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Abstract: The accurate large-scale classification of tree species is crucial for the monitoring, protection,
and management of the Earth’s invaluable forest ecosystems. Numerous previous studies have
recognized the suitability of satellite imagery, particularly Sentinel-2 imagery, for this task. In this
study, we utilized a dense phenology Sentinel-2 time series, which offered consistent data across
multiple granules, to map tree species across the entire forested area in Austria. Aiming for the
classification scheme to more accurately represent actual forest conditions, we included mixed tree
species and sparsely populated classes (classes with sparse canopy cover) alongside pure tree species
classes. To enhance the training data for the mixed and sparse classes, synthetic data creation was
employed. Autocorrelation has significant implications for the validation of thematic maps. To
investigate the impact of spatial dependency on validation data, two methods were employed at
numerous split and buffer distances: spatial split validation and a validation method based on a
buffered ground reference probability samples provided by the National Forest inventory (NFI). While
a random training data holdout set yielded 99% accuracy, the spatial split validation resulted in 74%
accuracy, emphasizing the importance of accounting for spatial autocorrelation when validating with
holdout sets derived from polygon-based training data. The validation based on NFI data resulted
in 55% overall accuracy, 91% post-hoc pure class accuracy, and 79% accuracy when confusions in
phenological proximity were disregarded (e.g., spruce–larch confused with spruce). The significant
differences in accuracy observed between spatial split and NFI validation underscore the challenge
for polygon-based training data to capture ground reference forest complexity, particularly in areas
with diverse forests. This hardship is further accentuated by the pure class accuracy of 91%, revealing
the substantial impact of mixed stands on the accuracy of tree species maps.

Keywords: large scale; forest diversity; satellite; ground reference forest data; spatial autocorrelation;
synthetic training data

1. Introduction

Forests are important for a wide range of ecological, economic, and social reasons.
They play a vital role in maintaining the balance of our planet’s ecosystems and support
biodiversity. They provide climate and water regulation and serve as natural shields,
protecting against natural hazards such as soil erosion, floods, landslides, rock falls, and
avalanches. Forests offer significant economic benefits, including the production of timber
and non-timber forest products, as well as the growth of industries such as tourism and
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recreation. Overall, forests are essential for preserving the health of our planet, combating
climate change and ensuring the well-being of human societies [1–9].

Earth observation (EO) data provide valuable advantages for understanding forests,
including large-scale coverage, timeliness, multi-sensor data fusion, non-invasiveness, and
cost-effectiveness. The data enable the creation of detailed forest maps with high spatial and
temporal resolution, providing insights into forest structure, health, and dynamics. Such
insights are crucial in the face of increasing environmental challenges. Climate change is
altering habitat suitability for many tree species [10–13], making forests more vulnerable to
various threats. For example, pests like Ips typographus and pathogens such as Diplodia pinea
are causing increasing damage to forests in Austria and other regions [10,14–17]. EO data
facilitate the creation of detailed maps of species distribution and abundance [18], which are
valuable for monitoring changes in forest composition, identifying areas at risk, and inform-
ing management strategies. Such information can aid in developing targeted approaches
to mitigate the impacts of climate change and biological threats on forest ecosystems [19].
Within the realm of EO data, the availability of the Sentinel-2 (S2) EO mission data has
revolutionized the field of remote sensing for tree species classification. With its broad
spectral coverage and high spatial and temporal resolution, the S2 data provide an excellent
basis for research on tree species classification using remote sensing [18]. Many studies
have successfully combined S2 data with machine learning techniques to classify pure
tree species stands on small to medium-sized areas at the pixel level, demonstrating the
potential of this data source for advancing our understanding of forest ecosystems [20–34].

Multiple studies have highlighted the advantages of using vegetation indices in tree
species classification [23,27,30,32–34]. Additionally, incorporating digital terrain model
(DTM) data has been shown to improve the accuracy of classification models [13,18,20,28–30].
Multi-temporal imagery, which captures seasonal changes in vegetation cover, has also
positively impacted tree species classification models [22–25,30,34].

Expanding the study areas introduces new challenges, particularly when multiple
Sentinel-2 granules (the tiling units of S2 products, see [35]), are needed, due to the difficulty
of obtaining temporally matched scenes across the entire area. Large-scale studies are scarce.
However, for instance, the authors of [33] used a dense phenology time series to acquire
cohesive data across multiple granules, while in [36], monthly composites were generated
to map tree species across Germany’s entire forested area.

The earlier mentioned studies and many others have laid a strong foundation for
further research on tree species classification. However, forest structures are often hetero-
geneous, consisting of multiple tree species mixed in small areas. Consequently, a single
S2 pixel can encompass signals from multiple tree species, and the training and validation
data consisting only of pure classes do not accurately represent the forest on the mapped
area. While very few studies have addressed the issue of mixed pixels, the authors of [37]
modelled a vector of the proportions of tree species on a pixel basis. Additionally, Waser
et al. [38] found significant differences between validation using training data holdout sets
in comparison with data from an independent source, especially in areas with a high degree
of mixture.

In the evaluation of ecological maps produced by machine learning techniques, spatial
autocorrelation, which is inherent to the data used, poses a central challenge. As highlighted
in a review by [39], neglecting the underlying structure in input data during standard cross-
validation can lead to the significant overestimation of a model’s predictive power. The
study suggested that a thoughtful blocking strategy can mitigate this issue; however, it
may also lead to an overestimation of interpolation errors. The study conducted by [40]
convincingly illustrated this validation data issue in a large-scale aboveground forest
biomass case study. A recent study by [41] compared validation approaches, including
validation based on independent probability sampling (IPS), standard (random) cross-
validation (CV), and spatial cross-validation (SCV), when the training data were collected
in clustered and non-clustered random patterns. The results indicated that CV performed
comparably to IPS in non-clustered cases, while SCV tended to overestimate the root mean
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squared error (RMSE). However, with clustered training data, as is common in tree species
classification studies, CV tended to underestimate the RMSE. Few tree species classification
studies have addressed this issue; however, ref. [30] implemented a spatial cross-validation
scheme by dividing the area covered by the reference dataset into squares of 10 by 10 km.

Previous studies have primarily focused on traditional machine learning methods
such as random forest, support vector machine, or extreme gradient boosting to classify tree
species. The recent research studies by [31] has shown that deep learning and convolutional
neural networks (CNNs) outperform traditional techniques. Bolyn et al. [37] successfully
applied U-Nets, spatially aware CNN structures, originally developed by [42] for pixelwise
image segmentation, to tree species classification. In addition to capturing spatial features,
CNN structures can also be leveraged to analyze the temporal dimension of the Sentinel-
2 data. A review by [43] highlighted a CNN structure specifically designed for time
series classification, featuring one-dimensional convolutions and residual connections [44],
as the top-performing deep learning approach across various time series classification
tasks. Furthermore, Xi et al. [31] found that a CNN structure based on one-dimensional
convolutions outperformed other approaches in their tree species classification study.

We employ neural networks with one-dimensional convolutions and residual con-
nections, along with dense phenology index time series, statistical parameters, DTM, and
vegetation height data to predict tree species on a national scale at the S2 pixel level. Our
study’s overarching objective is to bring large-scale tree species classification closer to
the ground reality of forests, a perspective that has received limited attention in previous
studies. This is accomplished by enhancing the capture of the forests’ complexity and
variability in both training and validation.

The primary objectives of our study are as follows:

(1) to expand the set of pure tree species classes by incorporating mixed classes—each
consisting of two pairwise different species—and sparse classes with low canopy
cover into training and validation;

(2) to evaluate the generated tree species maps through a probability sample-based
validation, with a specific emphasis on investigating spatial autocorrelation.

We introduce the following innovative ideas to tree species classification:

• the use of a dense time series from multi-annual S2 data developed by [36], providing
phenology index data at the S2 pixel level that are consistent across S2 granules;

• the inclusion of mixed species classes in training and validation data, specific valida-
tion metrics for mixed and pure species classes, and training data synthesis;

• a hybrid neural network architecture tailored specifically for the combination of time
series and non-time series features, based on [43];

• A spatial split and an independent probability sample-based validation including a
comprehensive and innovative spatial autocorrelation analysis for both.

2. Materials and Methods

To commence this section, we offer a concise overview, including a workflow diagram
(see Figure 1), along with the motivations driving the subsequent sections. In Section 2.1,
we introduce the study area followed by a delineation of the forested area in Section 2.2.
Sections 2.3–2.5 delve into the datasets covering the entire study area, which serve as input
features for the classification models.

Given that the 10 by 10 m Sentinel-2 pixels often contain more than a single species,
mapping tree species faces additional challenges. Following a brief definition of some
necessary terms (Section 2.6), we explore the intricacies of classifying not only pure but
also mixed and sparse classes and define the classes we aim to separate within the scope of
this study (Section 2.7). Moving forward, we address the labeling of data for training and
validation purposes. Section 2.8 presents the details of training data acquisition. However,
these data present certain challenges, primarily because mixed-class data contain pixels
with single species as well as mixed-species pixels. In Section 2.9, we propose the creation
of synthetic data to tackle this issue by averaging multiple pixels. After the creation of
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the training data, Section 2.10 outlines how the national forest inventory (NFI) data were
utilized to generate a validation dataset. However, a significant concern arises regard-
ing spatial autocorrelation in training and validation data. Mishandling this issue can
lead to overly optimistic estimates of classification accuracies. In Section 2.11, we discuss
the strategies to analyze and address spatial autocorrelation, aiming for independence of
validation samples and thereby improving the reliability and accuracy of our validation
procedures. In Section 2.12, we detail the neural network architecture utilized in this study,
while Section 2.13 provides an overview of the training process for the models. Subse-
quently, in Section 2.14, we explore the validation metrics applied and introduce accuracy
measures specifically tailored for the validation of pure and mixed classes. Furthermore,
we outline the different validation datasets and explain how the validation results are
gathered over multiple training runs. Finally, in the last part of this section (Section 2.15),
we present the training data and model configurations employed in our study. The software
implementation for data analysis, preprocessing, and other methods was carried out using
Python 3.11.5.

Figure 1. Tree species mapping workflow.
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2.1. Study Area

The republic of Austria is a landlocked country in Central Europe situated between
latitudes 46◦ and 49◦N and longitudes 9◦ and 18◦E with a total land area of 83,879 km2.
More than 70% of the country’s federal territory comprises mountains, including sections
of the Central Eastern Alps. The altitude ranges between 114 and 3798 m above sea level.
Austria predominantly lies within the cool/temperate climate zone, with an oceanic type
climate prevailing in the western and northern regions, characterized by humid westerly
winds. In the east, the climate is mostly Pannonian–continental, with low precipitation, hot
summers, and cold winters [45–47]. The study area encompassed the entire forested area of
the federal territory of Austria, accounting for 47.9% of the total land area (according to the
national forest area definition, which differs from the Forest and Agriculture Organization
of the United Nations definition by including other wooded lands). The Austrian forest
is diverse with over 60 tree species. The species mainly occurring are spruce (Picea abies)
41.8%, beech (Fagus sylvatica) 9.5%, larch (Larix decidua) 4.4%, white pine (Pinus sylvestris)
3.4%, fir (Abies alba) 2.2%, mountain pine (Pinus mugo) 2.2%, oak (Quercus) 1.7%, green
alder (Alnus viridis) 0.9%, arolla pine (Pinus cembra) 0.7%, and black pine (Pinus nigra) 0.4%.
According to the specific National Forest inventory (NFI) evaluations, the forest area is
composed of approximately 32% pure stands (where a single species comprises more than
90%), 47% mixed stands, and 21% areas without trees (temporary unstocked forest areas
and shrub areas). The tree coverage is composed of 71% dense (no gaps in the canopy) and
29% sparse canopies.

2.2. Forest Area Map

The Austrian Research Center for Forests, Natural Hazard, and Landscape (BFW)
routinely publishes a vectorized forest area map derived through a semi-automated process
that utilizes aerial photography data, which are sourced from a flight campaign with
updates every three years. The derived forest area map was rasterized and aligned with
the S2 granules.

2.3. S2 Phenology Features

Our study uses an interpolated dense S2 time series with seamless S2 granule transi-
tions as phenology features. S2 is a passive multi-spectral imaging mission with 13 spectral
bands and a revisit frequency of 5 days at the equator. The S2 products are made freely
available via the Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu/,
accessed on 19 July 2024) by the European Space Agency. The time series analysis tool
(TSA) developed by [36] produces a time series for spectral indices (Table 1) on a single
pixel level. The TSA utilizes Level-1C multi annual data and discards areas affected by
snow, clouds, and cloud shadows. Additionally, a threshold-based filter is used to exclude
outliers. The filtered data points, spanning over multiple years, are combined to create a
synthetic single-year phenology dataset. Next, a Savitzky–Golay trajectory [48] is fitted
to this dataset to obtain a smooth modeled main phenology course (MPC) on a single
pixel level.

Table 1. Spectral indices based on S2 bands B2 (490 nm), B3 (560 nm), B4 (665 nm), and B8 (842 nm)
(see [35]) used as phenology features.

Spectral Indices Acronym Formula References

Atmospherically Resistant
Vegetation Index ARVI B8−2∗B4+B2

B8+2∗B4+B2 [49,50]

Band 8 Near Infra-Red BNIR B8
5500 Developed within this study

Dark Area Vegetation
Near Infra-Red DAVNIR B8−B4

B8+B4 ∗ log(B8) ∗ log(B2+B3+B4)
60

Developed within this study

https://dataspace.copernicus.eu/
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Table 1. Cont.

Spectral Indices Acronym Formula References

Green Normalized Difference
Vegetation Index GNDVI B8−B3

B8+B3 [51]

Green Share GREEN_SHARE B3
B2+B3+B4 Developed within this study

Visual Reflectance Absence Index VRAI 1 − B2+B3+B4
7000 Developed within this study

In addition, the vitality and seasonality metrics were extracted from the MPC. Basic
MPC statistics and a percentile transition analysis (PTA) as presented by [52] were used to
derive the descriptive metrics such as greening day of the year (DOY), defoliation DOY, the
vegetation period, maximum/minimum value and the corresponding DOY, and first reach,
last pass, and a set of percentile values.

The MPC and PTA metrics were calculated for the spectral indices ARVI (Atmospher-
ically Resistant Vegetation Index) [49,50] (with γ = 1), BNIR (Band 8 Near Infra-Red),
DAVNIR (Dark Area Vegetation Near Infra-Red), GNDVI (Green Normalized Difference
Vegetation Index) [51], GREEN_SHARE (Green Share), and VRAI (Visual Reflectance
Absence Index) using data from the years 2017–2021 (Table 1). The BNIR, DAVNIR,
GREEN_SHARE, and VRAI indices were developed specifically for this study.

The phenology input features for this study’s classification models included the MPC
between DOY 100 and DOY 270 at a temporal resolution of 5 days for each of the indices
listed in Table 1, as well as the phenological metrics listed in Appendix A Table A1.

2.4. Digital Terrain Model Features

Point clouds from airborne laser scanning (ALS) were filtered to last returns only,
before interpolating them to a DTM of cell size 1 m. The resulting DTM dataset was
provided by the Austrian Federal Ministry of Agriculture, Forestry, Regions and Water
Management (BML). These data were collected in a decentralized manner by individual
federal states during flight campaigns spanning from 2003 to 2018. A slope map, along
with southness (see Equation (1)) and eastness (see Equation (2)) of the slope aspect were
derived from the DTM. These data were resampled to a 10 m resolution, aligned with the
S2 granules, and used as additional input data for this study’s classification models.

southness=:

{
α

180 , 0 ≤ α ≤ 180
360−α

180 , 180<α≤360
(1)

eastness=:


α+90
180 , 0≤α≤90

270−α
180 , 90<α≤270

α−270
180 , 270<α≤360

(2)

2.5. Normalized Digital Surface Model

A digital surface model (DSM) with a spatial resolution of one meter was generated
from the digital aerial imagery via image matching [53] using the ApplicationsMaster 13.1
(now Trimble Inpho) software, in particular the Match-T DSM Commander module, by
Trimble, Inc. (Westminster, CO, USA) [54]. The generated 3D point clouds were subjected
to outlier detection and subsequently used to create raster models by selecting the maximal
value per cell at one meter resolution. Subtracting the DTM from the DSM generated the
normalized digital surface model (NDSM), which contains object heights measured from
the ground level.

The mean, standard deviation, 5-percentile, 95-percentile, and range (maximum–
minimum) of the NDSM were computed on the 10 m S2 resolution. These resulting data
were also used as additional input features for the tree species classification models.
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2.6. Definitions—Feature Stacks and Feature Space

For each S2 pixel in the study area, a concatenation of input features resulted in
a feature stack. These feature stacks (features) consisted of 210 phenology index time
series features, 684 phenology metric features, 4 DTM features, and 5 NDSM features.
Each of these feature stacks can be viewed as a vector in a 903-dimensional vector space,
referred to as the feature space. The component of such a vector corresponding to a specific
feature is referred to as the feature dimension. The statistical distribution of features in the
feature space for a given dataset is referred to as distribution. For instance, the training
data distribution pertains to how the feature stacks are distributed in the feature space,
encompassing all the pixels within the training data.

2.7. Pure, Mixed, and Sparse Classes

Due to the considerable spatial diversity of forests and the 10 m resolution of S2 pixels,
a single pixel may contain the spectral information from multiple tree species [37]. To
address this issue, we introduced the use of mixed classes, which are composites of two
species (e.g., spruce–beech), to improve the classification scheme’s ability to represent the
complexity and spatial variety in the forest.

We included eight pure classes for the most common tree species, namely spruce,
larch, black pine, white pine, mountain pine, beech, oak, and green alder. To account for the
remaining deciduous species, the “other deciduous” class was introduced. Furthermore, the
eleven mixed classes spruce–fir, spruce–larch, spruce–white pine, spruce–arolla pine, larch–
arolla pine, spruce–beech, spruce–deciduous, larch–deciduous, white pine–oak, white
pine–deciduous, and black pine–deciduous and the four sparse classes, spruce sparse, larch
sparse, white pine sparse, and deciduous sparse were added to the classification scheme.
Finally, we included a low vegetation class for vegetation below 4 m in height, resulting in
a total of 25 classes in the classification scheme (see Table 2).

Table 2. Training pixels and areas per class.

Class Number S2 Pixels Area (km2) Number Areas

Spruce 62,066 6.2 391

Spruce–fir 12,590 1.3 98

Spruce–larch 103,181 10.3 341

Spruce–white pine 26,933 2.7 180

Spruce–arolla pine 4129 0.4 55

Spruce–beech 21,918 2.2 201

Spruce–deciduous 27,411 2.7 148

Spruce sparse 7426 0.7 86

Larch 24,193 2.4 237

Larch–arolla pine 16,885 1.7 91

Larch–deciduous 10,269 1.0 102

Larch sparse 11,811 1.2 129

White pine 25,643 2.6 222

White pine–oak 9763 1.0 27

White pine–deciduous 22,315 2.2 113

White pine sparse 8972 0.9 20

Black pine 27,639 2.8 43
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Table 2. Cont.

Class Number S2 Pixels Area (km2) Number Areas

Black pine–deciduous 8537 0.9 48

Mountain pine 8274 0.8 205

Beech 16,729 1.7 115

Oak 31,917 3.2 104

Green alder 1310 0.1 44

Other deciduous 40,052 4.0 138

Deciduous sparse 6895 0.7 63

Low vegetation 31,160 3.1 404

Sum 568,018 56.8 3605

2.8. Training Data Labeling

Labeled training areas were obtained by visually interpreting orthophotos, identify-
ing single-class areas, and marking them with polygons. These areas met the following
quality requirements:

• spatial disjointedness from the NFI validation dataset (see Section 2.10);
• at least 90% target class composition;
• a minimum size of 3000 m2;
• for mixed classes, homogeneous mixing of both tree species;
• for sparse classes, homogeneous mixing of canopy cover and ground-level area.

It is worth mentioning that, in several cases, the NFI-VD was used as a visual baseline
on the orthophotos to identify nearby patches of the same species, introducing spatial
dependency between the training data and the NFI-VD.

The labeled training dataset was obtained by intersecting the labeled training data
areas with the S2 aligned features, resulting in a feature stack for each labeled pixel. Any
pixels containing empty (no-data) values in their feature stack were discarded.

2.9. Synthetic Training Data

Mixed class training areas typically include both pure pixels, containing a single
species (a constituent of the mixed class), and mixed pixels. These pure pixels negatively
impact the pixel label quality, as they are labeled with the mixed class. To address this
issue we applied training data synthesis [55] to all mixed and sparse classes. New synthetic
pixels were created by randomly selecting two pixels from a training area and taking their
mean in every feature dimension. This process was repeated until the original number of
pixels of the area was reached.

2.10. NFI Validation Data

The Austrian NFI conducts a systematic grid-based field inventory campaign on a
six-year cycle gathering data from approximately 22,000 observational plots on about
200 parameters [56]. These observation plots span an area of around 300 m2 (corresponding
to a circle with a radius of 9.77 m) each and are organized into around 5500 clusters. These
clusters are evenly spaced with a distance of 3.89 km in a grid that spans the entire federal
territory of Austria. Each cluster comprises four plots arranged in a square with a side
length of 200 m. The top-level vegetation on each plot is characterized by parameters for
the predominant species, secondary species, and potential admixtures.

To create a labeled NFI validation dataset (NFI-VD) for this study, the plots situated
entirely within the forest area were selected, totaling around 9200. These plots were labeled
based on the predominant and secondary species parameters. Following the tree species
classes defined in this study (Section 2.7), approximately 200 plots that did not fit the
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classification scheme were discarded. Subsequently, the radius of the remaining 9000 plots
was extended to a full 10 m (approx. 314 m2). The resulting dataset was then overlayed
with the 10 m resolution S2 tiles (see [35]; the center of a pixel needed to be within the
circular observation plot), resulting in approximately 27,000 class-labeled pixels.

It should be noted that the NFI top-level vegetation description does not differentiate
between black pine and white pine. Therefore, these two classes were merged into the
“pine” class for NFI validation purposes. Furthermore, the class “low vegetation” was not
present in the NFI-VD-class scheme.

2.11. Investigating and Addressing Autocorrelation in Training and Validation Data

Autocorrelation significantly impacts the thematic map validation due to the similarity
of spatially close points, leading to overestimated predictor accuracies. To address this issue,
in the following sections, we created clustered training data spatial splits and buffered the
NFI validation data, removing training data within the buffered areas.

2.11.1. Clustered Spatial Splits

To mitigate the spatial autocorrelation between the training data and the training data
holdout set, a random clustered spatial split (CSS) strategy ([41]) on training data holdout
sets was employed. The training data were initially organized into clusters, so that for each
class, two distinct clusters were at least a variable split distance apart from each other. For
a spatial split holdout set, clusters were randomly sampled until at least 5 percent of all
training data pixels were added to the holdout set. If the holdout set contained all classes, it
was retained, otherwise it was discarded, and the process was restarted. To gain an insight
into the relationship between the split distance and holdout set accuracy, this iterative
procedure was performed for 10 different random seeds and split distances ranging from
125 to 5000 m, in increments of 125 m.

2.11.2. Buffered NFI Validation Data

To address the autocorrelation between the training data and NFI-VD (see Section 2.8),
a buffering strategy on NFI plots was employed. A direct implementation of this approach,
given the dense grid of NFI plots, would have led to the removal of a substantial amount
of training data. To mitigate this, we opted for a staged approach, as follows:

• The NFI-VD plots were divided into 10 folds, denoted as VF1, . . . , VF10, with classes
almost evenly distributed amongst them. This division was accomplished by first
determining the number of plots ncl for each class cl. For each fold VFi, random
observational plots (not already assigned to another fold) were selected. If the class of
a selected plot cl was not yet represented by more than ncl

10 in VFi, the plot was added
to the fold. Additionally, the other plots from the same NFI cluster (each comprising
four NFI plots) were included in the fold.

• For each NFI-VD fold, training areas contained within any buffered NFI plot from the
respective fold were eliminated. This process yielded 10 sets of training data, denoted
as TD1, . . . , TD10, each corresponding to an NFI validation data fold.

• For each set of training data TDi, a model mTDi was trained.
• Subsequently, each model mTDi was validated using the corresponding NFI validation

data fold VFi.
• Finally, the validation results over all folds were evaluated.

To explore the relationship between the buffer distance and NFI-VD accuracy, split
distances ranging from 250 to 20,000 m with increments of 250 m (from 250 to 5000 m) and
increments of 2500 m (from 7500 to 20,000 m) were chosen. Based on these parameters, two
series of experiments were conducted. The first involved discarding training data based on
buffer distance, as described earlier. In the second series, the discard rate was maintained
at a constant level up to a buffer distance of 15,000 m. This was achieved by discarding
training areas within the current buffer distance individually for each split and class and
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then randomly discarding training areas until the discard percentage for the current split
and class matched the discard rate at 15,000 m buffer.

2.12. Neural Network Architecture

In this sub-section, we draw upon the foundational definitions in neural network
literature, particularly the insights provided by [57], to establish a common understanding
of the key concepts. Our study adopted a hybrid neural network architecture that combined
the ResNet architecture proposed by [44], with downscaled numbers of filter channels for
the convolutional layers, and a multilayer perceptron (MLP). The neural network models
were implemented within the scope of this study using the PyTorch library (version 2.0.1),
particularly the torch.nn module for constructing and training deep learning architectures.

The time series classification ResNet architecture applied in this study consists of
three consecutive blocks each comprising multiple convolutional, normalization, and
activation layers. The convolutional layers scan the time series data within a moving
window extracting temporal patterns. The normalization layers standardize the output of
the convolutional layers, improving training stability. Lastly, the activation layers introduce
non-linearity to the network, enabling it to learn complex (non-linear) relationships within
the data. With each block, a residual connection allows for the direct propagation of data
from the input to the block, to the stage immediately preceding the final activation function
within the block.

Figure 2 depicts the detailed flow of data in this study’s MLP-ResNet hybrid structure.
The phenology time series data for each index are fed into the first ResNet block. Within
each block, one-dimensional convolutional layers are applied with parameters described
as “conv(8 × 1, 6, 16)” where “8 × 1” represents the filter size (8 wide and 1 high),
“6” represents the number of input channels, and “16” represents the number of output
channels. Each convolutional layer is followed by a batch normalization layer with a batch
size of 128 (which is the same for all batch normalization layers), and a ReLU activation
function. After the third block, a pooling layer averages along the time-axis resulting in
32 output features of the ResNet. These 32 output features together with the non-time
series input features are then fed into an MLP consisting of five liner layers (input and
output dimensions given within the brackets), each followed by a batch normalization
layer and a LeakyReLu [58] activation function, except for the very last one, which is trailed
by a softmax layer, resulting in class probabilities.

2.13. Neural Network Training

The training data were divided into 95% training data (~540,000 pixels) and 5% holdout
set validation data (~28,000 pixels). When training models to be validated with NFI-VD, the
holdout set was a simple random sample, otherwise it was selected as a CSS, as described
in Section 2.11.1. Before training and inference, the data were standardized by ( x − µ)/σ,
where x is the feature vector, µ is the vector of feature means, and σ is the vector of feature
standard deviations. Both µ and σ were calculated using forest data of the complete study
area. Following rigorous experimentation to optimize the training parameters, this study
employed the following settings: conducting neural network training over nine epochs,
employing a batch size of 128, and configuring the learning rate to 0.00025 (see [57] for
definitions). During training, the performance of the model was evaluated on a holdout set
to detect any signs of overfitting with respect to the training data. As a training criterion,
the cross-entropy loss was used along with the Adam optimizer [59] and a learning rate
scheduler to reduce the learning rate during loss-plateaus (see [57] for definitions). The
models were trained on a NVIDIA GeForce RTX 3070 Ti (Nvidia Corp., Santa Clara, CA,
USA) with training times ranging from 10 to 30 min. Inferring the models on the complete
study area took about 20 h.
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Figure 2. MLP-ResNet hybrid schematic architecture.
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2.14. Tree Species Map Validation

A multitude of validation metrics were computed to assess the resulting tree species
maps, as follows:

• Overall accuracy (OA) for the NFI-VAL and NFI-weighted OA (NFI-w-OA) during
training (the holdout set OA was weighted by NFI-Class-Distribution).

• Overall misclassification score (OMS) for the NFI-VAL: A score calculated based on the
severity, judged by the phenological similarity, of all misclassifications in the confusion
matrix. A score of 1.00 is the best possible value and means that all predictions are
correct. See Appendix B for details.

• Prediction in close phenological proximity (PCPP) for the NFI-VAL: Predictions where
at least one of the involved classes is correctly predicted. Examples include pixels
predicted as spruce–fir but validated as spruce, pixels predicted as spruce–larch but
validated as larch–arolla pine, pixels predicted as pine–oak but validated as oak, and
pixels predicted as spruce–beech but validated as spruce–deciduous.

• Deciduous and coniferous confusions (DCC) for the NFI-VAL: Confusions between
pure coniferous and pure deciduous classes. Examples include pixels predicted as
larch but validated as oak and pixels predicted as beech but validated as spruce–larch.

• Post hoc pure class overall accuracy (POA), determined by eliminating all non-pure-
class entries from the confusion matrix.

• Post hoc mixed class overall accuracy (MOA), calculated by eliminating all non-mixed-
class entries from the confusion matrix.

• Macro-averaged (each class was weighted equally) F1 score (MAF1).
• F1 scores, producer and user accuracies, and misclassification scores on a class level.
• Confusion matrices for splits as well as aggregated confusion matrices over

multiple splits.

The OA for the NFI validation, as a measure, closely aligns with the NFI-w-OA
observed during training, given that the NFI validation data are a representative sample of
the Austrian forest. In all validation methods, the sparse classes were merged with their
respective base class—spruce-sparse with spruce, for instance.

The classification models were assessed using three different data sources: random
training data holdout sets, CSS (see Section 2.11.1) training data holdout sets, and NFI-VD
(see Section 2.11.2).

2.14.1. Random Holdout Set Validation

The randomly selected pixels from the entire training dataset formed a random training
data holdout set for model validation.

2.14.2. Clustered Spatial Split Validation

To assess a model configuration with CSS training data holdout sets (CSS-VAL),
10 separate CSS were generated. Models were trained and validated in three distinct
runs for each CSS fold. Subsequently, the means and standard deviations of validation
metrics and an aggregated confusion matrix were computed from these 30 validations. See
Section 2.11.1 for details on CSS.

2.14.3. NFI Data Validation

The merging of black and white pine classes (see Section 2.10) as well as the combina-
tion of sparse and base classes (see the beginning of this section) led to an NFI validation
(NFI-VAL) scheme, comprising 19 classes.

To validate a model configuration with NFI-VAL, a model was trained on each of the
10 reduced training datasets, as detailed in Section 2.11.2, the results were aggregated, and
means and standard deviations were calculated.

To address the spatial inaccuracies of NFI-VD as well as the alignment of the S2 data,
nine positional variants were considered for each NFI plot. One variant was centered
precisely at the given coordinates, while for four variants the position was shifted one
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S2 pixel to the north, east, south, and west, respectively. For the remaining four variants,
the position was shifted by one Sentinel-2 pixel in two contiguous directions, resulting
in diagonal shifts. Out of these nine positional variants, the ones with the most pixels
within the forest area were selected, and then the one with the best validation match was
considered for the final validation result.

2.15. Training Data and Model Configurations

In this section, the data and model architecture configurations employed in the follow-
ing results section are delineated. These configurations were selected after an extensive
series of experiments that explored various aspects, including varying features, incorpo-
rating synthetic data, adjusting model capacities, and modifying training and architecture
parameters. From this series, we aim to spotlight the configurations that yielded the most
noteworthy results.

The base model’s configuration encompassed all features outlined in Sections 2.3–2.5. It
integrated the synthetic training data for the mixed and sparse classes (see Section 2.9), and
the model’s architecture is as described in Section 2.12. The training data were standardized
employing means and standard deviations computed from all forest data, and the training
used the parameters detailed in Section 2.13.

The subsequent models utilized the base model’s configuration, with specific varia-
tions as explicitly described (see Table 3 for architecture details), as follows:

• The no_syn model used the raw training data without any synthetic data for mixed or
sparse classes.

• The res_xx_yy_yy models were built with a with xx filters in the first block of the
residual network and yy filters in the second and third blocks. Additionally, the sizes
of the trailing MLP layers were adjusted.

Table 3. Model architecture configurations.

Model Resnet Blocks Filters MLP Layers (in/out Dimensions) Parameters

res_64_128_128 64, 128, 128 821, 410, 205,102, 51, 25 955,324

base 16, 32, 32 725, 362, 181, 90, 45, 25 344,140

res_8_16_16 8, 16, 16 709, 177, 44, 25 143,445

res_8_16_16s 8, 16, 16 709, 70, 25 60,168

no_syn 16, 32, 32 725, 362, 181, 90, 45, 25 383,584

The final map was created by ensembling the 10 NFI fold models. It determined the
predicted class for each pixel based on the majority vote of the models. In case of a tie, the
tiebreaker relied on the sum of classes probabilities (see Section 2.12).

3. Results
3.1. Clustered Spatial Split Distance Analysis

As described in Section 2.11.1, three models were trained for each of the ten spatial
splits, covering split distances ranging from 125 to 5000 m with an increment of 125 m.
Figure 3a illustrates the mean NFI-weighted overall accuracy (NFI-w-OA) and the mean
MAF1 across the spatial split distances. The results reveal a clear decline in accuracies up
to 3000 m, followed by a stabilization around 4000 m, particularly in the macro-averaged
F1 score (MAF1). Figure 3b shows the standard deviations in the holdout set size relative
to training data for the individual classes and splits, demonstrating a clear upward trend
with increasing split distance. This trend indicates that the holdout set share per class and
split becomes increasingly unequal as the split distance grows.
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Figure 3. Analysis of accuracy measures over spatial split distances.

3.2. NFI Validation Buffer Distance Analysis

To analyze the effects of the buffer distance on the NFI-VAL results, two series of
experiments for buffer distances ranging from 0 to 20,000 m with varying increments were
conducted (see Section 2.14.3).

The results of the first series, where the training data discard was determined solely
by the buffers are depicted in Figure 4. Figure 4a shows the accuracy results for overall
accuracy (OA) and MAF1 per buffer distance, while Figure 4b illustrates the amount of
training data discard due to the buffering of the NFI plots per buffer distance. After a small
drop from 0 to 250 m, the accuracy results remain steady until approximately 5000 m buffer
distance, with a training data loss of up to about 30%. From 7500 m onwards, accuracies
start dropping significantly, while the training data discard rises to 95%.

Figure 4. National Forest inventory data validation (NFI-VAL) buffer distance analysis.

The results for the second series, where the amount of training data discarded was
kept constant up to 15,000 m, show steady accuracies until the 10,000 m buffer distance and
a slight drop from 10,000 to 15,000 m. The standard deviations for the accuracy measures
are higher than in the first series. The data for 17,500 and 20,000 m were not affected by
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the method for this second series, and the accuracy values are in accordance with that
(Figure 5).

Figure 5. National Forest inventory data validation (NFI-VAL) buffer distance analysis with training
data discard kept constant up to 15,000 m.

3.3. Models

In this section, we present the validation results of the set of models described in
Section 2.15. During the spatial split and NFI fold training, the configurations mostly
achieved 99% NFI-weighted overall accuracy (NFI-w-OA) and 99% NFI-w-OA on a random
holdout set for NFI fold training. The exceptions were the no_syn, res_8_16_16 models,
which reached 98%, and the res_8_16_16s model with 96%. The results of the clustered
spatial split validation (CSS-VAL) are presented in Table 4.

Table 4. Clustered spatial split validation.

Model Number of Parameters NFI-w-OA [%] ± std MAF1 [%] ± std

base 344,140 73.8 ± 5.4 55.0 ± 3.5

res_64_128_128 955,324 73.3 ± 5.5 55.1 ± 3.4

res_8_16_16 143,445 72.4 ± 5.3 54.3 ± 3.3

res_8_16_16s 60,168 72.0 ± 5.2 54.4 ± 3.4

no_syn 383,584 63.8 ± 6.7 49.8 ± 4.0

The best values for each metric are highlighted in bold.

In the CSS-VAL assessment, the base model outperformed (measured by the NFI-
w-OA) the other models by reaching an NFI-weighted overall accuracy (NFI-w-OA) of
73.8% (±5.4) and a macro-averaged F1 score (MAF1) of 55.0% (±3.5). The integration of the
synthetic training data, as illustrated by comparing the base model with the no_syn model,
leads to a significant enhancement in the classifier accuracy. Specifically, we observed an
increase of 10% in NFI-w-OA and 5.2% in MAF1. Model capacity variations for the base
model exhibited a minor downward trend at the lowest parameter counts. Interestingly,
the parameter reduction had a more pronounced effect on NFI-w-OA compared to MAF1.

The accuracy measures of the NFI-VAL are presented in Table 5.
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Table 5. National Forest inventory data validation (NFI-VAL) accuracy measures.

Model OA [%]
± std

MAF1 [%]
± std

OMS
± std

PCPP [%]
± std

DCC [%]
± std

POA [%]
± std

MOA [%]
± std

base 55.3 ± 1.8 42.0 ± 1.3 1.63 ± 0.04 79.4 ± 1.4 1.5 ± 0.3 90.7 ± 1.3 64.6 ± 4.2

res_8_16_16 55.1 ± 2.1 42.2 ± 1.8 1.66 ± 0.04 79.4 ± 1.4 1.7 ± 0.4 89.7 ± 1.6 62.7 ± 3.8

res_8_16_16s 54.8 ± 1.5 41.5 ± 1.5 1.68 ± 0.01 79.3 ± 1.2 1.7 ± 0.4 89.5 ± 0.9 62.1 ± 2.7

no_syn 47.7 ± 1.1 40.6 ± 1.5 1.84 ± 0.03 81.4 ± 1.1 1.2 ± 0.3 89.8 ± 1.4 58.4 ± 3.2

The best values for each column are highlighted in bold.

In the NFI-VAL assessment, the base model outperformed the other models, achieving
an overall accuracy (OA) of 55.3% (±1.8), MAF1 of 42.0% (±1.3), and an overall misclassifi-
cation score (OMS) of 1.63 (±0.04) (see Section 2.14). The model demonstrated an accuracy
of 79.4% (±1.4) when disregarding confusions in phenological proximity (PCPP), such as
spruce–larch confused with spruce–beech (see Section 2.14) and the confusion percentage
between deciduous and coniferous classes (DCC) was 1.5% (±0.3). Additionally, the post-
hoc pure class overall accuracy (POA) reached 90.7% (±1.4), while the post-hoc mixed class
accuracy (MOA) was 64.6% (±4.2). The confusion matrix and additional accuracy measures
(Appendix A Tables A2–A4) reveal additional noteworthy observations: Within the pure
classes, larch and pine demonstrate lower F1 scores compared to other pure classes, and
mixed classes exhibit lower scores than pure classes.

The integration of synthetic training data, as demonstrated by comparing the base
model with the no_syn model, significantly enhanced the classifier’s predictive power.
Specifically, the OA increased by 7.6%, the MAF1 by 1.4%, the OMS was improved by
0.21 points, the POA by 0.9%, and the MOA by 6.2%. However, it is noteworthy that the
PCPP and the DCC slightly worsened. The reduction in model capacity (res_8_16_16 and
res_8_16_16s) showed a subtle downward trend in the accuracy metrics, predominantly
reflected in the OMS.

The tree species map over the area of the Austrian federal territory is presented in
Figure 6.

Figure 6. Tree species map over the entire forest in the study area.

Figures 7–11 display a color-infrared (CIR) orthophoto, provided by the Austrian
Federal Ministry of Agriculture, Forestry, Regions and Water Management (BML), on the
left, with the tree species map overlaid on top of it on the right.
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Figure 7. Tree species map on an intermediate zoom level.

Figure 8. Tree species map intermediate–close zoom level: predominantly mountain pine, white pine,
spruce, and larch.

Figure 9. Tree species map intermediate–close zoom level: predominantly black pine, black pine–other
deciduous, and beech.
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Figure 10. Tree species map intermediate–close zoom level: predominantly spruce and beech.

Figure 11. Tree species map intermediate–close zoom level: typical mixed forest.

An online-accessible and user-friendly version of the resulting tree species map
from this publication can be found on the Austrian National Forest Inventory’s Home-
page [60]: https://www.waldinventur.at/?x=1486825&y=6059660&z=7.75968&r=0&l=1111
#/map/1/mBaumartenkarte/Bundesland/erg9 (accessed on 25 January 2024). It provides
a simplified and interactive representation of the map, allowing users to easily explore
the data.

4. Discussion

In this study, the classification of tree species was conducted across a large area
spanning 40,178 km2 of forests. By utilizing a dense phenology time series extracted from
freely available Sentinel-2 (S2) imagery, our methodology demonstrates its suitability for
large-scale applications. To align with the scale of this study, a comprehensive training
dataset consisting of about 570,000 S2 pixels (~57 km2), spread across the entire study
area, was collected via orthophoto interpretation. The inclusion of mixed classes in this
study’s classification scheme offers a robust alternative to the approach suggested by [37] to
align training and validation data more closely with real forest conditions. The utilization
of synthetic data resulted in significant improvements in the model’s predictive power.

https://www.waldinventur.at/?x=1486825&y=6059660&z=7.75968&r=0&l=1111#/map/1/mBaumartenkarte/Bundesland/erg9
https://www.waldinventur.at/?x=1486825&y=6059660&z=7.75968&r=0&l=1111#/map/1/mBaumartenkarte/Bundesland/erg9
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The challenge of spatial autocorrelation typically remained inadequately addressed in
large-scale tree species classification. Our study proposes methods to assess the influence
of spatial dependencies specifically from the perspective of map validation. In addition to
employing a clustered spatial split validation (CSS-VAL), we utilize a validation method
based on a ground truth probability sample (NFI-VAL). Through the analysis of national
forest inventory data-based validation (NFI-VAL) results across various buffer distances,
we assert that this validation approach closely approximates the true independence of the
validation data. Comparing different validation approaches emphasized the importance of
accounting for spatial autocorrelation and accurately modeling the complexity of the forest.
The post-hoc pure class accuracy of 91%, given the large study area and the meticulous
validation method, compares well with other studies focusing exclusively on pure classes.

4.1. Mixed Species Classes, Training Data Labeling, and Training Data Synthesis

The significant disparity between the post-hoc pure class accuracy (POA) and the
overall accuracy (OA) in the NFI-VAL underscores the importance of accounting for mixed
species stands in tree species mapping validation, particularly in regions with high forest
diversity. From a training perspective, including mixed species information into the
training data is essential for modeling diverse forest areas. Understanding the interactions
and overlaps between different species within the same spatial context can enhance the
generalization capabilities and predictive performance of the models. However, a major
challenge arises. While it is feasible to label training areas with proportions of large numbers
of different species, the quality of labels at the single-pixel level deteriorates, because
mixtures are typically not spatially homogeneous. We believe that mixed species classes,
consisting of two different species, represent a natural progression in complexity from
considering only pure species stands, which is common in large-scale tree species mapping.

The training data were labeled through an iterative process that took model evaluation
and consistency metrics into account. Additionally, we identified areas of relatively low
probability for the predicted class and sought to locate training areas within these regions
to improve the model’s weak spots. Labeling the mixed data classes presents inherent
difficulties. One main challenge is the reduced separability of different classes in the feature
space, as classes containing the same species are naturally closer together. Furthermore,
when vectorizing training areas, achieving a consistent mixture in every S2 pixel of a
mixed class’s two constituent species can be challenging. To add to that, training areas
that exhibit too much homogeneity reduce the variety in the training data and fail to
represent real forest conditions, resulting in a trade-off between label quality and training
data representativity. In our study, mixed class training areas typically contain both pure
and mixed pixels (i.e., a spruce–beech labeled polygon contains pure spruce, pure beech
pixels, and spruce–beech mixed pixels), and up to 10% species impurity was permitted.
This label inconsistency has a negative impact on class separability; however, synthetic
training data can help to address the issue.

The introduction of synthetic data for mixed classes demonstrated significant increases
in CSS and NFI validation. Intuitively, this improvement can be attributed to the synthe-
sis (averaging of pixels) counteracting the occurrence of pixels containing only a single
(constituent) species (of the target class) in training areas.

Synthetic data in the context of machine learning are not a novel concept; see the
recent survey by [61], to give one example. The synthetic training data approach was based
on the simplified model that describes the spectral signature of multi-species pixels as a
linear combination of the constituents.

4.2. Neural Network Architecture

In a review study by [44], a residual neural network (ResNet) architecture employ-
ing one-dimensional convolutions and specifically designed for time series classification,
emerged as the best performing deep learning approach across various time series classi-
fication tasks. Furthermore, a study by [31] found that a neural network structure based
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on one-dimensional convolutions outperformed other approaches in their tree species
classification study. Our study’s architecture is based on the ResNet architecture presented
in [44] and specifically tailored to address the intricacies of our classification task, accommo-
dating both phenology time series features and non-time series features such as phenology
metrics, DTM, and NDSM. We opted against using spatially aware architectures like U-Net
[43]. Due to our training data’s clustered nature and homogeneity, the data featured more
homogeneous pixel neighborhoods compared to actual forest conditions. Therefore, we
believe the addition of neighborhood relations to the models’ input data would exacerbate
the existing mismatch between the training and real-world data.

4.3. Autocorrelation Analysis

The autocorrelation analysis of the CSS-VAL depicted in Figure 3a reveals an antici-
pated trend: as the split distances increase and the autocorrelation decreases, the decline
in accuracy levels off. Figure 3b highlights a discernible trend of increasing variation in
holdout set ratios relative to training data for individual classes and splits. We believe
this trend is particularly pronounced in classes with fewer training samples and more
spatially concentrated distributions. As the split distance grows, individual clusters ex-
pand, making it increasingly challenging to maintain a consistent holdout set ratio across
multiple splits and classes. The growing variation in holdout set ratio explains the larger
standard deviation in accuracy with growing distances, exhibited in Figure 3a. These
results, particularly those in Figure 3a, suggest quasi-spatial independence within the set
of training data polygons at a split distance of 4000 m.

As the collection of training data was not independent of the NFI-VD, we utilized a
buffered NFI-VAL to examine the spatial dependency. Figure 4 illustrates a slight drop at
250 m, a plateau up to 5000 m, and a decline in accuracies with increasing buffer distances
from 7500 m onwards, especially notable when a substantial portion of training data was
excluded due to the expanded buffer sizes. To further test the spatial autocorrelation
between the training and NFI-VAL data, we initiated an experiment where the discard of
training data was kept constant up to a buffer distance of 15,000 m (see Section 2.11.2),
prompted by the significant drop in accuracies observed when the training data were
discarded. The results in Figure 5 showed stabilized accuracies for up to 10,000 m buffer
distances and slight drops at 12,500 and 15,000 m. Overall, these results provide evidence of
the NFI-VD’s quasi-spatial independence even at relatively small buffer distances, affirming
the suitability of the NFI-VAL as a measure for the model’s predictive power.

It is interesting to note the significant differences in autocorrelation distances between
the CSS and NFI-VAL datasets. We attribute this discrepancy to the differing spatial
distributions: the CSS dataset reflects a sample of the training data’s spatial pattern, whereas
the NFI-VAL dataset represents a systematic probability sample of the entire study area.
The training data have clusters of labeled polygons with varying densities, reflecting
the nature of the training data collection process. These clusters might capture specific
localized patterns and result in stronger spatial dependencies. In contrast, the evenly
distributed NFI-VAL dataset does not exhibit these localized patterns, leading to different
autocorrelation characteristics.

Wadoux et al. [41] highlighted that due to spatial autocorrelation, the accuracy of pre-
dictors for thematic maps, trained on clustered training data, may be overestimated when
validated with randomly selected data from the same training set. Consistent with this
claim, our study demonstrates a substantial decline in accuracy when comparing random
holdout set validation and clustered spatial split validation (CSS-VAL, see Section 4.4).
Our approach for analyzing spatial autocorrelation, based on model validation, seamlessly
incorporates a high number of input dimensions, unlike more traditional methods such
as semi-variograms, and directly quantifies the impact of spatial autocorrelation on the
model’s accuracy. However, it is important to note that these approaches are contingent
upon the characteristics of the data (both input and validation) and the model itself and the
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specific results may not generalize well to different datasets. Therefore, we advise against
directly applying the resulting split and buffer distances to other studies.

4.4. Validation

Our study underscores a well-known principle: the importance of independent and
representative ground reference data in validating tree species maps. This finding is
consistent with results from various studies across different machine learning disciplines,
including [39–41]. While we did not encounter large-scale tree species classification studies
addressing this specific issue, research such as [38] on the classification of dominant leaf
types has identified notable differences in validation outcomes when comparing validation
data from the training distribution with data from an independent distribution, especially
in areas with a high degree of mixture.

Despite its utility, employing NFI-VD presents certain challenges and limitations.
Spatial inaccuracies arising from differences between the geolocation of NFI plots and
S2 images can significantly impact validation results. As reported by [62], the long-term
performance for unrefined S2 products is close to 11 m or better at 95% confidence. Since
the activation of the global refinement in August 2021, the absolute geolocation error
is better than 7.1 m for S2A and 5.6 m for S2B at 95% confidence. Therefore, the data
used in our study, spanning from 2017 to 2021, are mostly affected by an 11 m or better
geolocation error at 95% confidence. Given the small plot areas (two to four S2 pixels), even
a shift by one pixel significantly impacts the validation results. To mitigate this issue, we
implemented a validation with shift variants, which offers greater stability under these
spatial inaccuracies (see Section 2.14.3). Additionally, the classes provided by the NFI-VD
do not entirely align with the classification scheme. Specifically, the white and black pine
classes could not be distinguished in the NFI-VD, and the low vegetation class could only
be assigned in the confusion matrix when it was misclassified. Furthermore, plots labeled as
mixed classes by the NFI-VD may contain single pixels containing only a single constituent
species. These cases are not correctly represented in the NFI-VD, as full plots are being
labeled instead of single pixels. For example, an NFI plot labeled as spruce–beech may
intersect with three S2 pixels, of which two contain spruce and beech while one contains
only spruce. Even if the model correctly predicts the pixel with only spruce as spruce, it is
still considered a misclassification. This discrepancy prompted us to introduce an overall
misclassification score (OMS) and a prediction in close phenological proximity (PCPP)
metric to model the phenological differences and similarities between species, and pure
and mixed classes. These metrics allow for a better interpretation of model performance
and guide development.

4.5. Results and Model Performance

The validation results for the best performing model (base) exhibit a tremendous gap
between the random holdout set validation (99% NFI-weighted overall accuracy (NFI-
w-OA)) and the CSS-VAL (74% NFI-w-OA). We believe this decrease of about 25% can
be attributed to the spatial autocorrelation inherent in the (training) data. To maintain
sufficient label quality on the single S2 pixel level, the training areas were selected to be
homogeneous in species distribution. However, this led to increased pixel similarity within
training areas, especially after training data synthesis. This pixel similarity within training
polygons explains the drop from 99% NFI-w-OA to about 87% NFI-w-OA at a 125 m split
distance, where clusters mainly consist of single polygons. The further decline of 13% to
a 4000 m split distance can be attributed to both the spatial autocorrelation inherent to
the data, independent of training area homogeneity, and the similarity of homogeneous
training areas in spatial proximity. These findings highlight the absolute necessity of
accounting for spatial autocorrelation in tree species map validation, particularly when
working with clustered training data.

The comparison of CSS-VAL NFI-w-OA and NFI-VAL overall accuracy (OA) results
for the base model shows a vast decline of about 20% in OA (given that the NFI-VAL
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is naturally NFI-weighted, these metrics compare well). We attribute this decline to the
feature distribution disparity between the training data and ground truth forests. While
homogeneous polygons provide a feasible way of labeling training data, in diverse forest
situations where individual pixels can differ greatly in close spatial proximity, they fail to
capture real forest complexity. We believe this argument is further supported by the high
post-hoc pure class overall accuracy (POA) of 91% and the higher F1 scores for pure classes
(see Appendix A Table A4), showcasing that in simple forest compositions, the model is
much more capable of generalizing from training to inference data than in situations with
species mixtures.

The overall misclassification score (OMS) provides a valuable tool for comparing the
quality of generated maps, taking the intricacies of mixed class confusions into account.
The base model’s prediction in the close phenological proximity (PCPP) metric result of
79% provides an important context to the OA of 55%. A total of 24% of the confusions occur
in close phenological proximity to the target class when one of the species in the mixed
classes matches, but the other does not. The deciduous coniferous confusions (DCC) of
1.5% remain low, recognizing the significant phenological differences between coniferous
and deciduous species, especially during leafing-out and leaf fall. Table A4 in Appendix A
reveals interesting details on the class level. In F1 scores, pure classes—apart from larch
and pine—clearly and expectedly outperform mixed classes. The misclassification scores
paint a different picture. Here, spruce, spruce–coniferous mixed (except for spruce–arolla
pine, a class with very little training data), mountain pine, and green alder are the best
performing classes. This reflects the results in Appendix A Table A2, where most of the
confusions for the spruce and spruce–coniferous classes happen amongst themselves. Too
little training data for individual classes can negatively impact their performance, as shown
by classes such as spruce–arolla pine and pine–oak. However, when classes are less difficult
to separate, such as mountain pine and green alder (due to their low height), given small
amounts of training data, they can still perform well.

Figures 8–10 showcase diverse age structures and mixtures, predominantly involving
two species in spatial proximity, as identifiable in the CIR orthophoto. The model demon-
strates proficient handling of these scenarios. In Figure 11, a characteristic mixed forest is
depicted, featuring a diverse array of tree species within a confined spatial scale. Further-
more, the presence of sparsely populated regions, where different ground vegetation types
introduce noise to the signal from the actual forest canopy, poses significant challenges for
the model.

The comparison of the base and no_syn model’s results exhibits profound improve-
ments in OA, OMS, and post-hoc mixed class overall accuracy (MOA). The POA was barely
affected, as the pure class training data were not synthesized. The 2% decrease in PCPP is
noteworthy: at the PCPP level, confusions between pure classes and mixed species classes
containing the respective pure class are not considered. The idea behind synthetic training
data was to reduce labeling errors in mixed class training areas when pure species pixels
were present. The PCPP not improving with training data synthesis supports our theory on
mixed class label quality. The slight decrease emphasizes that the homogeneous training
data decrease the models’ generalization capabilities. Overall, the considerable accuracy
improvements resulting from training data synthesis highlight that mixed class label quality
was improved and justify the resulting reduction in training data representativity.

To test for the potential overfitting of our models, we conducted an extensive series
of experiments using models with varying capacities and presented a few key results.
Investigating the results of the complete series, the NFI-VAL and CSS-VAL showed no
signs of overfitting, but rather a slight downward trend in accuracy with decreasing model
capacity, as is reflected by the published results.

5. Conclusions

This study underscores the imperative need to approach real forest complexity in
modeling and validation while accounting for spatial autocorrelation in the validation
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process. Our findings reveal immense disparities between the random training data holdout
set and clustered spatial split validation, highlighting the importance of considering spatial
factors in reliable tree species map evaluation. Additionally, we observed a substantial
decline in accuracy when validating with an independent probability sample and a major
accuracy increase when only pure species classes were considered, emphasizing the need
to account for real forest complexity both in validation and modelling.

In our study, we introduced several innovative methods. We incorporated mixed
species classes into the classification scheme, allowing us to better capture the diversity
of forests on a Sentinel-2 pixel level. We implemented training data synthesis for mixed
species classes, significantly improving accuracy results, and developed validation metrics
tailored to the intricacies of mixed species class validation. Our in-depth analysis of spatial
autocorrelation solidified the independent probability sample-based validation approach,
investigating its susceptibility to spatial biases.

However, this study is not without its limitations. The geolocation accuracy of Sentinel-
2 imagery and NFI plots poses challenges in the evaluation process. Furthermore, the
vectorized training data introduce a trade-off between label quality and data representativ-
ity, reflecting the challenges of accurately modeling real forest conditions.

Tree species classification over large areas presents a multitude of intriguing research
challenges. We believe that many of these challenges can be addressed by leveraging
and adapting methods from deep learning research. With great curiosity, we eagerly look
forward to exploring how these cutting-edge techniques can revolutionize tree species
classification over large areas.
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Appendix A

Table A1. Main phenology course (MPC) statistics.

Name Description

MPC_increm_abs * Increment from one DOY to the next

DEFOLIATION_doy DOY in [245:330] where MPC_increm_abs is minimal

DEFOLIATION_start DOY of last local maximum before DEFOLIATION_doy

DEFOLIATION_end DOY of first local minimum after DEFOLIATION_doy that is
below 25th-MPC-percentile

DEFOLIATION_duration DEFOLIATION_end-DEFOLIATION_start

DEFOLIATION_doy_adj Mean (DEFOLIATION_start, DEFOLIATION_end)

DEFOLIATION_gradient_median Median (MPC_increm_abs[DEFOLIATION_start, DEFOLIATION_end])

DEFOLIATION_gradient_min Min(MPC_increm_abs[245:330])

GREENING_doy DOY in [90:182] where MPC_increm_abs is maximal

GREENING_start DOY of last local minimum before GREENING_doy

GREENING_end First local maximum after GREENING_doy that is above 75th-MPC-percentile

GREENING_doy_adj Mean (GREENING_start, GREENING_end)

GREENING_duration GREENING_end-GREENING_start

GREENING_gradient_median Median(MPC_increm_abs[GREENING_start, GREENING_end])

GREENING_gradient_max Max(MPC_increm_abs[90:182])

DP_max Maximum value from data points

DP_ampl (DP_max-MOD_mean)/MOD_mean * 100

MOD_ALL_nDP Number of data points before outlier filter

MOD_MP_nDP Number of data points used for modelling after filtering and
modelling period adaption

MOD_n_years Number of years for modelling

MOD_max Maximum of MPC

MOD_max_doy DOY of maximum of MPC

MOD_min Minimum of MPC

MOD_min_doy DOY of minimum of MPC

MOD_mean Mean of MPC

MOD_median Median of MPC

MOD_percx x-th percentile of MPC

MOD_range_max_min MOD_max-MOD_min

MOD_range_p75_p25 MOD_perc75-MOD_perc25

MOD_range_p90_p20 MOD_perc90-MOD_perc10

MOD_sd Std (differences (model, data points)) in modeling period

MOD_ampl_max (MOD_max-MOD_mean)/MOD_mean * 100

MOD_ampl_p75 (MOD_per75-MOD_mean)/MOD_mean * 100

MOD_ampl_p90 (MOD_per90-MOD_mean)/MOD_mean * 100

MOD_dp_dev_all_abs Median (diffs(model, data points)) in modeling period

MOD_dp_dev_neg_abs Median (non-positive differences (model, data points)) in modeling period
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Table A1. Cont.

Name Description

MOD_dp_dev_pos_abs Median (non-negative differences (model, data points)) in modeling period

MOD_dp_dev_all_rel Median (differences (model, data points)/MPC values * 100) in modeling period

MOD_dp_dev_neg_rel Median (non-positive differences (model, data points)/MPC values * 100) in
modeling period

MOD_dp_dev_pos_rel Median (non-negative differences (model, data points)/MPC values * 100) in
modeling period

MTC Second biggest number of days above 0.5 perc in a row

MTC_startdoy Start DOY of MTC

PTA_x_firstreach DOY when percentile x is reached for the first time

PTA_x_lastpass DOY when percentile x is passed from above for the last time

PTA_x_n_above Number of MPC values above percentile x

PTA_x_n_transition Number of times MPC values transition above percentile x

PTA_x_value Value of percentile x

PTC Maximum of number of days above 0.65 perc in a row

PTC_startdoy start DOY for PTC

VP_start PTA_0.6_firstreach

VP_end VP_start + LBG

VPL PTA_0.6_lastpass-PTA_0.6_firstreach

VEGPERIOD_length DEFOLIATION_doy-GREENING_doy

VEGPERIOD_length_adj DEFOLIATION_doy_adj-GREENING_doy_adj

VA (Vegetation-Abundance-Index) Mean (MPC values ≥ 0.5 Percentile)

TD (Temporal-Dispersion) (days above 0.75 percentile) * mean (MPC values above 0.75 perc-0.75)

LGB (Length of growing biomass) Number of days where MPC is above threshold
(threshold = (0.95 perc + 0.05 perc)/2

* intermediate results. The “ MOD_percx” statistics were calculated for x in {10, 25, 75, 90}. The “PTA_x” statistics
were calculated for x in {0.05, 0.1, . . ., 0.95}.
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Table A2. Confusion matrix.

Spruce Spruce-
Fir

Spruce-
Larch

Spruce-
Pine

Spruce-
Arolla
Pine

Larch
Larch-
Arolla
Pine

Pine Spruce-
Beech

Spruce-
Other
Deciduous

Larch-
Other
Deciduous

Pine-
Oak

Pine-
Other
Deciduous

Beech Oak Other
Deciduous Mountain Pine Green Alder Low Vegetation

Spruce 8168 613 922 638 45 24 15 47 436 365 16 5 25 29 9 64 3 0 0

Spruce-fir 34 222 14 5 0 0 0 0 18 13 0 0 0 1 0 3 0 0 0

Spruce-larch 362 28 957 22 25 30 47 0 20 25 1 0 0 0 0 4 5 1 0

Spruce-pine 25 8 4 186 0 0 0 2 6 6 0 0 1 0 0 1 0 0 0

Spruce-arolla pine 33 0 13 0 17 0 4 0 2 0 0 0 0 0 0 0 0 0 0

Larch 100 13 176 5 16 208 54 3 44 21 12 1 5 14 2 11 9 6 0

Larch-arolla pine 64 1 60 3 16 7 61 0 0 3 0 0 0 0 0 0 3 1 0

Pine 91 11 52 328 1 5 5 308 26 33 5 21 57 6 5 12 2 0 0

Spruce-beech 180 67 60 46 0 2 0 1 733 108 8 0 9 56 0 33 0 0 0

Spruce-other deciduous 147 78 45 51 0 0 0 6 342 510 23 2 29 115 10 94 1 0 0

Larch-other deciduous 37 7 26 10 0 3 0 0 143 29 41 2 3 71 2 30 2 1 0

Pine-oak 1 0 0 6 0 0 0 5 7 8 0 40 9 0 1 3 0 0 0

Pine-other deciduous 32 9 11 57 0 0 0 28 85 47 10 55 409 45 16 27 0 0 0

Beech 16 4 3 3 0 0 0 0 181 16 34 1 9 1008 26 57 2 0 0

Oak 2 0 1 2 0 0 0 2 19 24 11 21 8 54 375 97 0 0 0

Other deciduous 99 22 40 29 0 6 0 6 325 142 44 33 56 292 84 1457 0 6 0

Mountain pine 19 0 16 2 3 10 7 0 0 2 0 0 0 1 0 0 406 1 0

Green alder 0 0 7 0 0 2 1 0 0 1 1 0 0 1 0 1 2 82 0

Low vegetation 870 94 422 84 22 50 20 12 310 419 21 2 17 106 13 197 24 55 0
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Table A3. Overall accuracy measures.

Accuracy Measure Value

Overall accuracy [%] 55.33 ±1.8

Post-hoc pure class accuracy [%] 90.73 ± 1.3

Post-hoc mixed class accuracy [%] 64.64 ± 4.2

Macro F1 score [%] 42.6 ± 1.3

Overall misclassification score 1.63 ± 0.04

Level 1 misclassifications [%] 69.63

Up to Level 2 misclassifications [%] 79.39

Up to Level 3 misclassifications [%] 84.55

Level 4 misclassifications [%] 3.95

Level 5 misclassifications [%] 1.53

Level 0 misclassifications [%] 9.97
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Table A4. Class accuracy measures.

Spruce Spruce-Fir Spruce-
Larch

Spruce-
Pine

Spruce-
Arolla Pine Larch Larch-

Arolla Pine Pine Spruce-
Beech

Spruce-
Other
Deciduous

Larch-
Other
Deciduous

Pine-
Oak

Pine-Other
Deciduous Beech Oak Other

Deciduous
Mountain
Pine

Green
Alder

Low
Vegetation

F1 scores [%] 75 30 44 22 16 40 28 44 37 32 13 30 56 64 65 62 88 65 0

Misclassification scores 1.30 1.74 1.54 1.67 2.08 2.04 2.41 2.02 2.12 1.97 3.28 2.43 2.00 1.98 2.10 2.06 1.28 1.42

Producer accuracy [%] 79.46 18.86 33.83 12.59 11.72 59.94 28.50 73.33 27.18 28.78 18.06 21.86 64.21 56.03 69.06 69.68 88.45 53.59

User accuracy [%] 71.50 71.61 62.67 77.82 24.64 29.71 27.85 31.82 56.25 35.10 10.07 50.00 49.22 74.12 60.88 55.17 86.94 83.67 0.00

Producer overall misclassification score 1.19 1.98 1.57 2.01 2.14 1.46 2.04 1.65 2.38 1.73 2.84 2.69 1.73 2.24 1.94 1.57 1.16 1.08

Producer Level 1 misclassifications [%] 83.88 70.94 72.64 77.99 42.75 70.6 53.73 73.81 39.86 39.16 32.60 51.91 70.65 56.03 69.06 69.68 88.45 53.59

Producer up to Level 2 misclassifications [%] 87.06 86.32 80.49 90.65 71.03 71.46 77.56 81.67 64.44 70.25 57.71 74.86 88.55 59.14 69.24 76.9 88.45 53.59

Producer up to Level 3 misclassifications [%] 89.73 88.44 82.89 91.33 84.82 82.70 90.18 93.57 73.15 70.70 61.23 77.05 89.96 78.43 89.50 84.31 93.24 57.51

Producer Level 4 misclassifications [%] 0.68 1.36 0.39 0.68 0.00 0.58 0.00 1.67 15.35 5.64 29.52 21.86 7.38 12.84 5.16 1.72 0.65 0.65

Producer Level 5 misclassifications [%] 1.14 2.21 1.80 2.30 0.00 2.31 0.47 1.90 0.00 0.00 0.00 0.00 0.00 2.83 2.95 4.54 0.87 5.88

Producer Level 0 misclassifications [%] 8.46 7.99 14.92 5.69 15.17 14.41 9.35 2.86 11.49 23.65 9.25 1.09 2.67 5.89 2.39 9.42 5.23 35.95

User overall misclassification score 1.42 1.50 1.5 1.34 2.03 2.63 2.78 2.40 1.86 2.21 3.71 2.17 2.26 1.73 2.26 2.54 1.40 1.76 0.00

User Level 1 misclassifications [%] 90.92 82.58 88.34 89.12 72.47 62.57 31.05 65.7 64.54 62.22 17.93 61.25 62.70 74.12 60.88 55.17 86.94 83.67 0.00

User up to Level 2 misclassifications [%] 97.93 98.71 99.34 99.58 100.00 64.28 65.75 73.76 95.93 90.78 32.43 76.25 76.18 87.43 64.29 64.33 86.94 83.67 0.00

User up to Level 3 misclassifications [%] 98.71 98.71 99.67 99.58 100.00 85.14 98.17 91.01 97.23 90.92 68.06 95.00 86.41 93.53 88.8 78.79 99.15 85.71 0.00

User Level 4 misclassifications [%] 0.40 0.00 0.00 0.00 0.00 10.14 1.37 6.61 2.76 9.08 31.94 5.00 13.6 4.41 10.06 13.56 0.43 2.04 0.00

User Level 5 misclassifications [%] 0.89 1.29 0.33 0.42 0 4.71 0.46 2.38 0.00 0.00 0.00 0.00 0.00 2.06 1.14 7.65 0.43 12.24 0.00

User Level 0 misclassifications [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Producer sum 10,280 1177 2829 1477 145 347 214 420 2697 1772 227 183 637 1799 543 2 091 459 153 0

User sum 11,424 310 1527 239 69 700 219 968 1303 1453 407 80 831 1360 616 2 641 467 98 2738
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Appendix B

Misclassification Score

To account for the complexity of class matches in validation introduced by mixed
classes, a set of misclassification levels and a misclassification score were developed. Firstly,
the classes were partitioned into five meta-classes:

• Pure coniferous consisting of spruce, larch, white pine, black pine, and mountain pine.
• Pure deciduous consisting of beech, oak, green alder, and other deciduous.
• Mixed coniferous consisting of spruce–white pine, spruce–larch, spruce–fir, spruce–

arolla pine, and larch-arolla pine.
• Mixed coniferous-deciduous consisting of spruce–beech, spruce–deciduous, white

pine–oak, white pine–deciduous, black pine–deciduous, and larch-deciduous.
• Low vegetation.

Next, seven misclassification levels were established to model misclassification sever-
ity, considering matches and confusions between meta-classes and predicted species. Con-
fusions between meta-classes, excluding low vegetation, were treated more severely than
confusions within meta-classes. The misclassification levels are defined as follows:

• Level 1: An exact match between the predicted and the validated class.
• Level 2: Confusion within mixed coniferous or between pure coniferous and mixed

coniferous, where one species of the predicted class matches the validation. Examples
include predicted spruce–fir but validated as spruce and predicted spruce–larch but
validated as larch-arolla pine.

• Level 3: Confusion between pure coniferous or pure deciduous and mixed coniferous-
deciduous, between mixed coniferous and mixed coniferous-deciduous or within
mixed coniferous-deciduous, where one species of the predicted class matches the
validation. Examples include predicted spruce but validated as spruce–beech, pre-
dicted pine–oak but validated as oak, predicted spruce–white pine but validated as
spruce–deciduous and predicted spruce–beech but validated as spruce–deciduous.

• Level 4: Confusion within pure or mixed coniferous, between pure and mixed conifer-
ous, within pure deciduous, within mixed coniferous-deciduous, where no species
of the predicted class matches the validation. Examples include predicted spruce
but validated as larch, predicted larch-arolla pine but validated as spruce, predicted
larch-arolla pine but validated as spruce–white pine, predicted beech but validated as
oak and predicted spruce–beech but validated as black pine–deciduous.

• Level 5: Confusion between pure or mixed coniferous and mixed coniferous-deciduous
or between pure deciduous and mixed coniferous-deciduous, where no species of the
predicted class matches the validation. Examples include predicted larch-arolla pine
but validated as spruce–oak and predicted oak but validated as spruce–deciduous.

• Level 6: Confusion between pure or mixed coniferous and pure deciduous. Exam-
ples include predicted larch but validated as oak and predicted beech but validated
as spruce–larch.

• Level 0: Confusion between any meta-class and the low vegetation class received
distinct handling because the low vegetation class was not included in the NFI-VD
data. Therefore, only user confusions could be calculated for these cases.

Misclassifications up to Level 3 coincide with the prediction in close phenological
proximity (PCPP) metric defined in Section 2.14. In Level 4, the distinction between
coniferous, deciduous and mixed is still correct. Levels 5 and 6 were considered severe
errors. Specifically, Level 6 corresponds to the deciduous and coniferous confusions (DCC)
metric defined in Section 2.14. To evaluate the performance of the classifiers, each cell in
the confusion matrices was assigned a misclassification level based on the rules previously
described. User and producer misclassification scores were then computed for each class
as a weighted average over the corresponding row and column in the confusion matrix,
respectively. The weights were determined by the misclassification level of each cell.
Finally, an overall misclassification score OMS was computed as a weighted average over
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all gradings and classes, with the weights determined by the number of validation samples
for each class.
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