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Abstract 
Effective management of forest insects and diseases requires detection of abnormal mortality, particularly among a single species, sufficiently 
early to enable effective management. Remote detection of individual trees crowns requires a spatial resolution not available from satellites 
such as Landsat or Sentinel-2. In the United States, there are currently few operational systems capable of effectively and affordably detecting 
and mapping tree mortality over broad landscapes using high-resolution imagery. Here, we introduce the Tree Condition and Analysis Program 
(TreeCAP), an open-source system that uses freely available imagery from the National Agriculture Imagery Program (NAIP) to create maps of 
tree condition (healthy or damaged). We demonstrate the potential applications of TreeCAP in four study sites: (1) beetle-killed pines in California, 
(2) emerald ash borer progression in Wisconsin, (3) hemlock wooly adelgid mortality in Pennsylvania, and (4) drought damage in Texas. We 
achieved an average overall accuracy of 87% across all study sites.

Study Implications:  TreeCAP is a software program, ready for operational use, intended to help manage forest health in the contiguous United 
States at the individual tree level. Using freely available high-resolution NAIP airborne imagery and LiDAR data, TreeCAP maps tree crown 
condition, highlighting areas that may warrant further attention to forest managers. We demonstrate the potential applications of TreeCAP in 
four study sites: (1) beetle-killed pines in California, (2) emerald ash borer progression in Wisconsin, (3) hemlock wooly adelgid mortality in 
Pennsylvania, and (4) drought damage in Texas. We achieved an average overall accuracy of 87% across all study sites.
Keywords: TreeCAP, NAIP, LiDAR, TCH, forest health, remote sensing

Detection of abnormal mortality from forest insects and dis-
eases is important for assessing the impact and trajectory 
of outbreaks and mitigating potential damage. Many of the 
deadliest insects and disease are species-specific, meaning that 
the ability to detect mortality in individual tree crowns in a 
mixed forest is important. Aerial detection surveys have been 
used widely to document forest damage over large areas on an 
annual basis, but results are generally limited to understand-
ing and reporting spatiotemporal patterns of forest conditions 
(Potter and Conkling 2017). Satellite-based remote sensing 
detection and mapping efforts have relied heavily on 250 m 
MODIS imagery, 30 m Landsat imagery, or 10 m Sentinel-2 
imagery (Cohen et al. 2010; Housman et al. 2018; Miller et al. 
2009; Norman et al. 2013). However, conditions of individual 
trees within the forest canopy often cannot be discerned at 
these spatial resolutions because the spectral signature of the 
few pixels covering damaged trees are mixed with the spectral 
signatures of the surrounding healthy vegetation. This typical-
ly limits applications of remotely sensed methods using these 
data sources to multi-tree, continuous disturbances (Cohen et 
al. 2017; Houborg and McCabe 2018; Wulder et al. 2008).

A range of methods have emerged that use high-spatial res-
olution imagery to map the condition of tree crowns with 
simple supervised classification. One recent approach, Tree 
Crown Health (TCH), uses imagery from the United States 
Department of Agriculture (USDA) National Aerial Imagery 
Program (NAIP) to evaluate the hue, saturation, and value 
(HSV) color space of training pixels selected over various tree 
crown condition classes (Monahan et al., 2022a). TCH classes 
of tree condition include green, indicating healthy trees; 
red, indicating damaged or morbid trees (foliage, especially 
in conifers, will often take on a reddish hue under extreme 
stress); gray, indicating damaged or dead trees (dead limbs 
will typically appear gray in color); and shadows, cast by the 
trees themselves or arising from topography, which are prob-
lematic in high-resolution imagery regardless of time of day.

The TCH series of equations—using only the red, green, 
and blue bands and tuned for each region—yielded a median 
overall accuracy of 90% and Kappa of 86% within treed 
areas across 122 different state and year combinations. 
However, TCH did not include a component for differenti-
ating treed areas from nontree/bare ground areas (NT/BG), 
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and the variation in TCH accuracies across states and years 
suggest opportunities for alternative models to supplement 
and improve predictions. Here, we address these two needs 
by integrating information on NT/BG areas and providing an 
alternative machine learning model to complement the origi-
nal TCH mathematical HSV model.

We introduce the Tree Condition and Analysis Program 
(TreeCAP), which provides a complementary and potentially 
more accurate machine learning model based on the TCH 
training data. TreeCAP’s novel approach leverages the extreme 
gradient boosting algorithm (XGBoost) to create a single model 
that can be used seamlessly anywhere in the contiguous United 
States to classify NAIP imagery pixels or imagery-derived 
objects. We address the challenge of misclassification of NT/BG 
areas within the canopy by creating tree segments using light 
detection and ranging (LiDAR) data to exclude these areas.

The LiDAR-derived tree segments could enable users to 
track the extent of damage occurring in a particular tree 
species (and/or subsequent recovery) through time when 
combined with TreeCAP’s XGBoost model and additional 
verification data. Although TreeCAP does not attribute a par-
ticular causal agent nor specific tree species being damaged, it 
can provide information regarding spatial patterns, rates, and 
timing of damage at a considerably more detailed and precise 
level than is available through other survey methodologies 
(e.g., aerial detection surveys). These metrics, combined with 
other information on causal agents and host species, could 
aid in the management of outbreaks.

We demonstrate the capability and flexibility of TreeCAP at 
four sites across the United States (figure 1). We show results 
spatially in two forms: (1) TreeCAP’s raster (pixel-based) out-
put, and (2) a vector map (i.e., shapefile) of change detection 

using the LiDAR-derived tree segments. These maps are 
intended to be used by forestry professionals to help manage 
large areas of continuous forests by mapping individual and 
small clusters of trees, highlighting abnormal or unexpected 
levels of damage that may warrant further attention.

With its use of freely available data and efficient computa-
tion, we believe TreeCAP has the potential to become a valu-
able tool to help inform management of forest health in the 
United States. Maps produced by TreeCAP could be used to 
cue continued monitoring and evaluation of potential issues, 
especially in cases where imagery or surveillance is available 
more frequently and with less latency than NAIP. There is 
also potential for the TreeCAP modeling framework to be 
applied to high spatial and temporal resolution spaceborne 
imagery, offering future capabilities for early detection of for-
est insects and diseases. Finally, TreeCAP could be integrated 
into an ensemble framework with other complementary mod-
els, including any future spaceborne models, which may offer 
even more accurate resulting maps by leveraging the strengths 
of multiple models and imagery sources.

Methods
Study Sites
We selected study sites in California, Wisconsin, Pennsylvania, 
and Texas to evaluate TreeCAP over four different combina-
tions of damage causal agents, forest types, and years (Table 
1). The Sawmill Campground area in Angeles National Forest 
in California exhibited widespread tree mortality in pines 
(Pinus spp.) from a combination of drought and bark bee-
tle attack from 2016 through 2020. In the Kettle Moraine 
State Forest in Wisconsin, entire stands of ash trees (Fraxinus 

Figure 1. Study sites located in California, Texas, Wisconsin, and Pennsylvania in the USA. Each study site contains a different combination of forest and 
disturbance type.
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spp.) were lost to emerald ash borer (Agrilus planipennis) 
from 2018 through 2020. In Pennsylvania’s Hickory Run 
State Park, hemlock woolly adelgid (Adelges tsugae) caused 
mortality in eastern hemlock (Tsuga canadensis) from 2013 
through 2015. Finally, in Colorado Bend State Park in Texas, 
drought led to extensive mortality in several species, including 
junipers (Juniperus spp.) and oaks (Quercus spp.), from 2010 
through 2016.

Data
TCH Training Dataset and Models
The point data used to create the model in TreeCAP was 
provided by the USDA Forest Service (Forest Service) and is 
the same data used in TCH (Monahan et al., 2022b). These 
points were hand-digitized on NAIP imagery from 2012 to 
2019 across all forty-eight contiguous states. Information 
included for each point are the image date, Bailey’s ecoregion 
(Bailey 1995), coordinate, NAIP band values (red, green, blue, 
and near infrared), and tree condition class at the point. Tree 
class conditions are green (healthy), red (damaged or morbid), 
gray (damaged or dead), or shadow. These four tree condi-
tion classes were used throughout this study. Individuals were 
trained to visually inspect NAIP imagery and select represen-
tative pixels from each of the four crown color classes (green, 
red, gray, and shadow) in which to digitize points. These data 
are available from Monahan et al. (2022a).

In the TCH models, data points were used to solve for four 
model constants, corresponding to each of the four color or 
condition classes. The TCH models included for comparison 
in this study were based on optimal model constants, and 
the damage prediction threshold was omitted (used to help 
mitigate NT/BG areas). Imagery for TCH was masked using 

the same LiDAR-based tree segments used in the TreeCAP 
maps (details below) to offer a direct comparison of model 
performance.

NAIP Imagery
NAIP imagery was downloaded from the USGS Earth 
Explorer archive (USGS 2022a) (Table 2). NAIP is adminis-
tered by the USDA Farm Service Agency (FSA) through the 
Aerial Photography Field Office (APFO). Imagery is resa-
mpled to 0.6–1 m ground sample distance and orthorecti-
fied prior to distribution. Individual images are mosaicked 
together into uniform tiles; as such, more than one flight 
line, with varying geometries, may be present in a single tile 
downloaded by the user. No further processing was done on 
the NAIP imagery in TreeCAP, as our methods were designed 
to account for variable scene characteristics within NAIP 
tiles. Because the TCH training data provided corresponding 
NAIP band values for each point, the NAIP imagery used in 
this study was used solely for projecting the XGBoost model 
(below).

Masking NT/BG Areas Using LiDAR Data
TreeCAP’s raster map output benefits greatly from a NT/BG 
ground mask to reduce false positives by excluding pixels over 
areas that do not represent trees, such as soil, rivers, or roads 
(the spectral signature of these areas often resembles that of 
the red or gray classes). This masking can be accomplished 
using multiple data sets, including freely available land cover 
data and LiDAR data. In this study, we excluded urban areas 
and focused instead on forested areas. Although TreeCAP 
could be used for urban trees with appropriate masking, this 
capability was not investigated here. The TreeCAP software 

Table 1. Characteristics of the four study sites used to test TreeCAP.

Study site Area mapped
(km2)

Location Bailey’s Ecoregion Province (ECOCODE) Primary mortality 
causal agent

Years
mapped

Sawmill Campground in 
Angeles National Forest

3.5 California California Costal Range Open Wood-
land-Shrub-Coniferous Forest-Meadow 
(M262B)

Drought, pine 
beetle

2016, 2018, 2020

Kettle Moraine State 
Forest

14 Wisconsin Eastern Broadleaf Forest—Continental
 (-222K)

Emerald ash 
borer

2018, 2020

Hickory Run State Park 19 Pennsylvania Central Appalachian Broadleaf Forest-Conifer-
ous Forest-Meadow (M221A)

Hemlock woolly 
adelgid

2013, 2015

Colorado Bend State Park 22 Texas Southwest Plateau and Plains Dry Steppe and 
Shrub (-315D)

Drought 2010, 2016, 2020

Table 2. NAIP imagery tile identifiers and dates used for each study site.

Study Site NAIP Tiles NAIP Collection Dates

Sawmill Campground in Angeles National Forest 3411820_NE_11
3411820_NW_11

20160512
20180722
20200501

Kettle Moraine State Forest 4308831_NE_16
4308831_NW_16

20180923
20200830

Hickory Run State Park 4107560_SW_18
4107559_SE_18

20130815/20130623
20150529

Colorado Bend State Park 3109860_SE_14
3109861_SW_14

20100731
20160803
20201011
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was designed to be very flexible with masking inputs and can 
use data in both raster and vector formats, accepting multiple 
files for each as needed.

In this study, we used the National Land Cover Database 
(NLCD) available from the Multi-Resolution Land 
Characteristics Consortium (USGS 2022b). The NLCD is 
derived from Landsat data and is a thematic map of land 
cover types. Although masking with NLCD is more compu-
tationally efficient than processing LiDAR data (described 
below) and preferred for large NT/BG areas, NLCD is sig-
nificantly more spatially coarse (30 m pixels) than LiDAR 
and may exclude areas that users prefer to map. However, 
as LiDAR data may not yet be available in some parts of the 
contiguous United States, NLCD could be used for masking, 
although this is best suited for areas with a mostly contin-
uous canopy. In Hickory Run, we demonstrate how both 
types of masking (NLCD and LiDAR) can be used concur-
rently, with NLCD effectively masking large urban areas, 
roads, and water, and LiDAR masking smaller gaps within 
the canopy.

We used open-source LiDAR data from USGS’s The 
National Map (TNM) (USGS 2022c) to mask NT/BG areas 
within a continuous canopy (i.e., areas too small for the 
NLCD to detect) (Table 3). LiDAR data were used to address 
two challenges, (1) mitigating classification errors due small 
patches of NT/BG areas within forests and (2) annotating 
changes in crown classes through time (addressed in the Using 
LiDAR-derived Tree Segments to Enable Change Detection 
section).

We used tree segmentation methods from the lidR R pack-
age (Roussel et al. 2020) on LiDAR data to create objects rep-
resenting trees or parts of trees (Q. Chen et al. 2006). We first 
located treetops by analyzing the point return heights within 
a moving window (a small square subset of the data; size 
allowed to vary to accommodate trees of different heights) 
across the study area, looking for the maximum height within 
the window. Using the resulting treetop points, the watershed 
method was used to delineate individual trees. This method 
can be thought of as similar to draping a dust cloth over a 
series of chairs in a room; the cloth will conform to the chair 
shapes. A dividing line is assessed based on the shapes of the 
resulting domes. In this simplified analogy, the chair domes 
represent trees. This segmentation method is best suited 
for conifers because deciduous trees are more structurally 
complex.

To our knowledge, there is no LiDAR-based tree segmen-
tation method that performs well across all forest types, 
and most struggle with deciduous stands (Ayrey et al. 2017; 
Jeronimo et al. 2018). Further, LiDAR data are collected at 
nadir, whereas NAIP imagery is generally off-nadir except 
at scene centers, with solar illumination further distorting 
apparent surface reflectance. Consequently, some of the 

resulting LiDAR-derived segments do not line up well with 
NAIP’s spectral data of the same tree(s). Because NAIP 
imagery are delivered as mosaics with multiple flightlines 
per tile (and thus irregular viewing geometries within the 
tile), co-registration of the LiDAR and NAIP is problematic 
because the quality of the registration will vary within the 
tile. Because of these factors, registration was not attempted 
here.

Although in many cases the segmentation method does 
correctly delineate individual trees, particularly conifers, 
our goal was simply to create segments that approximated 
individual trees. Particularly in deciduous forests, this meant 
that some segments may contain small groups of trees (one 
to three small trees, for example). This was still suitable for 

Table 3. LiDAR data used in this study varied in tile area and density among our study sites.

Study Site Area per tile
(km2)

Tiles Used Point Density
(per m2)

Year of Collection

Sawmill Campground in Angeles National Forest 2.5 2 11.51 2018

Kettle Moraine State Forest 1.9 12 4.92 2018

Hickory Run State Park 1 30 8.74 2019

Colorado Bend State Park 2.25 18 4.29 2018

Figure 2. The process of determining a tree segment class after the 
XGBoost model had predicted the class of all pixels contained within 
that segment. The rule for gray and red classes is based on the Forest 
Service’s thresholds for determining polygon damage severity using the 
Digital Mobile Sketch Mapping (DMSM) system.
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our purposes of locating damage at the tree level (discussed 
further in the Using LiDAR-derived Tree Segments to Enable 
Change Detection section), but we do not recommend seg-
ments be used for inventory purposes.

Because the segments conformed to the trees on the land-
scape better than data such as NLCD, they were more use-
ful for excluding pixels in the image that represented NT/BG 
areas. By excluding pixels outside of the resulting LiDAR-
derived tree segments, errors from NT/BG areas were sig-
nificantly reduced as compared with using only NLCD to 
exclude these areas (Tables S1-4, Figures S1-4).

XGBoost Model: Inputs and Parameters
To maximize the potential of the categorical data available 
in the TCH training dataset while also minimizing the com-
putational requirements for prediction, we use XGBoost 
in TreeCAP. XGBoost is a fast, scalable implementation of 
gradient-boosted regression trees, an ensemble machine 
learning classification technique that performs well with 
large, multivariable datasets, (Chen and Guestrin, 2016). 
XGBoost builds decision trees for classification in succes-
sion instead of independently. Each new tree is a result of 
what has been learned from classification errors in pre-
vious trees, producing better results with each successive 
tree (Chen and Guestrin 2016; Friedman 2001; Friedman 
et al. 2008).

Our goal was to create a model that performed well in the 
contiguous United States, was potentially expandable beyond 
this geographical range, and was designed to be testable with 
other image sources. To do this, we used 238,509 points 
from the TCH dataset with the XGBoost algorithm to test 
the predictive power of several vegetation indices (VIs) suit-
able for four-band imagery using only the spectral data from 
the TCH points. We started with a large selection of VIs and 
iteratively eliminated them based on their predictive power. 
We also ensured that VIs known to distinguish shadows well 
were included, regardless of their predictive power, to help 
avoid overfitting the model (Zhang et al. 2015). Our final 
model included six VIs: Renormalized Difference VI (RDVI), 
Enhanced VI (EVI), Optimized Soil Adjusted VI (OSAVI), 
Modified Soil Adjusted VI (MSAVI), Green Leaf Index (GLI), 
and Visible Atmospherically Resistant Index (VARI) (details 

Table 4. The fuzzy accuracy level definitions used to evaluate TreeCAP accuracy (adapted from Gopal and Woodcock, 1994).

Level Evaluation Definition

5 Absolutely Right No doubt about match. Perfect.

4 Good Answer Would be happy to find this answer given the map. Very right. Segments where predict-
ed value and truth value differ in number of underlying pixels by less than 10%. Also, 
segments which were predicted green (healthy) when the truth value was shadow.

3 Reasonable or Acceptable Answer Maybe not the best possible answer, but it is acceptable; this answer does not pose a 
problem to the user if it is seen on the map. Right. Used for segments predicted to be 
red (morbid) when they were gray (dead), and vice versa.

2 Understandable but Wrong Not a good answer. There is something about the segment that makes the answer un-
derstandable, but there is clearly a better answer. This answer would pose a problem 
for user of the map. Not right. Used for all other errors involving shadows.

1 Absolutely Wrong. This answer is absolutely unacceptable. Very wrong. Used for segments predicted to be 
green (healthy) when they were gray (dead) or red (morbid), or vice versa.

0 Non-Tree/Bare Ground Segments which occurred primarily over non-treed or bare ground areas. This error is a 
result of masking and not the classification algorithm.

Table 5. The confusion matrix and accuracy of the XGBoost model used in TreeCAP

n Predicted Producer’s accuracy %

Green Red Gray Shadows

Reference data Green 15665 15056 99 234 614 96

Red 3512 33 3075 169 88 88

Gray 5887 200 256 5092 294 86

Shadows 10612 376 82 392 9616 91

User’s accuracy % 35676 94 91 87 92 92

Figure 3. The ranking of feature, or variable, importance in the XGBoost 
model. Higher F-scores indicate more importance in determining the 
correct class. All vegetation indices are described in Table S6.

http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
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on computation are provided in Table S6). Parameters used 
for XGBoost model development (XGBoost Documentation) 
are provided in Table S5.

Once trained, the XGBoost model was then applied to clas-
sify each pixel within the NAIP images covering our study 
sites. This resulted in a raster output of only five values: 0, 

Figure 4. Sawmill Campground from 2016 to 2020. The first column is the entire study area as modeled by the TreeCAP raster output overlaid on the 
corresponding NAIP imagery. The red box is the 200 m subset area shown in the next two columns. The middle column is the original NAIP imagery 
with a 2% linear stretch applied and the right column is the TreeCAP raster output. Row (a) is 2016, row (b) is 2018, and row (c) is 2020. The drastic 
changes in the red (morbid) and gray (dead) classes (shown in pink and yellow colors, respectively) are due to drought and pine beetle infestation.

http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
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1, 2, 3, and 99, corresponding to shadows, green, red, gray, 
and no data (or masked areas), respectively. Prediction by the 
XGBoost model for each map took less than 5 minutes on 
an individual workstation (computational resources used are 
discussed below). The TreeCAP software has built-in batching 
capability that can be scaled depending on the computational 
power of the operating platform.

Using LiDAR-derived Tree Segments to Enable 
Change Detection
TreeCAP’s methodology makes it possible to investigate 
change in crown condition among years. Solar azimuth and 
view angle variation in NAIP imagery present challenges 
when attempting a pixelwise comparison across years, so 
the LiDAR-derived tree segments (discussed above) provide 
a basis to compare maps of different years. For each seg-
ment, we annotated the best class, based on the underlying 
TreeCAP raster output for each year, as an attribute in the 

shapefile. These classes were determined based on rules that 
mimic those used by the Forest Service in their Digital Mobile 
Sketch Mapping system (USDA Forest Service 2019) and are 
intended to maximize the usability of these maps for forestry 
professionals (figure 2). In particular, segments containing at 
least 30% gray or red pixels were annotated as such (i.e., gray 
or red). If a segment contained pixels from both the gray and 
red class and they collectively represented greater than 30% 
of the total pixels in that segment, that segment was anno-
tated with the class containing more pixels. For example, in 
a segment containing fifteen pixels, with four classified as red 
and six as gray, that segment will be annotated as gray. This 
feature of TreeCAP is particularly useful for quickly locating 
areas of recent damage, morbidity, or mortality on the land-
scape. However, this feature can also be used to map recovery 
(i.e., changes from red or gray to green).

Accuracy Assessment
Accuracy was assessed based on visual interpretation of the 
underlying NAIP imagery. The 0.6–1 m spatial resolution of 
NAIP makes it possible to identify individual trees to make 
assessments of crown condition. We use tree segments instead 
of individual pixels because pixels within all four model 
classes are all on continuous color gradients, and distinguish-
ing among them can at times be extremely difficult for human 
vision and perception (i.e., is that canopy edge pixel more 
shadow or green?) (Erker et al. 2019). In contrast, within a 
segment containing a group of pixels, the appropriate class 
was usually clear to a human analyst.

Using tree segments as opposed to pixels is also a more 
meaningful way to assess the accuracy of the TreeCAP’s out-
put for operational uses. For example, if a tree contains a 
single large gray (damaged) branch covered by only one to 

Figure 5. Changes highlighted by TreeCAP at Sawmill Campground from 2016 to 2020 using the tree segment vector layer to compare changes among 
years. (a) is the difference in tree condition between 2016 and 2018, (b) is the difference between 2018 and 2020, (c) is the difference between 2016 
and 2020, and (d) is the 2020 NAIP imagery with a 2% linear stretch applied. The trend of high mortality (shown in pink and yellow) is extensive by 2018 
and 2020.

Table 6. Quantification of the changes observed between sets of years 
in Sawmill Campground study area in hectares (ha) and percents.

Change between images
ha (% of area mapped)

2016–2018 2018–2020 2016–2020

Change to green 3 (1%) 8 (3%) 4 (2%)

Change to red 4 (2%) 11 (4%) 13 (5%)

Change to gray 15 (6%) 33 (13%) 48 (20%)

Change to shadow 61 (25%) 47 (19%) 31 (12%)

No change 164 (66%) 148 (60%) 151 (61%)
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three pixels but is otherwise healthy, it is unlikely to be of 
concern to a forest manager. However, if that same tree has 
several branches that are damaged and many more pixels are 
classified as red or gray, it may be more concerning, espe-
cially if other similarly damaged trees are nearby. Using a 
segment-based approach means segments are only classified 
as damaged when a significant portion (30% or more) of the 
enclosed pixels are classified as damaged (the visual classi-
fication of each segment followed the same rule set defined 
in figure 2). This reduces “speckle” in the resulting map and 
draws attention to areas more likely to represent significant 
damage.

The accuracy assessments of each map used a random 
sample of fifty segments per class per map. Because the 
green class dominated most maps, a fully random or strati-
fied random sample set would have returned a low number 
of samples for the red and gray classes, when in fact, these 
are the classes of greatest interest to users. In maps with 
classes containing fewer than fifty total segments in a par-
ticular class, the validation sample contained all available 
segments.

In addition to reporting traditional accuracy numbers, we 
also adapted the fuzzy accuracy assessment methods for the-
matic maps described by Gopal and Woodcock (1994). This 

Table 7. The traditional and fuzzy accuracy data for the Sawmill Campground study site, 2016, 2018, and 2020. The left column provides accuracy values 
if masking errors (segments that were over nontree/bare ground areas) are excluded. The right column includes these errors. Producer’s accuracy only 
assesses performance on the segments known to belong to these respective classes (i.e., it is the same for both columns because masking errors are 
already excluded in producer’s accuracy). Masking errors often disproportionally affected the red class due to the scarcity of these segments and our 
sampling scheme.

Model accuracy
(excluding masking errors)

Model + masking accuracy
(including masking errors)

n Traditional 
(%)

Fuzzy
(%)

n Traditional (%) Fuzzy
(%)

2016

User’s Accuracy Green 50 42 (84) 50 (100) 50 42 (84) 50 (100)

Red 20 15 (75) 19 (95) 50 15 (30) 19 (38)

Gray 47 46 (98) 47 (100) 50 46 (92) 47 (94)

Shadow 50 44 (88) 47 (94) 50 44 (88) 47 (94)

Producer’s Accuracy Green 46 42 (91) 46 (100) Does not change.
(33 segments are masking errors)Red 15 15 (100) 15 (100)

Gray 57 46 (81) 54 (95)

Shadow 49 44 (90) 48 (98)

Overall accuracy = 88% traditional, 98% fuzzy Overall accuracy = 74% traditional, 82% fuzzy

2018

User’s Accuracy Green 50 43 (86) 50 (100) 50 43 (86) 50 (100)

Red 14 7 (50) 14 (100) 50 7 (14) 14 (28)

Gray 47 44 (94) 46 (98) 50 44 (88) 46 (92)

Shadow 50 35 (70) 44 (88) 50 35 (70) 44 (88)

Producer’s Accu-
racy

Green 51 43 (84) 49 (96) Does not change.
(39 segments are masking errors)Red 9 7 (78) 9 (100)

Gray 63 44 (70) 59 (94)

Shadow 38 35 (92) 37 (97)

Overall accuracy = 80% traditional, 96% fuzzy Overall accuracy = 64% traditional, 77% fuzzy

2020

User’s Accuracy Green 49 47 (96) 49 (100) 50 47 (94) 49 (98)

Red 29 21 (72) 29 (100) 50 21 (42) 29 (58)

Gray 48 42 (88) 48 (100) 50 42 (84) 48 (96)

Shadow 50 30 (60) 42 (84) 50 30 (60) 42 (84)

Producer’s Accuracy Green 65 47 (72) 59 (91) Does not change.
(24 segments are masking errors)Red 23 21 (91) 23 (100)

Gray 58 42 (72) 56 (97)

Shadow 30 30 (100) 30 (100)

Overall accuracy = 80% traditional, 95% fuzzy Overall accuracy = 70% traditional, 84% fuzzy
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method provides additional valuable information about the 
classification performance of an algorithm by quantifying 
the qualitative magnitude of the errors. For example, a pixel 
classified as gray when it was actually red—classes that both 
indicate trees are likely damaged—is not as grievous as the 
same pixel classified as green. The fuzzy set approach can 
also account for our use of segments for validation in which 
the quantities of different mapped classes may be mixed. We 
adapted the fuzzy set classification of Gopal and Woodcock 
(1994) to the TreeCAP evaluation with three levels of accept-
able classifications, two incorrect levels due to XGBoost mis-
classification and one misclassification level due to masking 
errors (Table 4). Fuzzy accuracy is calculated for each class 
by grouping all three levels of acceptable classification (levels 
3, 4, and 5) as “right” and unacceptable levels (levels 1 and 
2) as “wrong.”

Accuracy tables are reported with and without mask-
ing errors (fuzzy level 0) to separate errors due to masking 

from the performance of the XGBoost model on the spec-
tral data from trees. We report these complementary accura-
cies to demonstrate the performance of the XGBoost model 
when masking is perfect (i.e., no NT/BG areas remain after 
masking). Masking quality is a result of user input and has 
the potential to be improved, such as with more concur-
rent LiDAR data, whereas the XGBoost model is built into 
TreeCAP.

Computational Resources
TreeCAP was developed and implemented on a laptop with 
the PopOS 21.10 operating system (Linux-based), 32 GB 
of RAM, and an Intel Core i7-9700k CPU with eight cores. 
TreeCAP is written in Python 3.9 using several libraries, but 
notably xgboost, numpy, rasterio, geopandas, and rsgislib 
(Clewley et al. 2014). A Docker image for TreeCAP has also 
been created and is available for download at https://hub.
docker.com/repository/docker/sarahweg/treecap.

Figure 6. These bar graphs provide insight on the origin of the errors in the assessment data for the Sawmill Campground study site. The pie charts 
show the proportion of that class for the entire map, regardless of total sample size; classes not seen in the pie charts mean the proportion was 
significantly less than 1%. Although some errors seem excessive (such as in the red class), they often represent a small portion of the map and are 
generally concentrated (such as in the campground area after tree removal) and do not obscure the observed trends.

https://hub.docker.com/repository/docker/sarahweg/treecap
https://hub.docker.com/repository/docker/sarahweg/treecap
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Results
XGBoost Model Performance
Our XGBoost model achieved an overall accuracy of 
92% on the TCH data, with individual class accuracies 
all between 86% and 96% (Table 5). Figure 3 provides a 
summary of feature, or variable, importance in the final 
XGBoost model. During model development (including 
and excluding VIs), we found that the VIs most useful for 
improving distinction among vegetation classes were EVI, 
GLI, and VARI. VIs that improved distinction between the 
classes of gray and shadow were RDVI, OSAVI, and MSAVI 
(Table S6).

Performance by Site
For each study site, accuracy tables are given with both 
traditional and fuzzy accuracy estimates, with and with-
out masking errors. In most cases, the difference between 
the traditional accuracy and fuzzy accuracy values are not 
drastic, indicating our definitions for the fuzzy category set 
described in Table 4 are appropriate. In most cases, any NT/
BG errors remaining after masking affected only a minimal 
portion of the map, although this was disproportionately 
represented in the red class, likely due to its low occurrence 
and our nonproportionate sampling scheme. A minimal red 
class can occur in certain geographies when tree species do 
not tend to experience an extensive red phase during damage 

Figure 7. Kettle Moraine State Forest study site from 2016 to 2020. The first column are overviews on the entire study area as modeled by the TreeCAP 
raster output overlaid on the corresponding NAIP imagery. The red box is the 200 m subset area shown in the next two columns. The middle column is 
the original NAIP imagery with a 2% linear stretch applied, and the right column is the TreeCAP output. Row (a) is 2017, row (b) is 2018, and row (c) is 
2020. The drastic increase in mortality (shown in yellow) is due to emerald ash borer infestation.

http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data


Journal of Forestry, 2024, Vol. 122, No. 1 41

(if at all) or when trees died in years prior to the imagery 
and remain standing dead/gray. For example, in Colorado 
Bend’s 2020 map, only forty-three segments in total were 

classified as red and all were used for assessment purposes 
with only one segment representing canopy, as opposed to 
NT/BG. The disproportionate amount of NT/BG error in 
the red class make these errors appear more prominent than 
they actually are.

We compared accuracy of TreeCAP with TCH using the 
same tree segments (Table S7). We found that both models 
performed well in general at all sites but differed in the nature 
of their errors. For example, TreeCAP predicted the gray class 
more accurately in the Kettle Moraine and Hickory Run sites, 
whereas TCH obtained a higher accuracy in the same class in 
the Colorado Bend study site. We address these implications 
in the Discussion section.

Sawmill Campground, California
TreeCAP-produced maps show a clear progression visually 
of increasing mortality from 2016 through 2020 at Sawmill 

Figure 8. Changes highlighted by TreeCAP in the Kettle Moraine study site from 2017 to 2020. (a) is the difference in tree condition between 2017 and 
2018, (b) is the difference between 2018 and 2020, (c) is the difference between 2017 and 2020, and (d) is the 2020 NAIP imagery with a 2% linear 
stretch applied. The spread of mortality due to emerald ash borer is clearly evident (shown in yellow).

Table 8. Quantification of the changes observed between sets of years 
in the Kettle Moraine study site in hectares (ha) and percents.

Change between images
ha (% of area mapped)

2017–2018 2018–2020 2017–2020

Change to green 6 (1%) 8 (1%) 3 (<1%)

Change to red None None None

Change to gray 19 (3%) 60 (8%) 81 (11%)

Change to shadow 86 (12%) 78 (11%) 33 (5%)

No change 604 (84%) 569 (80%) 596 (83%)

http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
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Campground area resulting from drought and pine beetle 
infestation (figure 4). The segment-based change detection 
maps illustrate how tree segments can be used to quickly 
identify areas of significant change between years (figure 5). 
The trend of high mortality is evidenced by the increasing 
number of segments that changed from the green class to 
either the red class (shown in pink) or gray class (shown in 
yellow) between 2016 and 2020 (Table 6).

Traditional accuracy for each map ranged from 80% to 
88%, whereas fuzzy accuracy for each map ranged from 95% 
to 98% (Table 7). The most common errors were a result of 
confusion between red and gray. Errors as a result of NT/
BG affected primarily the red class, as the soil in this area is 

often reddish in color (figure 6, Table 7). Of note, the pro-
portion of NT/BG errors decreases as tree health declines. 
In contrast, segments classified as gray and red were more 
abundant in 2020, leading to a sample more representative of 
the images as a whole. However, there were also several trees 
removed from the campground between 2018 and 2020, after 
the LiDAR data was collected, resulting in additional errors 
concentrated in this area.

Kettle Moraine State Forest, Wisconsin
In the Kettle Moraine State Forest study site, mortality 
caused by emerald ash borer infestation is apparent between 
the maps of 2017 and 2020 (figures 7 and 8, Table 8). The 

Table 9. The traditional and fuzzy accuracy data for the Kettle Moraine study site, 2017, 2018, and 2020. The left column provides accuracy values if 
masking errors (segments that were over nontree/bare ground areas) are excluded. The right column includes these errors. Producer’s accuracy only 
assesses performance on the segments known to belong to these respective classes (i.e., it is the same for both columns because masking errors are 
already excluded in producer’s accuracy).

Model accuracy
(excluding masking errors)

Model + masking accuracy
(including masking errors)

n Traditional (%) Fuzzy
(%)

n Traditional (%) Fuzzy
(%)

2017

User’s Accuracy Green 50 48 (96) 50 (100) 50 48 (96) 50 (100)

Red 33 32 (97) 33 (100) 46 32 (70) 33 (72)

Gray 46 42 (91) 46 (100) 50 42 (84) 46 (92)

Shadow 48 42 (88) 46 (96) 50 42 (84) 46 (92)

Producer’s Accuracy Green 55 48 (87) 53 (96) Does not change.
(4 segments are masking errors)Red 34 32 (94) 34 (100)

Gray 46 42 (91) 46 (100)

Shadow 42 42 (100) 42 (100)

Overall accuracy = 93% traditional, 99% 
fuzzy

Overall accuracy = 84% traditional, 
89% fuzzy

2018

User’s Accuracy Green 50 42 (84) 50 (100) Does not change (no masking errors)

Red 50 49 (98) 50 (100)

Gray 50 48 (96) 50 (100)

Shadow 50 34 (68) 44 (88)

Producer’s Accuracy Green 48 42 (88) 46 (96)

Red 51 49 (96) 51 (100)

Gray 64 48 (75) 60 (94)

Shadow 37 34 (92) 37 (100)

Overall accuracy = 86% traditional, 97% 
fuzzy

2020

User’s Accuracy Green 50 45 (90) 50 (100) 50 45 (90) 50 (100)

Red 41 39 (95) 40 (98) 50 39 (78) 40 (80)

Gray 47 41 (87) 45 (96) 50 41 (82) 45 (90)

Shadow 50 43 (86) 49 (98) 50 43 (86) 49 (98)

Producer’s Accuracy Green 53 45 (85) 52 (98) Does not change.
(12 segments are masking 

errors)
Red 40 39 (98) 40 (100)

Gray 49 41 (84) 49 (100)

Shadow 46 43 (93) 43 (93)

Overall accuracy = 89% traditional, 98% 
fuzzy

Overall accuracy = 84% tradi-
tional, 92% fuzzy
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traditional accuracy for all maps ranged from 84% to 92% 
whereas the fuzzy accuracy for all maps ranged from 97% 
to 99% (Table 9). However, in this study area, a large pro-
portion of the red class was due to early fall senescence, 
particularly in maples (Acer spp.) (figure 9). Although the 
red class prediction on senescent trees is not incorrect given 
the XGBoost model’s spectral training data, it highlights 
the importance of selecting NAIP imagery before this time 
period. Ground errors were minimal at this site, resulting 
in high accuracies in all classes (most over 80%) despite 
remaining errors (Table 9).

Hickory Run State Park, Pennsylvania
In Hickory Run State Park, mortality due to hemlock 
woolly adelgid infestation is apparent when comparing the 
2015 map to the 2013 map (figures 10 and 11, Table 10). 
Traditional accuracies for the XGBoost model in these maps 
were 97% (2013) and 73% (2015), and fuzzy accuracies for 
these maps were 99% and 95%, respectively (Table 11). As 
in the Kettle Moraine study area, both maps had insignifi-
cant treed segments classified red (also gray in 2013), too few 
to provide meaningful accuracy metrics in this class for this 
map. Another error often exhibited in this site was due to 

Figure 9. These bar graphs provide insight into the origin of the errors in the assessment data for the Kettle Moraine study site. The pie charts show 
the proportion of that class for the entire map, regardless of total sample size; classes not seen in the pie charts mean the proportion was significantly 
less than 1%. Although some errors seem excessive (such as in the red class), they often represent a small portion of the map and do not obscure the 
observed trends.
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confusion between the gray class and shadows in 2015 (figure 
12). However, despite the confusion with shadows, enough 
of the gray class was correctly mapped that the signature of 
increased mortality in general remains clear.

Colorado Bend State Park, Texas
In Colorado Bend State Park, the trend in mortality as a 
result of drought and some evidence of recovery can be seen 
in the maps of the study area from 2010, 2016, and 2020 
(figures 13 and 14, Table 12). Model accuracies for these 
maps ranged from 86% and 93% for traditional accuracy, 
and 94% to 100% for fuzzy accuracy (Table 13, “Model 
Accuracy”). Despite good performance on this site from 
the XGBoost algorithm, the 2010 map suffered from false 
positives due to poor masking in comparison to maps from 
all other sites in this study (figure 13, Table 13 “Model + 
Masking Accuracy”). This is due to particularly disparate 
spatial differences in areas occupied by trees in the LiDAR 
data from 2018 and the 2010 NAIP imagery. The false pos-
itives occurring as a result of NT/BG areas, despite being 
obvious on crown edges, nonetheless obscure the real results 
over trees and shrubs (figure 13a). Segments classified red 
were extremely limited across all maps at this study site with 
only 11 and 43 segments of 45,184 total segments classified 

red in 2010 and 2020, respectively (figure 15). Of these, most 
were NT/BG errors, disproportionately affecting the accura-
cies of the red class.

Discussion
TreeCAP accurately maps tree crown condition at sites across 
the United States at a fine spatial scale (1 m or less), often at 
subtree level, using a single model that can be used seamlessly 
on NAIP imagery in all forty-eight contiguous United States 
and possibly elsewhere. The efficiency and replicability of our 
approach are conducive to implementation on an operational 
level, providing a means to detect unexpected damage soon 
after NAIP imagery becomes available. Maps resulting from 
this methodology could offer valuable information about for-
est health in areas that are normally difficult to access or not 
routinely monitored. In particular, TreeCAP could be used 
to help track abnormal mortality occurring in a single tree 
species (as demonstrated here with emerald ash borer and 
hemlock wooly adelgid) because of its ability to map mortal-
ity in individual trees in mixed forests, especially when using 
the raster output. Although independent verification would 
be needed to determine the affected species, maps produced 
by TreeCAP could provide information regarding the extent 

Figure 10. Hickory Run State Park study site in 2013 and 2015. The first column is overviews on the entire study area as modeled by the TreeCAP 
raster output overlaid on the corresponding NAIP imagery. The red box is the 200 m subset area shown in the next two columns. The middle column is 
the original NAIP imagery with a 2% linear stretch applied and the right column is the TreeCAP raster output. Row (a) is 2013 and row (b) is 2015. The 
increase in mortality, shown in yellow, is due to hemlock wooly adelgid infestation.
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and spatial patterns of damage for individual trees and small 
clusters of trees.

The inclusion of fuzzy accuracy highlights the quality 
of TreeCAP’s XGBoost model by offering insight into the 
nature of the classification errors. Although the average tra-
ditional model accuracy across all maps was 87% (mini-
mum 73%), the average fuzzy accuracy was 97% (minimum 
94%). This indicates that the errors arise primarily from the 
understandable confusion between the red and gray classes 
or a slight difference in the class quantity of pixels pre-
dicted by the algorithm in comparison with human visual 
interpretation. From this, we infer that there are benefits to 
using both the original raster output from TreeCAP and the 
annotated tree segments shapefile. The shapefile offers the 
ability to quickly locate areas that may be of concern to 
the user, especially across multiple years. After these areas 

are located, it may be more prudent to use the raster for a 
greater level of detail.

Notably, the training data used by TreeCAP spanned 2012 
to 2019, yet here we show examples of how the XGBoost 
model also performed well when projected to nontraining 
years (2010 in Texas, 2020 in California and Wisconsin). We 
conclude that TreeCAP’s fitted XGBoost model can be applied 
across multiple years of NAIP imagery, including future years. 
This means it is possible to use the output from TreeCAP in 
conjunction with follow-on analyses to investigate continuing 
trends or detect new infestations. Progression of forest insect 
and disease outbreaks could potentially be tracked to assess 
metrics such as spread rate and mortality area and intensity. 
Although such studies would likely need additional observa-
tions to verify the causal agent, TreeCAP’s output has great 
potential to streamline field work by providing spatially pre-
cise maps of tree crown damage. These types of evaluation 
monitoring studies could be invaluable for mitigating damage 
from emerging forest insects and diseases.

A significant concern with NAIP imagery is the latency 
between collection and public release, which can be lon-
ger than a year. However, NAIP imagery can be accessed in 
near-real time by federal agencies that contribute funding to 
the program. Although these agencies cannot release actual 
imagery, they are able to apply models and share screen cap-
tures and analyses derived from the imagery. This means that 
adoption of TreeCAP by any of the federal agencies that con-
tribute to NAIP could produce and share TreeCAP results in 
near-real time on lands they support or manage. An exam-
ple of this is shown for a subset of the Kettle Moraine study 
site, based on NAIP imagery collected in 2022, which was 

Figure 11. Changes highlighted by TreeCAP in the Hickory Run State Park study site between 2013 and 2015 (a). (b) is the 2015 NAIP imagery with a 2% 
linear stretch applied. The trend in increase in mortality due to hemlock wooly adelgid is clearly evident in yellow.

Table 10. Quantification of the changes observed between sets of years 
in the Hickory Run study site in hectares (ha) and percents.

Change between images
ha (% of area mapped)

2013–2015

Change to green 2 (<1%)

Change to red None

Change to gray 72 (5%)

Change to shadow 1 (<1%)

No change 1371 (95%)
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mapped with TreeCAP while the imagery was still being col-
lected (figure 16).

Although we developed and tested TreeCAP on NAIP imag-
ery, the XGBoost model is not limited to NAIP and can be 
applied to any imagery with similar spectral characteristics. 
The high accuracy values frequently achieved TreeCAP’s 
XGBoost model (Tables 7, 9, 11, and 13, Model accuracy col-
umns) indicates that there is great potential to use TreeCAP to 
aid in the early detection of species-specific damage. However, 
this would require timely suitable imagery and LiDAR to be 
collected temporally near the imagery. Use of alternate NAIP-
like imagery would enable TreeCAP to be leveraged with much 
higher temporal frequency than the current NAIP collection 
revisit interval. It may also be possible to conduct band-match-
ing activities to apply the model across different sensors.

Important next steps include cross-walking the TreeCAP 
methodology to high temporal-resolution satellite imagery 
such as Maxar’s Worldview and/or Planet’s Dove or SkySat. 
Although the spatial resolutions of these sources are often 
lower than that of NAIP imagery (1–3 m versus 0.6–1 m), they 
still may capture damage occurring in individual tree crowns 
or small clusters of trees and can potentially be used globally 
in forested ecoregions (i.e., because the imagery is collected 
globally). For demonstration, we tested 3 m, band-matched 
Dove imagery at the Kettle Moraine study site (Figure S5). 

Although Dove imagery spatial resolution is coarser, the 
revisit time is near daily. In comparison to the NAIP imagery, 
application to Dove imagery resulted in less mortality being 
mapped, but the map does correctly highlight larger areas 
of contiguous mortality. The ability to leverage high-resolu-
tion satellite imagery sources such as Dove will enable much 
higher temporal frequency and reduce errors resulting from 
sun-sensor-target geometry, including shadows. Recreating 
the training data for these sources will be the most significant 
challenge, especially as sensor characteristics change.

Our use of LiDAR segmentation effectively reduced errors 
of commission for NT/BG ground areas (Figures S1–4, Tables 
S1–4). However, the characteristics of the available LiDAR 
data varied widely (Table 3). Specifically, point density, time 
of collection, and coverage all influence the effectiveness of 
the LiDAR. For instance, most of the LiDAR used was leaf-
off, collected for terrain mapping, and therefore tree identi-
fication can be compromised in areas with sparse tree cover. 
Because most areas do have sufficient coverage and point 
density even under leaf-off acquisitions, the ideal solution to 
this is to have LiDAR data collected the same year as NAIP 
to better account for changes such as forest harvests, stand 
thinning, and hazard tree removal.

Although we were unable to create a single programming 
script capable of effectively creating tree segments regardless 

Table 11. The traditional and fuzzy accuracy data for the Hickory Run study site, 2013 and 2015. The left column provides accuracy values if masking 
errors (segments that were over nontree/bare ground areas) are excluded. The right column includes these errors. Producer’s accuracy only assesses 
performance on the segments known to belong to these respective classes (i.e., it is the same for both columns because masking errors are already 
excluded in producer’s accuracy). Masking errors disproportionally affected the red class due to the scarcity of these segments and our sampling 
scheme (also in the gray class in 2013).

Model accuracy
(excluding masking errors)

Model + masking accuracy
(including masking errors)

n Traditional (%) Fuzzy
(%)

n Traditional (%) Fuzzy
(%)

2013

User’s Accuracy Green 50 50 (100) 50 (100) 50 50 (100) 50 (100)

Red 3 2 (67) 3 (100) 26 2 (8) 3 (12)

Gray 10 9 (90) 10 (100) 50 9 (18) 10 (20)

Shadow 47 46 (98) 46 (98) 50 46 (92) 46 (92)

Producer’s Accuracy Green 51 50 (98) 51 (100) Does not change (66 segments are 
masking errors)Red 4 2 (50) 3 (75)

Gray 9 9 (100) 9 (100)

Shadow 46 46 (100) 46 (100)

Overall accuracy = 97% traditional, 99% 
fuzzy

Overall accuracy = 61% traditional, 
62% fuzzy

2015

User’s Accuracy Green 50 45 (90) 50 (100) 50 45 (90) 50 (100)

Red No treed red segments 10 0 (0) 0 (0)

Gray 47 40 (85) 46 (98) 50 40 (80) 46 (92)

Shadow 50 23 (46) 44 (88) 50 23 (46) 44 (88)

Producer’s Accuracy Green 51 45 (74) 60 (98) Does not change (13 segments 
are masking errors)Red No treed red segments

Gray 47 40 (65) 57 (92)

Shadow 50 23 (96) 23 (96)

Overall accuracy = 73% traditional, 95% 
fuzzy

Overall accuracy = 68% tradi-
tional, 88% fuzzy

http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
http://academic.oup.com/jof/article-lookup/doi/10.1093/jofore/fvad039#supplementary-data
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of input without some parameter tuning, the creation of 
tree segments was not arduous. As repeat LiDAR becomes 
more widely available and techniques to analyze it improve, 

we expect there may even be ready-made tree segmentation 
datasets available for use in the future for applications such 
as TreeCAP. For example, a nationwide canopy height model 

Figure 12. These bar graphs provide insight on the origin of the errors in the assessment data for the Hickory Run study site. The pie charts show the 
proportion of that class for the entire map, regardless of total sample size; classes not seen in the pie charts mean the proportion was significantly less 
than 1%. The poor accuracy of gray in 2013 was due to a limitation of gray segments in the image—less than 50. Because of this, erroneous segments 
over ground were disproportionately selected. This is also true in the red class for both maps. Additionally, in 2015, many of the errors in the gray class 
were due to confusion with shadows.
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could potentially be used instead of tree segments for mask-
ing purposes (thresholding at certain height, depending loca-
tion, to exclude NT/BG areas). If this were to be done, a grid 
system could be implemented to detect change through time 
instead of using the segments. Although the methodology 
for annotation of change outlined in figure 2 may have to be 
adjusted to accommodate these modifications, this combina-
tion could offer an even more efficient and expandable way to 
use TreeCAP nationwide.

Despite the use of LiDAR, NT/BG errors remained in our 
maps, but as only a small fraction of area and largely in 
areas where other factors influenced misclassification. For 
example, in Sawmill Campground 2020 (figure 4c and figure 
6), the number of ground errors appears high, particularly 

in the red class, but most were disproportionately located 
in the area of the campground where hazard trees that had 
been present in previous imagery were apparently removed. 
Because the LiDAR for this area was collected in 2018, the 
tree segments for these recently cut trees caused the algo-
rithm to predict over bare ground. TreeCAP’s output is 
intended to be used by local forest managers and health spe-
cialists, and these errors would be readily apparent to such 
an expert of the area. The same is true for the errors in maps 
with very low incidents of red or gray. Unless these areas 
of gray or red are concentrated in an unexpected area of 
continuous canopy, the NT/BG errors will be either be read-
ily apparent (i.e., a known recent harvest area or a newly 
cut road) or so spread out that they do not cause concern. 

Figure 13. Colorado Bend State Park study site from 2010 to 2020. The first column are overviews on the entire study area as modeled by the TreeCAP 
raster output overlaid on the corresponding NAIP imagery. The red box is the 200 m subset area shown in the next two columns. The middle column is 
the original NAIP imagery with a 2% linear stretch applied, and the right column is the TreeCAP raster output. Row (a) is 2017, row (b) is 2018, and row 
(c) is 2020. Drought-induced mortality was heavy in 2016 but some recovery can be seen by 2020.
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Natural morbidity and mortality occur in forests, and it is 
typically only when unexpectedly high levels are exhibited 
in a concentrated location that professionals may decide the 
area warrants further investigation.

Although TreeCAP was built to be computationally effi-
cient, implementation on an operational scale—such as pro-
cessing of entire states—would still be better deployed using 
larger computational capacity. Specifically, we believe imple-
menting TreeCAP in Google Earth Engine would provide a 

reliable, expandable, and flexible means of making TreeCAP-
produced maps freely available to forest managers and forest 
health specialists. The XGBoost model developed for TreeCAP 
can be loaded into other types of computer code, making it 
possible to implement TreeCAP in applications built in R and 
Google Earth Engine, among others.

Conclusion
In this article, we introduce TreeCAP, a system to detect 
abnormal mortality at the individual tree level or small 
clusters of trees in forests using high spatial resolution 
imagery and machine learning. TreeCAP was built to be 
fast and efficient to enable scaling up to operational lev-
els and facilitate implementation on different computing 
platforms as needed. In addition, we demonstrate the use 
of LiDAR-derived tree segments to mask NT/BG areas and 
better allow comparison among years while mitigating the 
effects of shadows that are prevalent in high-spatial resolu-
tion imagery. Finally, TreeCAP’s 4-class output is intended 
to be easily interpreted by forest managers and forest health 
specialists, informing and aiding their management of their 
forests.

Figure 14. Changes highlighted by TreeCAP in the Colorado Bend study site from 2010 to 2020. (a) is the difference in tree condition between 2010 and 
2016, (b) is the difference between 2016 and 2020, (c) is the difference between 2016 and 2020, and (d) is the 2020 NAIP imagery with a 2% linear 
stretch applied. Although drought-induced mortality caused extensive damage in this park, some recovery can be seen by 2020.

Table 12. Quantification of the changes observed between sets of years 
in the Colorado Bend study site in hectares (ha) and percents.

Change between images
ha (% of area mapped)

2010–2016 2016–2020 2010–2020

Change to green 133 (10%) 163 (12%) 196 (14%)

Change to red 2 (<1%) None None

Change to Gray 277 (20%) 4 (<1%) 181 (13%)

Change to shadow 1 (<1%) 3 (<1%) 3 (<1%)

No change 955 (70%) 1197 (88%) 986 (72%)
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Supplementary Material
Supplementary data are available at Journal of Forestry on-
line.
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assesses performance on the segments known to belong to these respective classes (i.e., it is the same for both columns because masking errors are 
already excluded in producer’s accuracy). The red class was limited in 2010, and insignificant in 2016 and 2020. Masking errors disproportionally affected 
the red class due to the scarcity of these segments and our sampling scheme.

Model accuracy
(excluding masking errors)

Model + masking accuracy
(including masking errors)

n Traditional (%) Fuzzy
(%)

n Traditional (%) Fuzzy
(%)

2010

User’s Accuracy Green 50 50 (100) 50 (100) 50 50 (100) 50 (100)

Red 3 3 (100) 3 (100) 11 3 (27) 3 (27)

Gray 8 5 (62) 8 (100) 50 5 (10) 5 (10)
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fuzzy
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64% fuzzy

2016
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Gray 38 36 (95) 38 (100) 50 36 (72) 38 (76)
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(65 segments are masking 

errors)
Red No treed red segments
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Overall accuracy = 90% traditional, 100% 
fuzzy

Overall accuracy = 61% 
traditional, 68% fuzzy

2020

User’s Accuracy Green 49 46 (94) 49 (100) 50 46 (92) 49 (98)

Red 1 1 (100) 1 (100) 43 1 (2) 1 (2)
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Shadow 50 45 (90) 50 (100) 50 45 (90) 50 (100)

Producer’s Accuracy Green 49 46 (94) 49 (100) Does not change (7 segments 
are masking errors)Red 2 1 (50) 2 (100)
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Figure 15. These bar graphs provide insight on the origin of the errors in the assessment data for the Colorado Bend study site. The pie charts show the 
proportion of that class for the entire map, regardless of total sample size; classes not seen in the pie charts mean the proportion was significantly less 
than 1%. Poor alignment between the LiDAR data and NAIP caused a greater proportion of ground to be misclassified in 2010. In the red class, very 
few segments of this classification—less than 50—were available for evolution, making this class insignificant in all maps for this study site.
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