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Abstract: This paper examines changes in soil physical and chemical properties in relation to tree proximity on different
slopes. Topsoil and subsoil were sampled at 12 research plots on four slope types, the soil pits being placed at the base
of a tree (near tree, NT) and between the test tree and an adjacent tree (between trees, BT). We observed a significant de-
crease in vertical topsoil response to slope on lower, middle and upper slopes, and a decrease in fine roots (R < 2 mm) on flat
ground. Overall, middle and lower slopes showed the highest similarity, and upper slopes and flat ground the least, with the
greatest subsoil changes observed mainly on middle slopes and least on lower slopes. There was clear topographic depend-
ence between subsoil water stable aggregates (WSA) and C dynamics, with BT total carbon (Ctot) higher on flat ground and
lower on middle slopes; unlike topsoil, where the strongest WSA correlation was with distance from the tree. The highest
N:OM (organic matter) ratios occurred on middle slopes facing north-west, and lowest on lower slopes facing north and
flat ground. Our findings confirm the influence of slope type on soil characteristics, with NT soil supporting soil formation
by transporting water to deeper layers, especially on slopes > 5°. These observations contribute to a better understanding
of the dependence of soil properties on slope type and tree position when planning sustainable forest management.

Keywords: forest watershed; hydrological regime; soil chemical properties; soil physical properties; temperate forest;
tree distance

Soil properties are often considered 'finger- chemical weathering, soil acidification and trans-
prints' defining the processes to which the soil has  port of particles and solute, thereby promoting
been subjected, such as large-scale deforestation. soil development processes such as podsolisation,
For example, increased percolation rates increase clay translocation and soil aggregation (Blume
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et al. 2010; Kaiser et al. 2015). Across ecosystems,
these soil processes are linked to slope topography
(i.e. degree of slope), with relative elevation and
slope position corresponding to a wide range of soil
properties, including soil carbon (C) content and
clay content, and basic topographic attributes, such
as slope, aspect and curvature (Krumbach 1959;
Henninger et al. 1976; Robinson, Dean 1993; Nim-
mo, Perkins 2002). Famiglietti et al. (1999), for ex-
ample, showed that flat sites tend to be wetter than
upper slopes due to less intense subsurface drain-
age caused by fewer preferential pathways.

Generally speaking, forest soil processes and prop-
erties tend to be more complex at different spatial
scales than those in fields or grassland. As a result,
forest soils, and especially those close to trees, are
poorly described in the literature and/or their influ-
ence remains controversial, especially in combination
with other habitat factors, such as woody plant spe-
cies composition or their ability to alter the chemical
composition of rainwater, e.g. through stemflow (Le-
via, Frost 2003). While nutrient-rich soil islands near
trees have been described in semi-arid scrubland
(Wood et al. 1988; Koch, Matzner 1993; Whitford
et al. 1997), for example, other studies, particularly
those in temperate forests, have described soils near
trees as nutrient-depleted (Wilke et al. 1993; Kno-
erzer, Gartner 2003) or as areas with concentrated
pollution or acidification (Neite, Runge 1986; Falk-
engren-Grerup 1989; Rampazzo, Blum 1992).

In almost all such studies, tree spacing (i.e. the de-
pendence of soil properties on the distance to tree)
is identified as a potential correlating factor for
forest soil NT properties, particularly in relation
to (i) the differences in soil chemistry with tree posi-
tion (e.g. soil organic carbon and exchangeable cati-
ons; Gersper, Holowaychuk 1971; Wood et al. 1988;
Rampazzo, Blum 1992; Nacke et al. 2016), and
(if) reduced soil water content (SWC) in the near-
stem area due to reduced rain throughfall and higher
water uptake by tree roots compared to open areas
(Rashid et al. 2015; Metzger et al. 2017). The im-
pact of stemflow as a point input of rainwater di-
rectly affects the chemistry and hydrological regime
of N'T soil; however, the area affected by stemflow
varies widely in individual ecosystems, with levels
ranging from 0.03 m? (Ndvar 2011) to 3 m? (Rashid
et al. 2015), an area well outside the horizontal
critical distance from a tree of 0.3—-0.7 m has been
modelled by Metzger et al. (2021). In such cases,
reduced soil water retention near trees contrib-
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utes to more intense drying and rewetting, leading
to improved infiltration and seepage into the subsoil
through preferential flow pathways (Beven, Ger-
mann 1982; Li et al. 2009). In addition, macropores
in soil layers may be associated with living or de-
cayed tree roots, which provide relatively efficient
pathways for conducting water through the layers
(Beven, Germann 1982). Many studies have con-
firmed the important function played by the roots
of plants and trees, especially their role in improv-
ing the stability of aggregates (Rillig et al. 2014; Ver-
gani, Graf 2016; Garcia et al. 2019; Li et al. 2023),
and thus to the elimination of soil erosion (Sun
et al. 2022). For example, Abdi (2014) found that
Oriental beech (Fagus orientalis L.) is a beneficial
'ecological engineering species’, reducing soil loss,
stabilising soil mass on upper slopes and reduc-
ing soil degradation processes (e.g. water erosion;
Sagheb-Talebi, Schiitz 2002), thereby reducing the
chances of landslides (Sedaghatkish et al. 2023).
Thus, the impacts of individual species and their
root systems may be key for soil protection and
hydric functioning. Factors such as increased soil
stability (Greenway 1987) and matric suction in the
root zone (Fatahi et al. 2010) may also be of ecologi-
cal significance.

Here, we undertake a complex assessment of for-
est soils by first assessing the effect of slope type
on soil properties and, secondly, the effect of dis-
tance to tree stem in relation to slope position and
soil depth. In doing so, we aim to provide insights
into the effective power of trees to affect soil and
soil water redistribution in a temperate forest and,
thus, their influence on processes associated with
water storage in the deeper soil layers of the forest-
ed watershed. Our findings will contribute to the
planning of forest cultivation practices on a local
scale and provide support for micro-catchment
managers attempting to prioritise activities to im-
prove soil stability and protection.

MATERIAL AND METHODS

Studyarea.Thestudyareawassituatedintheupland
watershed area of the Ziluvecky’r stream, close to the
town of Babice nad Svitavou in the Czech Republic
(49°17'24.4"N, 16°40'29.1"E; Figure 1). The 7.59 ha
area lies at an altitude of 250-450 m a.s.l., has a pre-
vailing N-NW slope of 5-10° (max. slope 39°),
and features a humid continental climate typi-
cal of temperate forests, with a long-term aver-
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Figure 1. (A) Approximate location of the study area within the Czech Republic; (B) an inset showing the basic headwater

area attributes

REA - representative elementary area

age annual temperature and rainfall of 10 °C and
606 mm, respectively (16.8 °C and 427 mm, respec-
tively, during the growing season; temperature data
from the Turany weather station and precipitation
(1991-2020) from the Czech Hydrometeorological
Station in Babice nad Svitavou (CHMI 2023).
Forests in the area are primarily Sessile oak
(Quercus petraea L.), European beech (Fagus sylva-
tica L.), Scots pine (Pinus sylvestris L.), and Euro-
pean hornbeam (Carpinus betulus L.), with average
proportions of 27.4%, 28.5%, 13.8%, and 12.5%, re-
spectively, along with an admixture of European
larch (Larix decidua Mill.), Norway spruce (Picea
abies (L.) Karst.), Small-leaved lime (Tilia cordata
Mill.), European ash (Fraxinus excelsior L.) and sil-
ver fir (Abies alba Mill.). The substrate is primarily
granodiorite with an irregular admixture of Qua-
ternary sediments (loess and loess-like deposits).
The predominant soil types are Leptosols, Cambi-
sols, Stagnosols, and luvic Cambisols. Hyperskel-
etic Leptosol soils alternate with skeletic Cambisols
on upper slopes, while eutric (haplic) Cambisols al-
ternate with gleyic Stagnosols on middle and low-
er slopes, depending on proximity to the stream
source, and skeletic Cambisols alternating with lu-
vic Cambisols at flat sites (IUSS 2014). There are
no obvious signs of soil erosion at any of the sites.
Experimental design. For the purposes of this
study, 12 research plots were established on four
slope types, i.e. upper, middle, lower, and flat.

The plots were initially established using a semiau-
tomatic geographic information system (GIS) analy-
sis of a 2 m x 2 m resolution digital terrain model
(DTM) of the area, with final verification undertak-
en in the field. This DTM can be considered a typical
headwater source-area shape for Czech forested up-
land micro-watersheds. As a first step, the DTM was
divided into the smallest possible hydrologically en-
closed areas (i.e. representative elementary areas,
REAs; Wood et al. 1988), using the hydrology toolset
in ArcGIS v.10.6.1 (ESRI, USA). The ArcGIS 'topo-
graphic position index' tool [Iowa State University,
Geospatial Laboratory for Soil Informatics, USA
(Guisan et al. 1999; Weiss 2001)] was then used
to classify the area into four slope position classes
representing upper (UPPS), middle (MIDS), lower
(LOWS) slopes, and flat (FLATS) sites (Figures 2, 3;
Table 1). A representative forest stand was then cho-
sen for each slope type, and a representative adult
test tree was identified within each stand.

At the beginning of the 2021 vegetative season
(September), two soil pits were established at each
research plot (i.e. 24 in total), one located 0.5 m (crit-
ical distance of the tree-to-soil effect; Metzger 2005)
perpendicularly below the base of the test tree's
trunk (termed near tree, NT) and the other in the
gap between the crowns of the test tree and an adja-
cent tree (termed between tree, BT; Figure 3).

Sampling strategy. Soil sampling, root analy-
sis and SWC probe installation took place over
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Figure 2. (A) Field study sites (1-12), with slope position classes indicated; representative photographs of the slope types:
(B) upper slopes (UPPS, sites 2, 5, 11); (C) middle slopes (MIDS, sites 1, 7, 8); (D) lower slopes (LOWS, sites 6, 9, 10);
(E) flat sites (FLATS, sites 3, 4, 12)

the 2021 vegetative season (September—October). soil (= 30 cm). Topsoil samples were taken at fixed
After removing the upper organic horizon, twosam-  depths of 0-5 cm, 5-10 cm, and 25-30 cm at each
ple sets were then collected from each soil pit, one  slope position, while subsoil samples were taken
representing topsoil (0-30 cm) and the other sub- at fixed depths of 25-30 cm and 55-60 cm, and

3x FLATS
0-5cm, 5-10 cm,

25-30 cm, 55-60 cm
1 hornbeam, 2 oaks 3x UPPS

0-5 cm, 5-10 cm,
25-30 cm
1 beech, 2 oaks

3x MIDS
0-5 cm, 5-10 cm,
25-30 cm, 55-60 cm

= £ - 2 beeches, 1 oak
o '0‘5 i 3x LOWS
g @ L 0-5 cm, 5-10 cm,
' : 25-30 cm, 55-60 cm,
BT 20-36m NT 95100 om
1 beech, 1 hornbeam,
1 oak

Figure 3. Sampling design, with sampling position and slope type illustrated
NT - near tree; BT — between trees; FLATS — flat sites; UPPS — upper slope; MIDS — middle slope; LOWS — lower slope
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Table 1. Characterisation of slopes and mean distances between sampling points and nearest tree

Mean distance

Slope type Slope characterisation Aspect between from NT from BT
NT and BT to nearest to nearest
(m) five trees (m) five trees (m)
UPPS (n =3) upper slope > 10°, top of the hillslope SW 2.0 2.0 3.1
MIDS (n=3)  mean slope > 5°, middle of the hillslope NW 3.6 3.2 4.0
LOWS (n=3) slight slope < 5°, lowest part of the hillslope N 2.6 4.2 3.9
FLATS (n = 3) flat slope < 5°, top of the hillslope - 2.6 2.1 2.7

NT — near tree site; BT — between tree site; UPPS — upper slopes; MIDS — middle slopes; LOWS — lower slopes; FLATS — flat

sites; # — number of repetitions; SW — southwest; NW — northwest; N — north

middle, lower, and flat slopes, with a further sample
at 95-100 cm for LOWS slope sites. Subsoil sam-
ples were not taken at UPPS slope sites as the
soil generally had a maximum depth of 30 cm.
Two soil cores also were obtained from 5-10 cm,
25-30 cm, 55-60 cm, and 95-100 cm for meas-
uring saturated hydraulic conductivity (Ks), and
two disturbed soil samples [1x standard, 1x large
(2-3L)] were taken from 0-5cm, 5-10cm,
25-30 cm, 55-60 cm, and 95-100 cm for analyti-
cal analysis in the laboratory and quantification
of soil coarse fragments, respectively. Before clos-
ing the soil pits, TMS-4 dataloggers (Tomst Ltd.,
Czech Republic; see Wild et al. 2019) were installed
for continuous SWC measurement, the datalogger
probes being set at the same depths as the soil cores,
i.e. 5-10 ¢cm, 25-30 c¢m, 55-60 cm, and 95—-100 cm.

In addition, the walls of each pit were slightly rough-
ened to expose the fine roots (R < 2 mm), after which
a framed plastic sheet was placed against the wall and
any clearly defined fine roots (R < 2 mm) dotted with
a fine marker pen and thicker roots (R > 2 mm)
with a thicker pen (Symonides, Bohm 1979). The pro-
portion of each root type was then estimated for each
sheet, and the number of roots for the total 10 cm soil
layer was estimated (Symonides, Bohm 1979; Archer
et al. 2016). The soil units at each pit were described
according to the world reference base (IUSS 2014),
including a description of H horizon (7/_Ohor) and
A horizon thickness (Ti1_Ahor).

Finally, the average slope and slope exposure
(aspect) were assessed at each site using a com-
pass (Compass For Maps, Version 1.2.9 APK for
Android; 2023) and inclinometer (Bubble Level,
Version 3.31 APK for Android; 2021), and the tree
diameter at breast height (DBH) was measured for
12 trees close to the NT probes.

Laboratory analysis. In the laboratory, the soil
samples were analysed using two basic protocols.
In the first, Ks was determined in the soil cores us-
ing a Permeameter S248 falling head permeability
apparatus (MATEST S.p.A., Italy; determined using
the BS EN ISO 2019 protocol), while for the sec-
ond, the soil was divided into two portions, one for
measuring water stable aggregates (WSA) and the
other for further chemical and physical analysis.
WSA was determined on the 2—-5 mm soil fraction
using a wet sieving apparatus (Eijkelkamp Co. Ltd.,
Netherlands), according to the procedure of Nim-
mo and Perkins (2002). Prior to chemical/physical
analysis, the second soil portion was homogenised,
then air-dried and passed through a 2 mm sieve.
Next, total carbon (Ctot) and total nitrogen (Ntot)
were assessed using a vario MACRO cube elemental
analyser (Elementar, Germany), weight loss-on-ig-
nition determined at 550 °C [sufficiently hot to burn
off organic matter (OM) but not carbonate (CO,™3);
Hoogsteen et al. 2015], and the active soil reaction
(pH:H,0) and soil redox potential (E/) determined
at a sample:water ratio of 1:0.3 v (Husson
et al. 2016). Next, the main soil texture classes (clay
<2 pm, silt 2-50 pm, sand > 50 pm) were determined
using a Mastersizer 3 000 laser diffraction particle
size analyser (Malvern Instruments Ltd, UK), with
sample preparation performed according to Lisa
(2016) while soil water repellence was determined
for each sample using the water drop penetra-
tion test (WDPT), as determined in previous stud-
ies (i.e. Letey 1969; Dekker, Ritsema 1995; Bisdom
et al. 1993; Doerr et al. 2000). Finally, the larger soil
sample was used to quantify coarse soil fragment
content (SF) using the wet sieving method (2—-6 mm,
6—20 mm, 20—-60 mm, 60—200 mm, > 200 mm frac-
tions), according to the Cools and De Vos (2020).
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Data preparation and statistical analysis. Prior
to statistical analysis, the raw TMS datalogger data
were treated as follows: (i) the data were converted
to 'volumetric water content' using TMS 'calibre tool'
software (Robinson, Dean 1993); (ii) average, me-
dian, and delta (difference between maximum and
minimum) SWC were calculated for the 2022 grow-

https://doi.org/10.17221/117/2023-JFS

ing season; (iii) C:N ratios were calculated based
on Ctot and Ntot; and (iv) horizontal textural differ-
entiation in clay (Texdif CLAY) was calculated as the
ratio of clay at 30 cm against clay at 10 cm.

For the purposes of this study, the values obtained
were interpreted in two different ways, i.e. differ-
ences between N'T and BT soil (Tables 1-4) and the

Table 2. Topsoil parameters in relation to slope type for near-tree (NT) sites, shown as +/— difference A with between

tree (BT) sites

TOPSOIL UPPS MIDS LOWS FLATS
Parameter mean A mean A mean A mean A
NT NT NT NT
Th_Ohor? (mm) 40.00 + 3.33 56.67 - 10.00* 70.00 - 3.33 2833 - 1.67
Th_Ahor? (mm) 86.67 + 3.33 80.00 - 10.00* 100.00 -  46.67* 58.33 - 5.00
Ctot? (%) 498 - 0.04 2.03 + 0.01 3.04 - 0.72* 429 - 0.45
Ntot! (%) 033 - 0.01 0.14 ND 0.00 020 - 0.04* 0.28 - 0.03
C:N? 13.72 + 1.27 13.93 + 1.03 14.14 + 0.03 1449 - 0.97
OM* (%) 9.62 - 0.29 4.71 + 0.11 6.81 - 1.63* 846 - 0.47
C:0M? 3.51 - 0.64 3.29 + 1.20 3.03 + 0.07 2.79 - 0.05
N:OM? 92.82 - 26.89 78.51 + 123.97 46.06 + 12.25 4195 - 8.47
pH:H,0! 546 - 0.05 5.27 + 0.05 525 - 0.01 557 - 0.11
Eh' (uS'm™) 359.89 + 1.44 381.11 - 2.56 369.33 + 4.11 362.67 - 1.00
CLAY (%) 491 - 0.71 4.14  + 0.36 4.55 + 1.86 438 - 0.04
SILT' (%) 4595 + 3.71 53.03 - 1.68 56.53 - 0.66 5524 - 0.25
SAND! (%) 49.14 - 2.99 42.83 + 1.32 38.93 + 2.52 40.38 + 0.30
Texdif CLAY! 1.77 + 1.01 1.04 + 0.23 1.11 + 0.31 VA 0.82
Ks? (cm-s™) 5.08E-03 + 1.53E-04 1.07E-03 + 3.55E-04 6.09E-04 + 5.22E-06 3.63E-03 + 2.89E-04
WDPT? 1.59 - 0.17 1.11 - 0.11 1.30 - 0.17 1.54 - 0.13
WSA® (%) 86.58 - 7.85% 81.59 - 6.97 70.76 - 2.28 8358 - 0.31
SF2-62 (%) 1248 + 0.04 16.97 - 0.87 8.64 — 1.10 1510 + 0.81
SF6-202 (%) 7.34 - 0.03 355 - 0.49 332 - 0.14 4.65 + 1.62
SF20-60? (%) 1554 - 6.50% 047 - 0.21 1.64 - 0.98 192 - 0.48
SF60—-2007 (%) 18.27 + 3.78 0.00 ND 0.00 0.00 ND 0.00 0.00 ND 0.00
SFtot! (%) 53.63 - 2.71 2099 - 1.57 13.60 - 2.22 21.67 + 291
SWC-med? (cm?.cm™3) 0.31 ND 0.00 0.28 + 0.03 035 - 0.02 0.27 + 0.01
SWC-avr? (cm®cm™3) 0.30 + 0.02 0.27 + 0.04* 035 - 0.03 0.27 + 0.01
SWC-delta' (cm®cm™3) 030 - 0.05* 024 - 0.02 022 - 0.02 0.29 - 0.03
R <2 mm? (pcsm™2) 95.00 + 15.93 7889 - 20.56 96.85 - 23.70 13944 - 26.67*
R>2mm? (pcsm™2) 648 - 2.78 1259 - 7.22% 1722 - 1241% 537 - 1.48

! Parametric paired ¢-test; 2non-parametric Wilcoxon signed-rank test; * P < 0.05; ND — no difference; UPPS — upper slopes;
MIDS — middle slopes; LOWS — lower slopes; FLATS — flat sites; NT — near-tree site; 74_Ohor — H horizon thickness;
Th_Ahor — A horizon thickness; Ctot — total carbon; Ntot — total nitrogen; OM — organic matter; Ei — soil redox potential;
CLAY - content of clay; SILT — content of silt; SAND — content of sand; Texdif CLAY — horizontal textural differentia-
tion in clay; Ks — saturated hydraulic conductivity; WDPT — water drop penetration test; WSA — water stable aggregates;

SF2—-6 — soil fragment content 2—6 mm; SF6—20 — soil fragment content 6—20 mm; SF20-60 — soil fragment content
20-60 mm; SF60—200 — soil fragment content 60—200 mm; SFtot — total soil fragment content; SWC-med — median soil

water content; SWC-avr — average soil water content; SWC-delta — delta soil water content; R — roots
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Table 3. Subsoil parameters in relation to slope type for near-tree (NT) sites, shown as +/— difference A with between
tree (BT) sites

SUBSOIL UPPS MIDS LOWS FLATS
Parameter mean A mean A mean A

NT NT NT
Ctot? (%) NA 0.34 - 0.12% 0.34 - 0.02 0.40 + 0.05
Ntzot! (%) NA 0.03 - 0.01 0.04 ND 0.00 0.04 + 0.01
C:N? NA 11.48 + 0.30 9.29 + 0.59 12.01 - 2.38
OM* (%) NA 2.07 + 0.35 2.06 + 0.07 2.30 + 0.12
c:0M? NA 7.44 + 5.88% 6.92 + 1.18 6.95 - 0.12
N:0M? NA 320.80 + 552.73* 215.00 + 133.01 325.78 - 119.12*%
pH:H,0O! NA 6.14 + 0.20 6.42 + 0.05 6.19 - 0.12
Eh' (uS'm™1) NA 404.83 + 14.50 381.89 - 14.33 410.33 - 3.67
CLAY! (%) NA 2.84 - 0.11 341 - 0.14 3.56 - 0.12
SILT* (%) NA 35.79 - 0.63 42.55 - 3.83 37.00 + 4.47
SAND (%) NA 61.37 + 0.73 54.04 + 3.97 59.44 - 4.36
Texdif CLAY?! NA 0.67 - 0.14 0.76 - 0.28* 0.64 - 0.01
Ks? (cm-s7t) NA 1.21E-03 - 4.46E-04  4.48E-04 - 3.02E-04 4.66E-03 - 7.13E-04
WDPT? NA 1.00 ND 0.00 1.00 ND 0.00 1.00 ND 0.00
WSA® (%) NA 66.77 - 5.87 49.03 + 1.98 76.48 - 0.38
SF2-62 (%) NA 22.16 + 0.78 12.77 + 291 22.55 + 1.99
SF6-20? (%) NA 3.79 - 0.54 4.18 + 0.66 7.20 - 0.14
SF20-60? (%) NA 0.10 - 0.04 1.64 - 0.54 2.66 - 0.55
SF60-20? (%) NA 0.00 ND 0.00 0.57 - 0.57 2.50 - 2.50
SFtot' (%) NA 26.04 + 0.27 19.15 + 2.45 34.91 - 1.20
SWC-med? (cm®cm™) NA 0.27 + 0.04* 0.36 - 0.02 0.28 + 0.02
SWC-avr? (cm®cm™) NA 0.26 + 0.04* 0.36 - 0.03 0.28 + 0.02
SWC-delta' (cm3.cm3) NA 0.18 - 0.04 0.14 - 0.01 0.19 0.00
R <2 mm? (pcssm~2) NA 30.56 - 13.89% 22.04 - 5.56 73.06 - 30.00*
R>2mm? (pcs:m2) NA 1.11 + 0.28 2.78 - 0.74 3.06 + 2.78

! Parametric paired ¢-test; 2non-parametric Wilcoxon signed-rank test; * P < 0.05; ND — no difference; UPPS — upper slopes;
MIDS — middle slopes; LOWS — lower slopes; FLATS — flat sites; NT — near-tree site; NA — data not available; Ctot — total
carbon; Ntot — total nitrogen; OM — organic matter; E/ — soil redox potential; CLAY — content of clay; SILT — content of silt;
SAND - content of sand; Texdif CLAY — horizontal textural differentiation in clay; Ks — saturated hydraulic conductivity;
WDPT — water drop penetration test; WSA — water stable aggregates; SF2—6 — soil fragment content 2—6 mm; SF6—20 — soil
fragment content 6-20 mm; SF20-60 — soil fragment content 20—-60 mm; SF60—200 — soil fragment content 60—200 mm;
SFtot — total soil fragment content; SWC-med — median soil water content; SWC-avr — average soil water content; SWC-delta
— delta soil water content; R — roots

influence of tree position on soil response to slope
type. For clarity, the topsoil and subsoil values are
presented separately as correlation networks for
NT topography, vegetation and soil parameters
(Figures 3A, 4A) and differences (delta) between
NT and BT (Figures 3B, 4B).

The data were statistically processed using
the TIBCO Statistica™ software package (Ver-
sion 14.0.1,2022) and the R statistical software pack-

age (Version 4.2.1 GUI 1.79 High Sierra build, 2022)
and RStudio [Version 2022.07.2 +576, 2022 (Michal-
zik et al. 2016; R Core Team 2017)]. The datasets for
topsoil (0-30 cm; # = 72) and subsoil (30-100 cm;
n = 42) were processed separately. All tests were
preceded by the Shapiro-Wilk test to establish nor-
mality, following which the parametric paired sam-
ple ¢-test or non-parametric Wilcoxon paired ¢-test
was used to compare paired values (NT x BT). Fol-
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Table 4. Effect of slope type on near-tree (NT) topsoil (TOP) and subsoil (SUB) properties (A)

NT UPPS MIDS LOWS FLATS
median median median median median median median median

Parameter

TOP SUB TOP SUB TOP SUB TOP SUB
Th_Ohor (mm) 50.00% NA 60.00 NA 60.00P NA 30.00° NA
Th_Ahor (mm) 70.00%® NA 80.00%° NA 110.00* NA 50.00° NA
Ctot (%) 2.70 NA 1.36 0.26 2.18 0.28 1.79 0.36
Ntot (%) 0.20 NA 0.09 _a 0.16 _b 0.12 _b
C:N 14.93 NA 13.89 10.75 14.46 7.20 14.92 12.20
OM (%) - NA - - - - - -
C:0OM 2.03 NA 2.57 - 2.43 - 2.78 -
N:OM 10.55 NA 27.93 325.69 15.20 153.27 23.13 176.24
pH:H,0 - NA - - - - - -
Eh (uS'm™) - NA - -2 - —b - —a
CLAY (%) - NA - - - - - -
SILT (%) - NA - - - - - -
SAND (%) - NA - - - - - -
Texdif CLAY 1.13 NA 1.09 - 1.14 - 1.48 -
Ks (cm-s™!) - NA - 8.44E-05 - 2.99E-04 - 4.55E-03
WDPT 1.00 NA 1.00 1.00 1.00 1.00 1.00 1.00
WSA (%) 94.19* NA 87.10%° —ab 71.01° b 86.78 -2
SF2-6 (%) - NA - 19.72 - 10.32 - 27.74
SF6-20 (%) 8.25 NA 2.97 3.74 0.84 0.84 5.99 7.57
SF20-60 (%) 23.08 NA 0.00 0.00 0.00 0.00 1.48 1.76
SF60-200 (%) 20.79 NA 0.00 0.00 0.00 0.00 0.00 0.00
SFtot (%) -2 NA —b - —b - —b -
SWC-med (cm?.cm™3) -2 NA —ab 0.26 —ab 0.37 —b 0.27
SWC-avr (cm®cm™3) —abe NA —a 0.26 —< 0.38 —ab 0.26
SWC-delta (cm3cm™3) - NA - - - - - -
R <2 mm (pcsm™2) - NA - - - - - -
R >2 mm (pcssm™2) - NA - 0.00 - 0.00 - 0.00

Parametric ANOVA and non-parametric Kruskal-Wallis tests followed by multiple comparison tests; *significantly higher than
b, @ or 2 (P < 0.05); " non-significant difference between * and ®, or ¢, ® and ¢ UPPS — upper slopes; MIDS — middle slopes;
LOWS — lower slopes; FLATS — flat sites; TOP — topsoil ; SUB — subsoil; NA — data not available; '-' — mean topsoil and subsoil
values (see Tables 1 and 2); T/ Ohor — H horizon thickness; Th_Ahor — A horizon thickness; Ctot — total carbon; Ntot — total
nitrogen; OM — organic matter; £/ — soil redox potential; CLAY — content of clay; SILT — content of silt; SAND — content of sand;
Texdif CLAY — horizontal textural differentiation in clay; Ks — saturated hydraulic conductivity; WDPT — water drop penetra-
tion test; WSA — water stable aggregates; SF2—6 — soil fragment content 2—6 mm; SF6—20 — soil fragment content 6—20 mm;
SF20-60 — soil fragment content 20—60 mm; SF60—200 — soil fragment content 60—200 mm; SFtot — total soil fragment content;
SWC-med — median soil water content; SWC-avr — average soil water content; SWC-delta — delta soil water content; R — roots

low-up ANOVA [followed by Tukey's Honestly Sig-
nificant Difference (HSD) test] or Kruskal-Wallis
tests were consistent with comparisons of unpaired
NT soil properties and deltas (differences between
paired NT and BT values) of soil properties af-
fected by slope position. The 'cor' function in 'stats'
package (Version 4.2.1; Michalzik et al. 2016) was
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used to express NT soil dependence and delta
of soil properties. Spearman's rank correlation co-
efficient was used to establish correlations and the
'qgraph’ package (Version 1.9; Epskam et al. 2012)
was then used to visualise the resulting correlation
networks. All analyses were performed at a signifi-
cance level of P < 0.05.
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Figure 4. Correlation matrices for (A) near tree (NT) topography, vegetation and topsoil properties; and (B) the difference

between NT and between tree (BT) topsoil properties (delta)

Red lines — negative correlations; green lines — positive correlations (correlation strength represented by line thickness and distance

between properties; significant correlations at P < 0.05); ASPECT —

slope orientation; CLAY — content of clay; Ctot — total carbon;

DEPTH - soil sampling depth; DBH — diameter at breast height; E/ — soil redox potential; Ks — saturated hydraulic conductivity; Ntot
— total nitrogen; OM — organic matter; R — roots; SAND — content of sand; SF20—60 — soil fragment content 20—60 mm; SF2—6 — soil
fragment content 2—6 mm; SF60—200 — soil fragment content 60—200 mm; SF6-20 — soil fragment content 6-20 mm; SFtot — total

soil fragment content; SILT - content of silt; SLOPE — slope inclination; SWC-avr — average soil water content; SWC-delta — delta soil

water content; SWC-med — median soil water content; Texdif CLAY — horizontal textural differentiation in clay; 74_Ahor — A horizon

thickness; Th_Ohor — H horizon thickness; WDPT — water drop penetration test; WSA — water stable aggregates

RESULTS

Near tree soil properties in relation to slope
type. Our results confirmed significant delta dif-
ferences (P < 0.05) between BT and NT soils with

slope type. In NT topsoil (Table 2), there was
a significant decrease in fine roots (R < 2 mm)
at flat sites; a significant decrease in thicker roots
(R > 2 mm), Th_Ohor, Ctot, Ntot, and OM on lower
slopes; a significant decrease in Th_Ohor, Th_Ahor,
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SWC-avr, and thicker roots (R > 2 mm), and a sig-
nificant increase in SWC-avr, on middle slopes;
and a significant decrease in WSA, SF20-60, and
SWC-delta on upper slopes.

In subsoil (Table 3), there was a significant de-
crease in NT N: OM and fine roots (R < 2 mm) at flat
sites; a significant decrease in Texdif CLAY on low-
er slopes; and a significant decrease in Ctot and fine
roots (R <2 mm),andasignificantincreasein C: OM,

https://doi.org/10.17221/117/2023-JFS

N:OM, SWC-med, and SWC-avr, on middle slopes
(data unavailable for upper slopes). Pairwise com-
parisons of NT topsoil/subsoil parameters (Table 4)
also confirmed significant changes (P < 0.05), with
significantly higher Th_Ahor on lower topsoil and
WSA on upper topsoil, and significantly lower Ntot
on middle topsoil and 74_Ohor on flat topsoil.

An examination of the differences between N'T and
BT soils as affected by slope type (Table 5) indicated

Table 5. Effect of slope type on between-tree (BT) topsoil (TOP) and subsoil (SUB) properties (A)

A UPPS MIDS LOWS FLATS
median median median median median median median median

Parameter

TOP SUB TOP SUB TOP SUB TOP SUB
Th_Ohor (mm) 0.00 NA -10.00 NA 0.00 NA 0.00 NA
Th_Ahor (mm) 0.00?* NA -10.00? NA —40.00P NA -10.002 NA
Ctot (%) -0.41 NA -0.20 -2 -0.25 —ab +0.08 —b
Ntot (%) - NA - -0.01 - 0.00 - +0.01
C:N +0.03 NA -0.34 - -0.52 - -0.06 -
OM (%) - NA - +0.37 - +0.11 - +0.12
C:0OM -2 NA —b +3.71 —ab +0.44 —ab -0.49
N:OM -0.14 NA +29.88 +278.842 +6.00 +28.50% -4.88 -23.67°
pH:H,0 - NA - - - - - -
Eh (pS'm™1) - NA - - - - - -
CLAY (%) -0.29 NA -0.09 - +1.10 - -0.17 -
SILT (%) - NA - - - - - -
SAND (%) — NA - - — — - -
Texdif CLAY -0.04 NA +0.09 -0.04 +0.10 -0.17 -0.16 +0.01
Ks (cm-s™1) - NA - +8.12E-05 - —2.14E-04 - —2.39E-04
WDPT 0.00 NA 0.00 0.00 0.00 0.00 0.00 0.00
WSA (%) - NA - - - - - -
SF2-6 (%) - NA - - - - - -
SF6-20 (%) -0.33 NA -0.78 -0.37 -0.11 +0.86 +0.18 -0.53
SF20-60 (%) -2 NA —b 0.00 —b 0.00 —b 0.00
SF60-200 (%) - NA - - - - - -
SFtot (%) - NA - - - - - -
SWC-med (cm3cm?) - NA - - - - - -
SWC-avr (cm®cm™3) - NA - - - —b - —ab
SWC-delta (cm?.cm~3) - NA - - - - - -
R <2 mm (pcsm™2) - NA - —6.67 - 0.00 - -26.67
R >2 mm (pcs-m™2) - NA - 0.00 - 0.00 - 0.00

Parametric ANOVA and non-parametric Kruskal-Wallis tests followed by multiple comparison tests; *significantly higher than
b, 3 or ¢ (P < 0.05); " non-significant difference between * and ®, or ¢, ® and ¢ UPPS - upper slopes; MIDS — middle slopes;
LOWS — lower slopes; FLATS — flat sites; TOP — topsoil ; SUB — subsoil; NA — data not available; '-' — mean topsoil and subsoil
values (see Tables 1 and 2); T_Ohor — H horizon thickness; Th_Ahor — A horizon thickness; Ctot — total carbon; Ntot — total
nitrogen; OM — organic matter; Eh — soil redox potential; CLAY — content of clay; SILT — content of silt; SAND — content of sand;
Texdif CLAY — horizontal textural differentiation in clay; Ks — saturated hydraulic conductivity; WDPT — water drop penetra-
tion test; WSA — water stable aggregates; SF2—6 — soil fragment content 2—6 mm; SF6—20 — soil fragment content 6—20 mm;
SF20-60 — soil fragment content 20—60 mm; SF60—200 — soil fragment content 60—200 mm; SFtot — total soil fragment content;

SWC-med — median soil water content; SWC-avr — average soil water content; SWC-delta — delta soil water content; R — roots
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a significant increase in C: OM in BT middle slope
subsoil, and a significant decrease in Ctot in BT up-
per slope topsoil. The C: OM shift on upper slopes
was most apparent at SF20—60 mm, with significant-
ly higher levels in NT upper slope topsoil. Pairwise
comparisons of BT soil parameters (Table 5) also re-
vealed significant differences, with significantly low-

er Th_Ahor on lower slopes, and higher Ctot in flat
site subsoil and lower Ctot on middle slopes.

Near tree/between trees soil properties — Cor-
relation networks. Patterns in the NT soil network
structure tended to be more robust in topsoil (Fig-
ure 4A) than in subsoil (Figure 5A). In topsoil, for
example, soil properties linked to OM content were

A
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Figure 5. Correlation matrices for (A) near tree (NT) topography, vegetation and subsoil properties; and (B) the differ-
ence between NT and between tree (BT) subsoil properties (delta)

Red lines — negative correlations; green lines — positive correlations (correlation strength represented by line thickness and distance
between properties; significant correlations at P < 0.05); ASPECT - slope orientation; CLAY — content of clay; Ctot — total carbon;
DEPTH - soil sampling depth; DBH — diameter at breast height; E/ — soil redox potential; Ks — saturated hydraulic conductivity; Ntot
— total nitrogen; OM — organic matter; R — roots; SAND — content of sand; SF20-60 — soil fragment content 20—-60 mm; SF2—6 — soil
fragment content 2—6 mm; SF60—200 — soil fragment content 60—200 mm; SF6—20 — soil fragment content 6-20 mm; SFtot — total
soil fragment content; SILT — content of silt; SLOPE — slope inclination; SWC-avr — average soil water content; SWC-delta — delta soil
water content; SWC-med — median soil water content; Texdif CLAY — horizontal textural differentiation in clay; Th_Ahor — A horizon
thickness; Th_Ohor — H horizon thickness; WDPT — water drop penetration test; WSA — water stable aggregates
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noticeably more 'clumped’ than in subsoil. Note,
however, there were additional soil properties
in subsoils defining soil texture, such as the nega-
tive correlations between retention water status,
WSA and C:N. Topsoil soil properties also showed
greater independence from soil depth than sub-
soil, along with a strong dependence between soil
OM, conditional soil properties (WSA) and control
of soil water dynamics (Ks and SWC-delta). The ef-
fect of OM tended to disappear with soil depth
in favour of soil texture and gravel content. In con-
trast, the retention water status was strongly cor-
related with DBH.

Changes in NT/BT topsoil (Figure 4B) showed
a more complex network with looser bonds than
NT/BT subsoil (Figure 5B) and NT topsoil or sub-
soil (Figures 4A, 5A). Patterns related to matrix
structure tended to dominate, especially that as-
sociated with the decrease in OM, followed by soil
texture, both of these also being closely correlated
to DBH and a decrease in coarse roots (R > 2 mm).
Analysis of NT/BT subsoil delta indicated that
some soil properties were independent of other
soil properties (e.g. pH, SWC-delta), or supported
single-bond changes only (e.g. Ek and OM, Ks and
SF20-60). Deviations from these patterns were
indicated by a tighter soil property network char-
acterising individual forms of N (N¢ot and N: OM)
and soil texture. Compared to NT/BT topsoil,
however, connections between soil properties were
an order of magnitude lower.

DISCUSSION

Changes in soil properties with depth. Textural
differences in NT topsoil and subsoil revealed
strong translocation of clay to the subsoil, with
the decline in topsoil clay directly related to DBH.
As such, changes in NT soil properties created 'mi-
crosites' that differed in composition from forest
soils in the surrounding area. Clay translocation
is likely to have occurred following decalcifica-
tion during the soil formation process and will have
been influenced by water flow and macroporosity
(Blume et al. 2010), which was reflected in the top-
soil through the delta of Texdif CLAY, SWC, and
fine roots (R < 2 mm), further indicating that the
microsite process increases with depth (Ludwig
et al. 2005). Soil structure and texture are key fac-
tors affecting the hydraulic properties of soil, espe-
cially pore size and distribution, as confirmed in our
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study by an increase in Ks at NT soil microsites,
indicative of higher macroporosity and the positive
correlation between Ks and WSA stability in sub-
soil (Figure 5B). Similar changes in soil hydrophysi-
cal retention parameters have also been observed
in previous studies, though Wei and Simko (2021)
attributed this to increased NT macroporosity (as
in the present study) while Metzger et al. (2017) at-
tributed it to a reduction in SWC.

As in our own study, which determined
WSA to a subsoil depth of > 30cm, Salomé
et al. (2010) noted important differences between
topsoil and subsoil C dynamics. Further, Hishi (2014)
showed that the distribution of differently sized soil
aggregates contributed significantly to C dynam-
ics in the subsoil, which also aligns with our own
results. Such findings are relatively few and far be-
tween, however, as most previous studies have tend-
ed to focus on topsoil only (e.g. Mikha, Rice 2004),
with WSA in the subsoil being largely ignored. Un-
like topsoil microsites, where WSA was directly de-
pendent on parameters associated with OM, such
as Ntot, Ctot, and C: N, our WSA delta results (Fig-
ure 5B) indicated a stable subsoil WSA framework.
Similar findings were reported by Levia and Frost
(2003), Metzger (2017), and Metzger et al. (2021),
who attributed compatible relationships between
WSA and other soil organic properties with high
organic loads in the stemflow (see also Garten
et al. 1994; Chang, Matzner 2000) or increased ac-
cumulation of leaf fall around the tree trunk (Ger-
sper, Holowaychuk 1971; Zuo et al. 2009).

Finally, the tree itself, through its growth, wind
movement and root decomposition, promotes ag-
gregation in clay soils (Ludwig et al. 2002). As such
aggregates are formed, they will be strongly af-
fected by processes such as freezing and thawing,
which sorts the aggregates within profile horizons,
with possible negative impacts on soil stability.
Oztas and Fayetorbay (2003), for example, found
that soils dominated by aggregates > 2 mm tended
to be less stable after freezing and thawing com-
pared to soils with aggregate sizes of 1-2 mm. Soil
moisture, which is conditioned by soil type, organic
matter and soil texture, will also have an impor-
tant effect, particularly as regards the proportion
of clay and silt, which bind soil particles more
strongly than sand (Kochiieru et al. 2020), a fea-
ture confirmed in our own study. Overall, soils with
a higher proportion of stable aggregates are more
resistant to degradation processes and will have
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a more balanced hydric regime, thus contributing
to the forest stand stability.

Influence of hill slope type on soil proper-
ties. Our results confirmed displacement of soil
water in relation to DBH and root distribution
in both topsoil and subsoil, with part of the flow
required to infiltrate topsoil water being trans-
ported to deeper layers through preferential paths
provided by thicker roots (R > 2 mm), as also not-
ed by previous authors (e.g. Schwirzel et al. 2012;
Metzger et al. 2017). Such changes to the NT dry-
ing and re-humidification regimen will affect soil
aggregation, and thus WSA (Kaiser et al. 2015),
possibly contributing to a shift in the soil micro-
bial community (Rosier et al. 2016). However,
our study showed that the degree of WSA impact
differed in relation to slope type, with the lowest
effect found at FLATS, thereby confirming the im-
portance of slope position on the amount of water
in soil, and particularly subsoil (Glover et al. 1962;
Pressland 1976; Durocher 1990; Garten 1994
Chang, Matzner 2000; Navar 2011; Bialkowski,
Buttle 2015). At the same time, the topographic
dependence of WSA can also be affected by differ-
ences in the tilt of trees from vertical to 'S' shaped
(Schweingruber 1996), the impact of this asymme-
try being confirmed in our study by the SWC-delta
parameter at UPPS sites.

In this study, the positive correlation between
WDPT and Ctot, Ntot and C:N reflects adaptive
root water intake or root redistribution in the soil
matrix resulting in differences in water content
atdifferent depths (Beven, Germann 1982). Further-
more, the observed increase in WSA was positively
correlated with increased OM (see also Boettcher,
Kalisz 1990; Aponte et al. 2013), and thus biological
activity, along with NT C: OM and N: OM (see also
Nacke et al. 2016; Rosier et al. 2016). This increase
in OM was mainly observed in the subsoil, with
no significant effect of distance from the tree, a fea-
ture also reported by Boettcher and Kalisz (1990).
These authors found that while Ctot and Nrtot
was similar under all tree species at 0—5 cm, the
C:N ratio was highest on upper NT slopes. In our
case, the C:N ratio was higher in NT samples
at FLATS, most likely due to a higher proportion
of macropores in the subsoil resulting in increased
water flow to deeper layers through preferential
flow pathways. The proportion of Ctot also tended
to decrease at MIDS and increase at FLATS, as also
recorded for subsoil by Hishi et al. (2014), who re-

corded reduced WSA on more upper slopes. At the
same time, the highest subsoil Eh values were
recorded on LOWS slopes, despite WSA at such
sites being comparable with that at MIDS.

Topographical factors, such as slope aspect and
position, are important determinants of N trans-
formation on a local scale, with N generally being
more abundant at the bottom of upper slopes (Zak
etal. 1986; Garten 1994; Hirobe et al. 1998). Numer-
ous studies have examined the influence of slope
orientation on the productive capacity of forests,
especially when comparing north and south facing
slopes (e.g. Hirobe et al. 1998; Venterea et al. 2003;
Hishi et al. 2014). However, while noting that our
study sites were situated predominantly on north-
westerly to north-easterly facing slopes, it was not
the intention of this study to examine the impact
of slope on forest productivity per se. Nevertheless,
Pastor et al. (1984) and Tateno et al. (2004) noted
an indirect influence of slope position and aspect
on soil N transformation and a direct correlation
between slope position and vegetation with micro-
climatic factors. Furthermore, Hishi et al. (2014)
recorded an increased C:N ratio on lower slopes
when examining mineral horizons in a spruce
stand. In comparison, the subsoil N:OM ratio
in our study was highest on MIDS slopes, which
mainly faced north-west, while N: OM decreased
significantly at LOWS sites, which tended to face
north (and therefore received slightly less sun-
shine), tending to confirm the influence of slope
orientation on soil conditions. This would be es-
pecially true on southerly slopes as these are
characterised by higher temperatures and lower
humidity (Hishi et al. 2014). While there was
a non-significant negative correlation between
NT and BT C:OM and N:OM ratios with 'slope
type' in topsoil, with C: OM decreasing at UPPS,
NT, and BT subsoil SF20-60 mm readings were
significantly higher at UPPS. These observations
help explain the dependence of N transport in the
soil, and especially subsoil, primarily through dif-
ferences in litter quality (e.g. N content, C: N ratio)
between tree species (Pastor et al. 1984) or differ-
ences between allocation gradients between leaf
and root litter (Tateno et al. 2004). Consequently,
the distribution of water (preferential flow) in the
soil environment is influenced by both topogra-
phy (i.e. slope type) and distance from the tree,
which in turn affects the level of biochemical ele-
ments in the soil.
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CONCLUSION

Understanding the effective power of trees, con-
ditioned by different slope types, to redistribute soil
water and influence the soil environment is crucial
for forestry management, whether from a hydro-
logical or a pedological point of view. In this work,
we focused on the impact of tree distance on soil
and soil water properties, and to what extent these
properties differed with soil depth and slope type.
Our results demonstrated that tree proximity
plays a significant role in soil formation process-
es, primarily through the transport of water into
deeper soil layers and through a direct correlation
between DBH and the distribution of topsoil and
subsoil roots, with the degree of effect dependent
on slope type (lowest effect at flat sites). Hydrologi-
cal changes were also confirmed in different topsoil
layers, with a significant decrease in multiple
soil responses on lower, middle and upper slopes,
compared to a decrease in fine roots (R < 2 mm)
only at flat sites. Soil moisture was also positively
correlated with DBH and rooting density nearer
the tree, confirming the important role of tree age
and size on forest hydric functioning.

The importance of topographic factors was also
confirmed by the relationship between WSA and
C dynamics, especially in the subsoil. In BT soils,
these changes were manifested by a decrease in Ctot
at MIDS sites and an increase at FLATS sites. In top-
soil, we observed a strong correlation between
WSA and tree distance, but an even stronger negative
correlation between C:0OM and N:OM and slope,
indicating that tree distance was less significant
than slope type. Soil environment topographic fac-
tors also affected N transport in the subsoil, with the
N:OM ratio being higher at MIDS oriented north-
west, and lower on LOWS sites oriented north.

All these factors confirm the importance of to-
pography and soil aggregate stability as indicators
influencing the distribution of water in the soil
profile, the mobility of biochemical elements in the
soil and the overall stability of the forest stand. Our
findings will help in planning forest cultivation
practices on a local scale, and provide support for
micro-catchment managers attempting to priori-
tise sustainable forest management that improves
and protects soil stability.
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