource remote sensing data (Landsat satellite multispectral 
data, hyperspectral airborne data, radar data and geographic 
data) have been widely applied in the automatic detection 
of forest parameters (Fassnacht et al. 2016), in particular for 

the detection of tree species (Onishi and Ise 2021; Fassnacht 
et al. 2017; Immitzer et al. 2016; Waser et al. 2011), but rarely 
used for the evaluation of afforestations for hazard protection 
(Bebi et al. 2022, 2001; Breschan et al. 2018) or integrated in a 
consistent framework to assess the protective function against 
natural hazards. The reasons hampering such applications 
are manifold. Afforestations for hazard protection represent 
non-adjacent areas scattered across the landscape, so that the 
spectral composition of images differs between afforestation 
areas. Therefore, the type of background signal also varies 
with location and tree species density (Fassnacht et al. 2016). 
Finally, afforestations for hazard protection should be assessed 
in an early stage 5–10 years after planting to diagnose regen-
eration failure and take counter measures or to plan subsequent 
silvicultural treatment and the small tree size (e.g. expected 
crown diameter for a 10-m high Norway spruce tree is 3.1 m, 
(Kahn and Pretzsch 1998)) requires a high spatial resolution, 
excluding numerous sensors.

Nevertheless, remote sensing techniques seem to be particu-
larly promising for surveys of high elevation afforested areas, 
because of the steep, inaccessible terrain. In recent years, the 
automatic detection of forest parameters from remote sens-
ing data has been successively improved and has already been 
applied in numerous forestry issues. Tree species classification 
has been done with all types of sensors and at the individual 
tree or forest management level, but largescale applications 
are still rare (Fassnacht et al. 2016). Finally, RGB-images 
are freely available at high spatial resolution for all areas in 
Austria.

The intention of this study is to demonstrate a robust meth-
odology to survey current land cover conditions of selected 
high elevation afforestation sites, whose protection purpose 
is to prevent avalanches from being triggered. The method is 
then further used to investigate how the land cover has changed 
compared to the initial state, which tree species dominate the 
afforested area today and how the land cover behaves regard-
ing the requirements for protection against avalanche release.

In detail we aimed to answer the following questions:

•	 Can trees in afforestations for hazard protection be detected 
with sufficient accuracy using widely available RGB 
images to be able to evaluate afforestation success?

•	 Can protective land cover be modelled with an approach 
allowing large scale application?

Data and methods

Study site

The data for this study are based on information of 12 
afforestation sites in the Paznaun and Stanzer Valley, 
Tyrol, Austria (Fig. 1), installed by the Forest Technical 
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Service of Avalanche and Torrent Control in Austria. Both 
valleys are located in West-Tyrol (Austria), covering mon-
tane to high-subalpine altitudes.

The climate is characterised by a continental mountain 
climate with pronounced summer precipitation. For both 
valleys, the annual average temperature is about 1.3 °C, 
the annual average precipitation amounts to 1109 mm, and 
the snow cover duration (more than 20 cm) lasts 193 days 
per year. The geology is dominated by gneiss with a high 
proportion of base-rich silicates and podzols or semi-
podzols as soil types (Kilian et al. 1994). Afforestation 
campaigns were carried out between 1954 and 2014 at an 
altitude between 1220 and 2310 m above sea level.

In total, ten afforestation sites in the Paznaun Valley 
(#1–10, Table  1)—ranging from 1.2 to 75.4  ha—and 
two afforestation sites in the Stanzer Valley (#11–12, 
Table 1)—with 4.4 and 86.4 ha—were considered. These 
afforestations were randomly chosen from the 30 affores-
tation sites established in total in these two valleys. In all 
afforestation campaigns, the focus was on suitable tree 
species adapted to higher altitudes and the main tree spe-
cies used were European larch (Larix decidua Mill.), Nor-
way spruce (Picea abies L. (Karst.) and Swiss stone pine 

(Pinus cembra L.). Table 1 provides an overview of age, 
size, elevation and tree species initially afforested at the 
individual sites within the Paznaun and Stanzer Valley, 
respectively.

Avalanche disposition

The identification of possible avalanche release areas is 
based on slope, curvature and roughness and was deter-
mined by means of a digital elevation model with a reso-
lution of 1 × 1 m (Amt der Tiroler Landesregierung, Tiris 
2020) derived from airborne laser scanning data, which 
was acquired in 2018 for the southwest of Tyrol (Paznaun, 
afforestations 1–10) and in 2019 for the northwest of Tyrol 
(Stanzer Valley, afforestations 11–12). The slope thresh-
olds for the potential release areas within the afforestation 
sites were 28°–60°. The roughness index reflects the degree 
of irregularity of the surface by highlighting the amount 
of elevation difference between adjacent cells of a digi-
tal elevation model. The plan curvature threshold was set 
to > 3 rad/100hm to eliminate highly convex or concave 
areas limiting the fracture propagation of avalanche release 

Fig. 1   Location of the study areas in the Paznaun and Stanzer Valley, Tyrol, Austria. The numbers correspond to the afforestation sites, and the 
size of the circles relates to the area afforested (c.f.: Table 1)
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(Van Herwijnen et al. 2016). A threshold of 0.03 was used 
for rough terrain according to Bühler et al. (2018).

Land cover and tree species

For classification purpose, i.e. for the identification of 
the respective land cover categories per afforestation site, 
we applied a random forest model on red, green and blue 
spectral information of orthoimages acquired between 
2015 – 2018 with a resolution 20 × 20 cm—provided by 
the Tyrolean spatial information system (Amt der Tiroler 
Landesregierung, Tiris 2020). Training pixels for each 
of the following 5 landcover classes were determined by 
visual delineation at all sites: (C1–C5) Tree, (C6) Rock, 
(C7) Meadow, (C8) Shadow and (C9) Construction. Subse-
quently, the category Tree was expanded to include a distinc-
tion of the specific tree species most frequently planted per 
afforestation area: (C1) Spruce (Picea abies L. (KARST.)), 
(C2) Larch (Larix decidua MILL.), (C3) Swiss stone pine 
(Pinus cembra L.), (C4) Evergreen and (C5) Hardwood. 
Norway spruce, European larch and Swiss stone pine are 
the tree species planted in almost all afforestations for haz-
ard protection. Category C4 (Evergreen) includes other 
evergreen tree species, mainly Scots pine (Pinus sylvestris 
L.), Dwarf mountain pine (Pinus mugo subsp. uncinata 
(DC.) DOMIN) and Engelmann spruce (Picea engelmannii 
PARRY EX ENGELM.), which were, however, only pre-
sent on few sites. The category C5 (Hardwood) includes all 
broadleaved trees (sycamore maple (Acer pseudoplatanus 
L.), silver birch (Betula pendula ROTH.), ash (Fraxinus 
excelsior L.), European aspen (Populus tremula L.), rowan 

(Sorbus aucuparia L.), wild cherry (Prunus avium L.), green 
alder (Alnus viridis (CHAIX) DC.) and willow (Salix spp.)) 
as their protective effect against avalanches plays a rather 
minor role in the selected afforestation sites. Also, these spe-
cies were often not planted but regenerated naturally at sites 
with lower elevation. For each category, at least 10 polygons 
per land cover type and at least 20 polygons per tree species 
were identified in each of the afforestation sites, when the 
respective category was present. Correct photointerpretation 
of tree species was verified by field survey. An overview of 
the final number of training plots compiled for each category 
and afforestation site is given in the Appendix (Table 5).

A random forest model estimating land cover class based 
on RGB-values of the orthoimages was trained for each site. 
The random forest algorithm trains an ensemble of decision 
trees, each decision tree classifies a pixel to a specific land 
cover class, and the final decision for a specific land cover 
class depends on the majority of votes from individual trees 
(Gislason et al. 2006). Of the several ensemble classification 
methods available, random forest uses an improved version 
of bagging (bootstrap aggregating). In bagging, a classifier 
is trained on bootstrapped samples from a training set, which 
has been shown to reduce the variance of the classification. 
Random forests have been shown to be comparable to boost-
ing in terms of accuracies, but without the drawbacks of 
boosting (Breiman 2001).

Once classified, accuracy was assessed by a confusion 
matrix relating the number of automatically categorised 
pixels to referenced pixels, from which (i) the overall accu-
racy ( po ), (ii) the producer’s accuracy ( pp ), iii) the user’s 
accuracy ( pu ) and (iv) Cohens’ Kappa ( � ) could be derived.

Table 1   Overview of the high 
elevation afforestations in the 
Paznaun and Stanzer Valley, 
Tyrol, Austria

PA Picea abies, Norway spruce, LD Larix decidua, European larch, PC Pinus cembra, Swiss stone pine, 
PB Pinus strobus, Eastern white pine, PS Pinus sylvestris, Scots pine, PU Pinus uncinata, mountain pine, 
PM Pinus mugo, Dwarf mountain pine, AA Abies alba, silver fir, AV Alnus viridis, green alder, SA Sorbus 
aucuparia, rowan, AP Acer pseudoplatanus, sycamore maple, PV Prunus avium, wild cherry
+ Related to the year 2021

# Toponym Year of 
afforesta-
tion

Max. 
age+ 
(years)

Area (ha) Elevation (m a.s.l.) Tree species

1 Ablenkdamm Platt 2003 18 2 1310–1510 PA, LD, PB
2 Diasbach 2005 16 9.5 2030–2180 PA, LD, PC, PU, AA, AV
3 Diasbach Damm 2008 13 1.9 2030–2060 PA, PC, PU, AV
4 Istalanzbach 1994 27 19.2 1960–2280 PA, LD, PC
5 Nederle 1990 31 1.8 1220–1290 PA, LD, SA
6 Paznauer Rinner 1955 66 1.6 1480–2040 PA, LD, PC
7 Schwager Gonde 1954 67 75.4 1380–2310 PA, LD, PC, SA, AP
8 Ulmicher 1999 22 1.2 1310–1380 PA, LD, SA, AP, PV
9 Versingalpe 2013 8 7.5 1960–2060 PA, LD, PC, PU
10 Vertschalrinnen 1992 29 2.7 1700–2080 PA, LD, PC
11 Kapall Fang 1983 38 4.4 1770–1930 PA, LD, PC
12 Putzenwald 1983 38 86.4 1300–1720 PA, LD, PS
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The overall accuracy is calculated by dividing the number 
of correctly classified pixels ( xcor ) of all categories by the 
total number of pixels ( xtot):

The producer’s accuracy expresses if real features on the 
ground are correctly represented on the map. It is defined 
by the number of correctly classified pixels in each category 
( xcor ) divided by the total number of reference pixels ( xref ) 
for the considered category,

and represents map accuracy from the point of view of the 
map maker.

The user’s accuracy expresses how often the class of 
the map will be present on the ground and is therefore also 
referred to as reliability. It is computed by dividing the num-
ber of correctly classified pixels in each category ( xcor ) by 
the total number of pixels in that category ( xcat):

It represents the probability that a pixel classified into 
a given category actually represents that category on the 
ground.

The Kappa coefficient (Cohen 1960) evaluates how well 
the classification performed as compared to just randomly 
assigned values, i.e. did the classification do better than ran-
dom. It can be calculated by relating the overall accuracy 
( po ) with the probability of random agreement ( pe):

Thus, the lower the �-value, i.e. the closer it gets to 0, the 
lower the random-adjusted agreement.

In a further step, the trained random forest model was 
applied to each afforestation site to model the spatial dis-
tribution of the pre-defined nine land cover categories 
(C1–C9). In the final step, predicted values were filtered 
with a majority filter. A majority filter assigns each cell in 
the output grid to the most commonly occurring value in 
a moving window centred on each grid cell. Neighbour-
hood size or filter size is determined by the user-defined x 
and y dimension. These dimensions should be odd, positive 
integer values. In this analysis a moving window of 3 × 3 
pixels was chosen. Since the RGB-images have a resolution 
of 20 cm, the 3 × 3 pixel moving window corresponds to a 
60 cm × 60 cm window on the ground. This small window 
size was selected to remove individual misclassified pixels, 
while preserving the information of small trees visible in the 

(1)po =
xcor

xtot

(2)pp =
xcor

xref

(3)pu =
xcor

xcat

(4)� =

po − pe

1 − pe

orthoimages and classified grids. The effective land cover 
area in terms of avalanche protection was then calculated by 
intersecting the modelled land cover classes with the ava-
lanche disposition map.

Because the modelled tree-specific land cover categories 
do not comprise specific information on crown closure or 
tree density, and a detailed analyses of maximum gap width 
within the identified land cover results is out of the scope of 
this study, we assume the modelled tree specific land cover 
classes (C1, C2, C3, C4, C5) in relation to the total mod-
elled non-forest areas (C6, C7, C9) as a first-order hazard 
assessment threshold. The class C8, shadow was omitted, 
since it could represent both a tree specific land cover class 
or non-forest area. Thus, in areas indicating potential ava-
lanche triggering due to the disposition map, large tree land 
cover areas (i.e. protective areas) in relation to small non-
forest areas suggest higher protection against the release of 
avalanches. Hence, a simple protective indicator in terms 
of avalanche protection is given by subtracting the share 
of non-forest areas from the share of protective areas. This 
performance indicator thus has a range from + 1 to − 1, 
depending on whether optimal or minimal to no protection 
is given. Vegetation height was calculated by subtracting the 
digital surface model (1 × 1 m resolution) from the digital 
terrain (1 × 1 m resolution) model using open government 
data (Amt der Tiroler Landesregierung, Tiris 2020). The 
resulting grids were used to visualize tree heights in the map 
of protective land cover.

Results

Classification accuracy and land cover prediction

The overall classification accuracy of the random for-
est model ranged between 0.87 and 0.98 and the Kappa-
values ranged between 0.81 and 0.93. Overall, the random 
forest model showed relatively high producer ( pp ) as well 
as user ( pu ) accuracies for all land cover classes (Table 6). 
The detailed confusion matrices for each site are given in 
Appendix Tables 7–20.

The specific tree categories C1 Spruce, C2 Larch and C3 
Swiss stone pine showed the greatest variance and mean pro-
ducer’s accuracies (Fig. 2 and Table 2). The reliability of C1 
and C2, i.e. their users’s accuracies, was in a similar range. 
The lowest user’s accuracy was obtained for the land cover 
category C3 Swiss stone pine, which highlights the difficulty 
of its identification based on remote sensing data. The land 
use category in which evergreen tree species were grouped 
together (C4 Evergreen) shows overall lower variances and 
higher accuracy results, compared to the specific tree spe-
cies categories C1–C3. The only broadleaved category, C5 
Hardwood, includes so-called pioneer trees and is identified 
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with similar accuracy by the random forest model as the 
category C1 Spruce. The highest producer and user accu-
racy values, however, result from the non-tree land cover 
categories C6 Rock, C7 Meadow and C8 Shadow, which can 
be identified nearly unambiguously. Because category C9 
Construction is the least common land cover in the affores-
tation sites analysed here, its variability is non-existent and 
its accuracy high.

The percentage share of each category (C1–C9) per affor-
estation site (Table 2) indicates that most afforestation sites 
are either dominated by C1 Spruce or by C7 Meadows. Only 
for the deflecting dam (#1 Ablenkdamm Platt) Hardwood 
(C5) seems to prevail.

Land cover changes

For all afforestation plots investigated in this study, the 
number and species of trees planted are documented, which 
makes it possible to establish a baseline of tree species pro-
portions per site. Compared to the proportion of tree species 
categories, identified by the random forest model, it is pos-
sible to assess a land cover change from the time of the last 
documented activity (plantation) until now. The change in 
tree specific land cover for each afforestation site is shown 
in Fig. 3, exclusively for tree specific land cover categories 
(C1–C5). In particular, at lower elevations the percentage of 
hardwoods increased over the years in relation to the affores-
tation (e.g. Ablenkdamm Platt, Ulmicher). Further over the 

Fig. 2   Distributions of pro-
ducer’s ( p

p
 ) as well as user’s 

( p
u
 ) accuracies for each land-

cover classification based on 
the results of the random forest 
model of all afforestation sites

Table 2   Percentage share of modelled land cover categories for each afforestation site

The highest proportion, neglecting the land cover C8 shadow, is indicated by the bold representation

# Toponym Land cover share (%)

C1 Spruce C2 Larch C3 Swiss 
stone p

C4 Ever-
green

C5 Hard-wood C6 Rock C7 Meadow C8 Shadow C9 Constr

1 Ablenkdamm Platt 4 25 0 0 28 12 18 13 0
2 Diasbach 0 2 11 17 1 2 68 0 0
3 Diasbach Damm 0 0 0 0 15 1 83 1 0
4 Istalanzbach 1 2 5 0 0 1 81 9 0
5 Nederle 55 8 0 0 8 0 4 25 0
6 Paznauer Rinner 40 5 0 0 0 4 6 45 0
7 Schwager Gonde 9 4 2 0 3 15 45 23 0
8 Ulmicher 31 8 0 0 19 0 16 26 0
9 Versingalpe 16 10 0 0 0 1 35 39 0
10 Vertschalrinnen 38 3 3 0 0 0 21 35 0
11 Kapall Fang 14 13 0 24 5 8 25 1 9
12 Putzenwald 16 0 0 10 0 1 24 49 0
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Fig. 3   Land cover changes from initial situation (as documented) to the most recent situation (modelled) for the tree specific categories C1–C5 
within each afforestation site



588	 European Journal of Forest Research (2024) 143:581–601

years, Norway spruce seems to have outcompeted European 
larch and Swiss stone pine on some sites.

The highest share or protective area was found in study 
area 5 with 72% and the lowest share in study area 4 Ista-
lanzbach. Accordingly, the performance indicator varied 
between − 0.75 and 0.68 (Table 3).

Here, the performance indicator reflects to a certain 
extent the existing influence of non-forested areas, so-
called potential gaps, in the artificial afforested avalanche 
release area. However, to minimise the risk of avalanches, 
knowledge of tree heights and their distribution is another 
important indicator in addition to knowledge of potential 
gaps. Table 4 lists the mean and standard deviation of tree 
heights > 1 m for tree specific land cover categories (C1–C5) 
of all afforestation sites analysed in this study.

An example of a comparison of the orthoimage of the 
afforestation site #1 Ablenkdamm with the modelled land 
cover classes is given in Fig. 4 (left and central panel). The 
right panel in Fig. 4 compares the avalanche disposition map 
with the spatial distribution of effective tree specific land 
cover categories as well as an indication of tree heights (c.f.: 
Table 4) and can be regarded as the current protective effect.

Further examples, comparing orthoimages of the recent 
land cover with modelled land cover classes and the final 
protected land cover predictions, are shown in the appendix 
(Fig. 5).

Fig. 3   (continued)

Table 3   Share of protective areas (all tree related land cover classes) 
and non-forested areas as a first assessment of the current protective 
effect of afforestation areas against avalanches

The results are based on the related shares of modelled land cover 
classifications intersected with the avalanche predisposition map
+ not accounting for modelled land cover class C8 Shadow

# Toponym Share of 
protective 
area (%)

Share of non-
forest area+ 
(%)

Performance 
indicator (+ 1; 
− 1]

1 Ablenkdamm 
Platt

59 26 0.33

2 Diasbach 32 68  − 0.36
3 Diasbach 

Damm
17 83 − 0.66

4 Istalanzbach 8 83 − 0.75
5 Nederle 72 4 0.68
6 Paznauer 

Rinner
46 8 0.38

7 Schwager 
Gonde

18 59 − 0.41

8 Ulmicher 58 16 0.42
9 Versingalpe 28 26 − 0.02
10 Vertschalrin-

nen
47 15 0.32

11 Kapall Fang 57 43 0.14
12 Putzenwald 28 24 0.04
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Discussion

Land cover and tree species classification

The quality of images used in this study was generally good 
with few shaded areas. Where shade prevailed, the respec-
tive area could not be assigned to a specific land cover class, 
which is an unsolvable problem if only orthoimages of one 
point in time are used (Waser et al. 2011). If images from 
different time points were available, or other auxiliary data 
were used, the classification might be improved in these 
areas. Where small, shaded areas were present, there was 
a transition zone between the sun-lit crown and the shaded 

area of the crown, which contained mixed pixels that were 
usually assigned to the shadow class decreasing the share of 
the trees; the tree class is therefore underrepresented leading 
to a slightly pessimistic assessment of the protective func-
tion. More generally, any land cover class overproportionally 
shaded would be underrepresented in the classification.

The study shows that land cover and tree species can 
be classified accurately from high-resolution RGB-images 
and classification accuracies attained were comparable or 
slightly better than those obtained in other land cover (Oduro 
Appiah et al. 2021; Talukdar et al. 2021; Toosi et al. 2019) 
or tree species classification studies using RGB (Eshetae 
2020; Toscani 2012) or multispectral images (Immitzer 
et al. 2012). Meadow, shadow, rock or construction can 

Table 4   Mean and standard 
deviation of tree heights 
for all trees > 1 m, listed by 
afforestation sites within 
modelled tree specific land 
cover categories (C1–C5)

# Toponym Distribution of tree heights > 1 m [m]

C1 Spruce C2 Larch C3 Swiss Stone P C4 Evergreen C5 Hardwood

1 Ablenkdamm Platt 4.8 ± 2.2 4.9 ± 2–2 – – 4.8 ± 2.4
2 Diasbach – 1.8 ± 1.1 1.3 ± 0.3 1.6 ± 0.8 2 ± 0.5
3 Diasbach Damm – – – – 1.2 ± 0.2
4 Istalanzbach 8.8 ± 6.6 9.9 ± 6.4 9.9 ± 6.0 – –
5 Nederle 13.3 ± 3.2 15.7 ± 7.3 – – 14.4 ± 4.6
6 Paznauer Rinner 18.8 ± 10.4 16.6 ± 9.3 6.9 ± 0 – –
7 Schwager Gonde 15.5 ± 8.8 10.6 ± 7.4 9.4 ± 7.6 – 10.9 ± 7.2
8 Ulmicher 9.6 ± 5.1 8.1 ± 5.4 13.9 ± 6.9 – –
9 Versingalpe 9.6 ± 6.2 10.8 ± 5.9 0 ± 0 0 ± 0 –
10 Vertschalrinnen 10.1 ± 6.5 4.5 ± 3.8 6.6 ± 7.9 – –
11 Kapall Fang 2.2 ± 1.8 2.6 ± 1.5 1.8 ± 1.3 2.0 ± 1.2 2.1 ± 1.4
12 Putzenwald 17.4 ± 8.7 – – 15.7 ± 8.0 –

Fig. 4   Orthophoto (left) show-
ing the real land cover situation, 
modelled land cover classifica-
tions based on the random forest 
model (centre) and intersection 
of avalanche release area (indi-
cated in red) with the spatial 
distribution of effective tree 
specific land cover categories 
and tree heights(Table 4) (right) 
for the afforestation site 1: 
Ablenkdamm Platt
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be classified almost unambiguously, because there is little 
spectral overlap with the tree classes. Because of this, clas-
sification of the land cover classes is often very accurate, 
e.g. similar to a study by Lillesand et al. (2015). Similarly, 
the classification of tree species is very accurate on most 
sites, since the number of species to classify is low because 
only a limited number of tree species is able to grow at high 
elevation sites. Tree species classification results tend to be 
less accurate if more species are considered (Immitzer et al. 
2012). Usually, classification is also poor when a low num-
ber of reference trees is available (Immitzer et al. 2012). This 
was, however, avoided in this study, by delineating an equal 
number of trees per species on orthoimages and measur-
ing an equal number of trees per species as ground truth. 
The number of trees identified per species and afforesta-
tion corresponds to guidelines for training objects per class 
proposed by Lillesand et al. (2015), who suggest 10–100 
training objects. Similarly, 10 polygons per land cover class 
were not found to be sufficient by Ma et al. (2017), but by 
increasing the number of polygons to 30 a good classifica-
tion accuracy could be achieved in the study. In line with 
findings by Ma et al. (2017) other authors think that the 
selection of suitable training objects is more essential for 
high classification accuracies rather than an extremely large 
number of training polygons (Toscani 2012), so that the 
number of polygons used in this study can be considered 
sufficient and can be considered a reasonable effort, when a 
larger number of afforestations is to be evaluated.

The classification in this study was pixel-based. This 
type of classification is prone to individual misclassified 
noise-pixels (Immitzer et  al. 2012). These could, how-
ever, be effectively removed by applying the 3 × 3 major-
ity filter which increased overall accuracy and increased 
the users’ and producers’ accuracy for almost all sites and 
classes except for very small classes at some sites, where 
it decreased. In general, however, the 3 × 3 pixel filter pre-
served the signal from small size objects such as young trees 
in the regeneration or avalanche protectors.

The conifers except for larch were the classes most fre-
quently misclassified, probably because of spectral over-
lap of these classes. In some afforestations, also Norway 
spruce, Scots pine and European larch or European larch 
and meadow were confused. In young afforestations, where 
lupins (Lupinus angustifolius L.) and rusty-leaved alpen-
rose (Rhododendron ferrugineum L.) were present, it was 
also not possible to distinguish these species from the trees, 
because of similar spectral bands and because they were 
intermingled with the crowns of the trees. Similar misclas-
sification problems were also reported by Toscani (2012) 
and Rodriguez-Galiano et al. (2012). For the evaluation of 
the forest protection, however, only knowledge of the cover 
of evergreen conifers is required. So the misclassification 
between different evergreen tree species does not affect the 

evaluation of the protective function. Misclassifications with 
a consequence on the protective function are the confusion 
of evergreen trees with deciduous trees, which were, how-
ever, minor on most sites and the confusion of evergreen 
trees with mountain pine, which because of low height offers 
little protection against avalanches (Roloff et al. 2008). So 
further research should focus on distinguishing these classes.

With the nominal 20 cm ground resolution of the ortho-
images, the resolution is generally good and available 
orthoimages were of good quality. In addition, the reso-
lution of images increases with elevation since the flight 
height and distance from the terrain decrease resulting in 
smaller ground sampling distances for afforestations located 
at higher elevations; because of the good image quality 
even younger trees of the afforestations could be classified 
well although very small trees, with heights of less than 
50–100 cm, were not visible in the images. Larger trees are, 
however, represented by numerous pixels. For example, a 
10-m Norway spruce tree with an expected crown diameter 
of 3.1 m (estimate according to Kahn and Pretzsch (1998)) 
would be approximately represented by 38 pixels. Further-
more, the classification can be improved by using more data 
bands, auxiliary 3D-information from LIDAR data, or tex-
tural information (Immitzer et al. 2012). The simple clas-
sification is, however, accurate enough for the evaluation of 
the forest protection, since only the total cover of evergreen 
conifers is required.

The proportion of evergreen trees obtained from the 
orthoimages is expressed in canopy cover percent, which 
closely agrees with the canopy layer visible in remote 
sensing data and which is also the usual way of express-
ing species proportion in hazard protection frameworks 
(Perzl 2008; Frehner et al. 2005). This is because the pro-
tective function of the forest in terms of avalanche protec-
tion mostly depends on snow interception, which is closely 
related to canopy cover. In ground-based assessment spe-
cies proportion is more often expressed in percent of stem 
number, basal area, volume or in relation to the maximum 
density of analysed tree species. This would be important, 
if economic use were prevalent, but less suitable for pro-
tection forests. Nevertheless, some guidelines refer to stem 
numbers because today terrestrial assessment is prevalent. 
In these cases, however, the guidelines could be adapted 
to contain canopy cover, since in protection forests canopy 
cover is the more meaningful variable.

First‑order analyses of recent protective effects 
against avalanches

This study is the first to provide information on the pro-
tective performance against avalanches of afforestations in 
Austria, 8–66 years after their installation using automated 
image classification. A first step in the analysis of protective 
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afforestations is the evaluation of the regeneration success 
(Heumader et al. 2017). At all sites trees planted could be 
successfully established, even though the initially planted 
tree species distribution changed considerably at some sites. 
The most notable changes are the natural establishment of 
hardwoods at lower elevations, and the increase in domi-
nance of Norway spruce at most sites. Norway spruce seems 
to cope best with the site conditions typical for the Paznaun 
and Stanzer valley. Here, it has a competitive advantage over 
European larch, which is very light demanding (Ronch et al. 
2016) and over Swiss stone pine, which is a slow growing 
species (Körner 2012). Swiss stone pine, however, domi-
nates at sites close to the tree line, since it is better adapted 
to cold environments, being capable to photosynthesize at 
temperatures of 2–3 °C, whereas other conifers require a 
minimum temperature of 5 °C (Körner 2012). Swiss stone 
pine therefore forms the timberline in the study area.

In general, cover of tree species increases with time since 
establishment and the survival of planted trees depends on 
climatic and site-specific conditions (Körner 2012). Other 
important prerequisites for successful afforestations at the 
tree line are the use of suitable seed provenances and the 
consideration of suitable micro-sites of the local relief 
(Schönenberger et al. 1994; Sauermoser 1988). However, 
particularly older afforestation sites were often established 
with tree provenances that were not appropriate for the site 
conditions (Heumader 2000), which repeatedly led to major 
failures especially in temporal overlap with a cooling pro-
cess that began around 1940 and lasted for several decades 
(Mayewski et al. 2004). Further, every irregularity in the 
slope surface causes extensive small-scale variation in the 
environmental conditions (Turner et al. 1983). This variation 
between microsites in addition with inappropriate tree prov-
enances might also be reflected in the diverse performance 
indicators of the analysed afforestation sites in this study 
(Table 3). Factors limiting tree establishment in the Paznaun 
and Stanzer valley are low temperatures, a short photoper-
iod, limited nutrient uptake from raw humus, snow bending, 
frost desiccation and pests (e.g. snow mould) close to the 
tree line (Heikkinen et al. 2002; Çolak 2003; Körner 2012) 
and grazing and competing vegetation at lower elevation 

sites. Moreover, browsing by red deer (Cervus elaphus L.), 
roe deer (Capreolus capreolus L.) and chamoix (Rupicapra 
rupricapra L.) as well as fraying and bark stripping can limit 
tree establishment (e.g. Gerhard et al. 2013). Trees planted 
in the afforestations were, however, protected against game 
damage and when surveying sites game damage was not 
observed as major factor limiting tree establishment.

Conclusion

Summarising, land cover classification and hazard predispo-
sition mapping are a cost-efficient way of evaluating a larger 
number of afforestations for hazard protection, in an objec-
tive manner. The land cover classification with the spectral 
bands red, green and blue can provide high classification 
accuracies, if the quality of orthoimages is good and if a suf-
ficient number of training pixels is available. Large, shaded 
areas and spectral overlap pose the biggest problems in the 
land cover classification. Using additional information from 
other sensors might further improve the approach. The 3 × 3 
majority filter effectively removes noise pixels, so that the 
method provides an effective way to evaluate afforestations 
for hazard protection.

The methodological frame-work proposed can be applied 
to large areas, since no field survey is required. Given the 
high number of sites afforested, this is an important advan-
tage. Since orthoimages are acquired on a regular basis by 
the government of Tyrol also repeated classification and 
change detection of the afforestations is possible with this 
approach allowing monitoring of afforestations sites, which 
can give valuable insights for planning future afforestations 
and opens many opportunities for analysing the afforesta-
tion success scientifically. In case of regeneration failure, 
site visits to determine the environmental factors that inhibit 
regeneration at specific sites can further complement the 
approach. Afforestations for avalanche protection are envi-
ronmentally friendly and cost-efficient, but a long time is 
needed for them to be fully efficient.

Appendix

See Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18.      
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Table 5   Number of training 
plots for each category and 
afforestation site—identified by 
orthophotos from 2015 to 2018

C1, Spruce; C2, Larch; C3, Swiss stone pine; C4, Evergreen; C5, Hardwood; C6, Rock; C7, Meadow; C8, 
Shadow; C9, Construction

# C1 C2 C3 C4 C5 C6 C7 C8 C9

1 27 35 – – 32 10 10 15 –
2 1 12 10 35 12 10 10 7 –
3 – – – – 27 10 10 1 –
4 33 37 49 – – 10 10 10 –
5 33 26 – – 23 – 7 17 –
6 57 16 5 – – 4 8 7 –
7 16 24 34 – 23 10 10 20 –
8 28 30 – – 28 – 10 10 –
9 28 17 – – – 6 10 10 –
10 32 23 14 – – 3 6 7 –
11 58 12 3 19 10 10 10 10 10
12 29 25 – 29 – 10 12 18 –

Table 6   Mean and standard 
deviation of producer’s and 
user’s accuracies for each land 
cover category

Land cover categories Producer’s accuracy p
p
 (%) User’s accuracy p

p
 (%)

M SD M SD

C1 Spruce 64 27 58 32
C2 Larch 75 20 68 28
C3 Swiss stone Pine 56 27 42 32
C4 Evergreen 77 14 83 18
C5 Hardwood 69 22 62 28
C6 Rock 96 4 94 6
C7 Meadow 92 5 93 5
C8 Shadow 95 9 94 12
C9 Construction 96 – 96 –

Table 7   Confusion matrix 
Ablenkdamm

C1 Spruce, C2 Larch, C3 Swiss stone pine, C4 Evergreen, C5 Hardwood, C6 Rock, C7 Meadow, C8 
Shadow, C9 Construction

Class Predicted

C1 C2 C5 C6 C7 C8

Observed
C1 1284 30 828 6 84 24
C2 12 9294 300 0 294 0
C5 24 24 15,882 0 744 30
C6 0 0 0 5574 0 0
C7 0 60 36 0 11,592 0
C8 0 0 126 0 0 21,156
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Table 8   Confusion matrix 
Diasbach

C1 Spruce, C2 Larch, C3 Swiss stone pine, C4 Evergreen, C5 Hardwood, C6 Rock, C7 Meadow, C8 
Shadow, C9 Construction

Class Predicted

C2 C3 C4 C5 C6 C7 C8

Observed
C1 8 0 776 0 0 0 0
C2 13,312 120 760 0 0 384 0
C3 408 3728 2240 0 0 1744 0
C4 160 456 63,056 8 0 808 0
C5 48 0 9968 1336 0 0 0
C6 0 0 8 0 17,496 104 0
C7 88 104 0 0 0 174,976 0
C8 0 0 168 0 0 0 4592

Table 9   Confusion matrix 
Diasbach Damm

C1 Spruce, C2 Larch, C3 Swiss stone pine, C4 Evergreen, C5 Hardwood, C6 Rock, C7 Meadow, C8 
Shadow, C9 Construction

Class Predicted

C5 C6 C7 C8

Observed
C5 2428 0 408 0
C6 0 1596 0 0
C7 0 0 46,712 0
C8 32 0 0 108

Table 10   Confusion matrix 
Istalanzbach

C1 Spruce, C2 Larch, C3 Swiss stone pine, C4 Evergreen, C5 Hardwood, C6 Rock, C7 Meadow, C8 
Shadow, C9 Construction

Class Predicted

C1 C2 C3 C6 C7 C8

Observed
C1 10,932 3480 15,318 0 5886 0
C2 900 48,540 4032 0 2646 0
C3 1938 690 62,142 12 3096 6
C6 0 12 36 5496 66 6
C7 552 666 2742 0 812,628 0
C8 0 0 0 0 6 139,098
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Table 18   Confusion matrix 
Putzenwald

C1 Spruce, C2 Larch, C3 Swiss stone pine, C4 Evergreen, C5 Hardwood, C6 Rock, C7 Meadow, C8 
Shadow, C9 Construction

Class Predicted

C1 C2 C4 C6 C7 C8

Observed
C1 19,260 0 2172 0 6636 54
C2 414 726 564 0 28,404 0
C4 2598 0 16,632 0 3408 66
C6 0 0 30 80,442 276 0
C7 2976 24 1980 114 499,572 26,346
C8 486 0 498 0 312 225,432

Fig. 5   Examples of afforestation sites A Diasbach, B Nederle, C 
Kapall Fang and D Putzenwald. For each example, the left pattern 
shows the real land cover situation (orthophoto), the pattern in the 
centre shows the modelled land cover classifications based on the ran-
dom forest model, whereas the left pattern indicates recent avalanche 

protection effect of the related afforestation site by intersection of the 
basic avalanche release area (indicated in red) with the spatial distri-
bution of effective tree specific land cover categories and tree heights 
(c.f.: Table 4)
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Examples of afforestation sites (Fig. 5), comparing the 
real land cover situation (orthophoto, left pattern) with the 
results of the modelled land cover classification for each 
example (central pattern). Also shown is the current ava-
lanche protective effect of the related afforestation site by 
intersection of the basic avalanche disposition map with the 
spatial distribution of effective tree specific land cover cat-
egories as well as an indication of recent tree heights (right 
pattern).
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