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Abstract: Tropical forests play an important role in mitigating global climate change, emphasizing
the need for reliable estimates of forest carbon stocks at regional and global scales. This is essential
for effective carbon management, which involves strategies like emission reduction and enhanced
carbon sequestration through forest restoration and conservation. However, reliable sample-based
estimations of forest carbon stocks require accurate allometric equations, which are lacking for the
rainforests of the Atlantic Forest Domain (AFD). In this study, we fitted biomass equations for the
three main AFD forest types and accurately estimated the amount of carbon stored in their above-
ground biomass (AGB) in Rio de Janeiro state, Brazil. Using non-destructive methods, we measured
the total wood volume and wood density of 172 trees from the most abundant species in the main
remnants of rainforest, semideciduous forest, and restinga forest in the state. The biomass and
carbon stocks were estimated with tree-level data from 185 plots obtained in the National Forest
Inventory conducted in Rio de Janeiro. Our locally developed allometric equations estimated the
state’s biomass stocks at 70.8 + 5.4 Mg ha~! and carbon stocks at 35.4 & 2.7 Mg ha—!. Notably, our
estimates were more accurate than those obtained using a widely applied pantropical allometric
equation from the literature, which tended to overestimate biomass and carbon stocks. These findings
can be used for establishing a baseline for monitoring carbon stocks in the Atlantic Forest, especially
in the context of the growing voluntary carbon market, which demands more consistent and accurate
carbon stock estimations.

Keywords: allometric equations; tropical forests; national forest inventory; non-destructive methods;
aboveground biomass

1. Introduction

Tropical rainforests are crucial in regulating biogeochemical cycles, annually absorbing
carbon equivalent to global anthropogenic emissions [1] and storing an order of magnitude
greater [2]. However, these forests are under increasing anthropogenic pressure, such
as land use and climate changes. In Brazil’s Atlantic coastal zone, which is home to
almost 70% of the population, intense anthropogenic pressure has led to extensive forest
conversion. Presently, a mere ~10% of the original forest cover persists, fragmented into
small remnants [3]. These fragments are heavily affected by edge effects and have lost
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and continue to lose large amounts of biomass and biodiversity [4]. Currently, most
remnants are isolated secondary forests at different successional stages [5]. As a result, the
Atlantic Forest Domain (AFD) [6] is one of the most threatened biodiversity hotspots in the
world [7]. AFD remnants are primarily located in protected areas, including conservation
units and Permanent Preservation Areas designated for slope stability and water supply to
mountainous megacities like Rio de Janeiro.

Although the AFD is widely recognized for its biological importance and role in climate
change mitigation, little is known about its capacity to store and sequester carbon [8-10]. To
establish a credible evidence base for formulating public policies targeting the continued
maintenance of carbon storage and sequestration in the AFD, reliable estimates of stored
carbon are needed. However, the AFD lacks specific allometric models for its main veg-
etation types [11], which limits the calculation of reliable estimates of carbon stocks and
sequestration [12].

In tropical forests, equations that quantify forest biomass are usually produced through
destructive methods, wherein selected trees are felled to facilitate measurement and weigh-
ing [13-16]. However, in threatened ecosystems protected by environmental legislation,
such as those within the AFD, non-destructive methods are required to obtain the necessary
data for fitting allometric equations [17]. A possible approach to estimating biomass stocks
is applying pantropical allometric models using available data on tree diameter, height,
and wood density [18]. Although widely used, this approach can result in substantial un-
certainty [16], highlighting the need to develop local models that potentially produce more
accurate and reliable estimates of biomass [19,20], especially in ecosystems that contain
multiple vegetation types.

Developing local models to reliably estimate biomass and carbon stocks is particularly
relevant in Rio de Janeiro state, where nearly 30% of its area is composed of AFD remnants
in well-preserved conditions [21]. Moreover, locally developed equations may also enable
the creation of financial mechanisms for compensating environmental conservation actions
in the state, such as Payment for Environmental Services (PES) and Reducing Emissions
from Deforestation and Forest Degradation (REDD+). These initiatives have been growing
due to expansions in PES schemes and the voluntary carbon market. However, estimates of
emission reductions and carbon removal are often overestimated in carbon market projects,
which is likely attributable to the choice of the allometric equation [22]. The quantity and
quality of carbon credits produced through REDD+ depend on the accuracy, or at the very
least, the conservativeness of carbon estimates. At present, no such specific and locally cali-
brated allometric models exist for Rio de Janeiro state. Aiming to fill this gap, we produced
allometric equations for the main AFD forest types, namely, rainforest, semideciduous
forest, and restinga forest. We hypothesized that these forest-specific equations would
produce more accurate biomass and carbon estimates than (1) a local-generic equation
and (2) a pantropical equation. To test this, we applied a non-destructive method to take
measurements along the stem and crown (i.e., diameter, height) of 172 standing trees in the
three forest types and determined the basic wood density of samples collected at different
tree heights. We then used these data for (i) fitting different allometric equations for each
forest type, (ii) estimating total above-ground biomass and carbon stocks, and (iii) compar-
ing the accuracy of the estimates using the pantropical, local-generic, and forest-specific
allometric equations.

2. Material and Methods
2.1. Study Area

This study was conducted in the Rio de Janeiro state (Brazil), which has a total area of
43,782 km? and is completely within the Atlantic Forest Domain (AFD) [6]. To develop the
allometric equations, we selected the three main forest types in the state: Rainforest (RAF),
Semideciduous Forest (SF), and Restinga Forest (RF), which correspond to approximately
69%, 27%, and 2% of the state’s native vegetation remanences [21]. These forest types occur
under different environmental conditions at altitudes that vary between 5 and 900 m above
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sea level. According to the Képpen climate classification, the climates vary from tropical
(Af, Am, and Aw) to humid subtropical (Cfa, Cfb, Cwa, and Cwb), with a predominance of
‘tropical with dry winter” (Aw) and ‘subtropical with hot summer’ (Cwa) climates [23]. The
mean annual temperature varies between 12 and 24 °C, and the mean annual precipitation is
between 1000 and 2000 mm [23]. The main geological formations in the state are associated
with acidic rocks like granites, gneisses, and migmatites [24]. The weathering of these rocks
or the degradation of their sediments results in Acrisols, Latosols, and Cambisols, which
are commonly found throughout the state [24]. Soils were classified following the 2018
Brazilian Soil Classification System [25] and are equivalent to the World Reference Base for
Soil Resources [26].

2.2. Experimental Design

To optimize the spatial distribution of sample trees for biomass determination, we
selected 28 sampling sites in the main RAF, SE, and RF fragments in the state (Figure 1).
These strategic sampling sites for biomass data collection were selected based on infor-
mation obtained from the National Forest Inventory conducted in Rio de Janeiro state
(NFI-RJ), including species composition, vegetation type classification, conservation state,
accessibility to the fragment, and logistical support. Our inventory data to estimate carbon
stocks included 185 widely distributed permanent plots (sampling unities) within forest
cover from the NFI-R] (Figure 1). To generate the location map, the Arcgis™ software
(version 10.1, ESRI, Redlands, CA, USA) was used.
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Figure 1. Geographic location of the sites where data were collected. Triangles represent sites where
aboveground biomass data were collected: Rainforest (RAF; green triangles), Semideciduous Forest
(SF; yellow triangles), and Restinga Forest (RF; blue triangles), in the Atlantic Forest of Rio de Janeiro
state (Brazil). Circles represent sampling units of the National Forest Inventory conducted in Rio de
Janeiro (NFI-R]; red dots). Data from the NFI-R] were used to plan the biomass sampling design and
estimate the total above-ground biomass stocks of the state’s forest cover.

2.3. Sampling for the Biomass Equation Fitting

To fit the biomass equations, we selected the most abundant species of each forest type
(RAF, SE and RF) as defined by a preliminary analysis of the NFI-R] data. Tree selection for
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biomass determination followed the negative exponential distribution, which commonly
describes the diameter distribution of tropical and subtropical forest trees. In short, we
collected for each species a higher number of samples from smaller diameter classes and a
lower number of samples from larger diameter classes.

Botanical samples were collected from all trees and sent for identification and registra-
tion in the RBR Herbarium in the Department of Botany of the Federal Rural University of
Rio de Janeiro. Wood samples measured for biomass determination were collected from
172 trees (61 species, 50 genera, and 24 plant families). From the total sample, 78 trees be-
longed to RAF, 57 to SE, and 37 to RF. The species were classified following the Angiosperm
Phylogeny Group system [27] and the updated nomenclature was cross-checked in the
Flora e Funga do Brasil database [28].

2.4. Non-Destructive Wood Volume Determination

A non-destructive method was used to climb trees and obtain wood volume without
cutting the trees down. We employed tree climbing techniques with suitable equipment
and telescopic ladders that were 8 m in height (Supplementary Information Figure S1;
Figure 2), which did not cause any damage to the tree. From all sample trees, the following
measurements were taken: diameter at breast height (DBH, measured 1.3 m above ground
level), total tree height (Ht), stem height (Hs), and diameters along the stem (Di, at heights
0.3,0.5, 1.0, 1.3, 2.0 m, and every 1.0 m until the last section of the stem). The diameters
were obtained with a measuring tape and stem height with a self-retracting tape measure.
Stem height was defined as the vertical length from the tree’s base to the point where
significant branching begins, indicating the start of the crown.
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Figure 2. Conceptual diagram summarizing (a) data collection, (b) model selection and validation,
and (c) biomass estimation for the entire Rio de Janeiro state. DBH = diameter at breast height,
MSH = mid-stem height, AGB = predicted aboveground biomass (Mg), Ht = total tree height (m),
RAF = Rainforest, SF = Semideciduous Forest, RF = Restinga Forest.
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Tree crowns with varying architectures were also measured. Each branch was indi-
vidually measured in 1-m sections until reaching a diameter of 5 cm. Beyond this point,
the sections were considered as twigs. This minimum diameter value was determined
for the sake of climbers’ safety. Stem and branch volumes were obtained with Smalian’s
formula [29]. The sum of the section volumes (i.e., stem and crown) yielded the total
volume of the tree.

2.5. Basic Wood Density and Carbon Content

To determine the basic wood density (WD) of the measured trees, we collected three
wood samples at different heights in the tree (two from the stem and one from a branch)
using a non-destructive method (Figure 2). From the trunk, we removed two wood cores
from the bark to the pith with a 5-mm diameter wood increment corer (Haglof Sweden,
Langsele, Sweden). The first core was taken at breast height (BH, 1.3 m above the ground),
and the second at mid-stem height (MSH). If a tree’s reduced diameter did not allow for
sample retrieval at MSH, the cores were taken at stem-base height (SBH, 50 cm above the
ground) (Figure 2). The samples were collected at MSH using climbing techniques that
were harmless to the trees (Supplementary Information—SI, Figure S1). The retrieval of
stem wood cores was performed, whenever possible, in the North/South direction. To
control post-collection damage to the tree, the wound was treated with Bordeaux mixture,
and the hole caused by the extraction was sealed with a wooden cylinder and beeswax.
Wood samples were also collected from thick branches (minimum 5 cm in diameter) to
measure WD from the tree crowns (Figure 2).

The WD of each sample tree was obtained by averaging the three wood samples
collected at different heights. The samples were sent to the Wood Quality Laboratory of the
Federal University of Espirito Santo (UFES) for WD determination. Wood saturated volume
was determined by immersing the samples in water, while wood dry mass was obtained
with a precision scale after oven-drying the samples at 103 °C. The WD of each species
was obtained by averaging all WD values sampled from that species with the formula:
WD =Bd/Vs. Here, WD stands for basic wood density (g cm~2), Bd for dry biomass
(g), and Vs for saturated volume (cm®). The carbon content was indirectly estimated by
applying the conversion factor of 0.49 [30].

2.6. Sampling for Biomass Estimation (Forest Inventory)

To estimate the biomass stocks of Rio de Janeiro state, we used NFI-R] data collected in
sampling units located in natural forest areas (Figure 2). Each sampling unit was composed
of four subunits of 20 x 50 m, subdivided into 10 subplots of 10 x 10 m [21]. These subunits
were arranged in a cross shape pointing to the four cardinal directions (North, South, East,
and West) and distanced 50 m from a central point. To sample the tree layer, the DBH, Ht,
and Hs of all individuals with a DBH > 10 cm were recorded. In each sampling unit, at
least one botanical voucher was collected from each recorded species. The plants were
identified by a team of taxonomists from the Rio de Janeiro Botanic Garden—]BR].

The estimates of above-ground forest biomass for the Rio de Janeiro state were obtained
with data from 185 sampling units (51.6 ha of sampled area): 68 sampling units in the
RAF (19.1 ha), 63 in SF (16.8 ha), 22 in RF (7.1 ha), 19 in Mangrove Forests (MF, 5.7 ha),
and 13 in Deciduous Forest (DF, 3.4 ha). Although each sampling unit had a fixed area of
4000 m?, many had to be partially sampled due to natural and anthropogenic conditions,
such as rock outcrops and deforested portions of land. Using the field-based land cover
classification of each 10 m x 10 m sub-plot, we recalculated the area effectively captured in
the sampling units and their subunits. Non-sampled areas due to impediments or lack of
forest cover were excluded from the total quantification. Hence, the fixed-size inventory
subunits (20 m x 50 m = 1000 m?) had effective sampling areas that varied between 100
and 1000 m?.
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2.7. Data Analysis
2.7.1. Allometric Equation Fitting

By integrating total wood volume and basic wood density, we obtained the total
dry mass for each sampled tree (Figure 2). Non-linear regression models were fitted to
estimate total above-ground biomass with DBH and Ht as predictor variables. We tested
non-linear models drawn from classic forest science studies (Table 1) [31,32], including
single-predictor (with DBH) and two-predictor regressions (with DBH and Ht). We fitted
specific equations for estimating above-ground biomass in each forest type (RAF, SE, and
RF) and a local-generic equation for the state’s entire forest cover. These analyses were
performed in R v. 4.3.2 [33].

Table 1. Single-predictor and two-predictor non-linear models tested to estimate the above-ground
biomass of sampled trees in the Atlantic Forest of Rio de Janeiro state, Brazil.

Model Number Author Mathematical Model Input Variables
1 Husch [34] y=BodPl +ei Single (dbh)
2 Spurr [35] y=Po+pB1.(d h)+ei .
3 Schumacher e Hall [36] y=PBodPl . hP? +ei Multiple (dbh, FHt)

y, response variable; d, diameter at breast height (cm) measured 1.3 m above the ground; /1, stem height or total
height (m); By, B1, and B,, regression coefficients; i, associated error.

The model fits were assessed using graphical and statistical criteria [37,38], namely, the
Coefficient of Determination, which was calculated by correlating real and estimated values
following Equation (1); the Relative Standard Error of the estimate following Equation (2),
which indicates estimate precision; the Akaike Information Criterion following Equation (3),
which guides model selection based on information content [39]; and the graphical analysis
of residuals. Residual analysis remains crucial in regression model selection, even when
other statistical criteria are inconclusive [40].

The assumptions of regression analyses were confirmed for all fitted equations. We
assessed residual homoscedasticity through a score test for non-constant error variance by
applying the Breusch-Pagan test using the ncvTest function, which indicated a heteroscedas-
tic distribution of residuals. To resolve this, we used the Generalised Least Squares (GLS)
model, a power variance function structure (varPower) that allows for modeling unequal
variances. Applying a variance function is a common practice in representing the variance
structure of errors within groups, where we used an exponential parameter as a covariate,
whose estimate was obtained through an iterative process. The transformation did not alter
the observed patterns in the distribution and dispersion of dendrometric variables among
the forest types. We assessed the significance of the regression coefficients (8i) with a t-test
(« = 0.01). These analyses were performed in R v. 4.3.2 [33] using the car, caret, ds, nlme,
and ggplot packages.

Ryy = =X =D =Y) 1)

VEGE -0y —7)?

()

AIC =—2log (Ly) +2[(v +1) +1] 3)

where y; = observed value; j; = value estimated by the model; n = number of observations;
p = number of model coefficients; ¥ = mean of observed values of the dependent variable;
L, = maximum likelihood function of the model, and v = number of explanatory variables
included in the model.
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2.7.2. Biomass Stock Estimates

The biomass stock of the forest cover in Rio de Janeiro state was estimated with data
from 185 sampling units from the NFI-R]. Due to variation in the area sampled by the
sampling units, we analyzed the data using the ratio estimates method [41] recommended
for the NFI analyses by the Brazilian Forest Service (SFB). The biomass estimates were
obtained for the entire set of sampling units and considered only trees with DBH > 10 cm.
The estimates aimed for an acceptable error of 10% of the mean with a 90% confidence level.

To estimate the state’s aboveground biomass stocks, we applied the forest-specific
allometric equations to the main forest types and the local-generic equation (fitted to the
whole dataset) to the entire forest cover. As there were no fitted equations available for
Mangrove Forest (MF) and Deciduous Forest (DF), we opted to apply the local-generic
equation to these forest types, which account for less than 2% of the forest cover in Rio de
Janeiro state.

For comparison purposes, the pantropical allometric equation proposed by Chave et al.
(2014) was also applied [12]. This equation is widely employed in studies examining above-
ground biomass stocks in tropical forests and uses species-level WD and tree-level DBH
and Ht as predictor variables. To apply this equation, we used the WD values collected
directly in the field for 85 species of Rio de Janeiro’s Atlantic Forest. For the remaining
species recorded in the inventory, WD values were drawn from online repositories [42,43].
Only data from South America were selected from these databases.

We obtained species-level WD for 32.8% of the individuals, genus-level WD for 38.4%
of the individuals (the mean of all species within the genus with available WD data), and
family-level WD for 23% of the individuals (the mean of all species within the family with
available WD data). In the few cases where no WD value could be assigned to the species
(6%, represented exclusively by the dead, unidentified individuals), the average wood
density value for the set of species belonging to the same sampling unit was adopted.

2.7.3. Model Validation and Hypothesis Testing

The selected models were validated through a cross-validation analysis following the
k-fold approach [44], implemented in the R package caret. In this process, the data were
divided into 10 subsets (folds) for training, and one-fold at a time was set aside for testing
the database while the model was refitted n times (Figure 2). For each training subset, the
model was refitted, and statistical parameters such as precision and accuracy, coefficient
of determination, mean absolute error (MAE), and root mean square error (RMSE) were
obtained. The averages of these metrics were used to validate the models.

To compare precision and efficiency between pantropical, local-generic, and forest-
specific equations, the variations in the percentage of root mean square value (PRMSE)
and coefficients of determination were calculated for each fit. The selected equations were
compared in three situations: (1) local-generic equation against forest-specific equations,
(2) local-generic equation against the pantropical-generic equation [12], and (3) forest-
specific equations against the pantropical-generic equation. These comparisons were
performed considering only the three main vegetation types in the state (RAF, SF, and REF),
for which specific equations were developed to estimate above-ground biomass.

Additionally, to compare the estimates yielded by the three types of equation (forest-
specific, local-generic, and pantropical) with the observed biomass values («x = 0.01), we
applied an equivalence test (regression-based TOST using bootstrap). This has been widely
used to compare means or similarities between estimates and actual observations [45,46].
It stands out as the most appropriate method for evaluating a model [45] or verifying
statistical equivalence between estimates of a variable obtained through two different
assessment methods.

The equivalence test evaluated individual tree biomass and involved multiple steps:
(a) calculated the difference between the field-obtained biomass mean and the values esti-
mated using the equations; (b) established equivalence regions for regression parameters,
with (I) I0 = y &£ 25% for the intercept and (II) I1 = 1.0 &= 25% for the slope; (c) performed a
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non-parametric bootstrap with 1000 replications to determine confidence intervals around
observed means, checking if predictions were within the equivalence region at a signif-
icance level of 0.05; (d) fitted a linear regression between estimated and field-obtained
actual biomass; (e) tested equality for the intercept by calculating confidence intervals for
the parameter, comparing it with the estimated equivalence region; (f) similarly tested
equality for the slope by calculating the one-sided confidence interval, comparing it with
the estimated equivalence region; and (g) accepted or rejected the dissimilarity hypothesis
based on tests for the regression intercept and slope.

Following the same methodology, the equivalence test was also applied to compare
the estimates generated for each forest type by the three types of equation (forest-specific,
local-generic, and pantropical). This was only carried out for the three main forest types for
which specific biomass equations were fitted (RAF, SF, and RF). Other forest types, such as
MF and DEF, were excluded from this analysis for occurring in less than 2% of the state’s
total area.

3. Results
3.1. Model Fitting and Selection

The fitted models showed precision in the estimates (low Syx%) and high correlation
between observed and predicted values (high Ryy), with significant regression coefficients
(x < 0.01) for most evaluated datasets (Table 2). Overall, the models that included both
diameter and height as predictors, showed the best model-fitting statistics, underscoring the
importance of total tree height (Ht) in above-ground biomass estimation. However, the non-
linear Husch model with diameter as the single predictor (Model 1) also yielded satisfactory
fits, especially for Semideciduous Forests (SFs) (Table 2). Due to the difficulties and costs
involved in measuring tree height in the field, these single-predictor equations, based solely
on diameter, may prove valuable for obtaining estimates of above-ground biomass.

Table 2. Fitting and precision statistical parameters of the models tested to estimate above-ground
biomass in the main Atlantic Forest vegetation types and the overall forest cover in Rio de Janeiro state.

Equation Model B0 B1 B2 Syx% Ryy AIC  VarPower
1 5.45 x 10* 1.9435 30.84 092  -392 1.8148
General 2 0.0736 1.74 x 1075 29.78 092 378 1.4865
3 2x 1074 1.519 0.8251  27.65 0.92 —426 2.2998
1 72 x 1074 1.8586 33.27 089  —164 1.7630
RAF 2 0.0787 1.63 x 107 31.85 091  —165 1.4508
3 1.52 x 104 1.465 0.9627  29.73 0.91 —184 2.2274
1 461 x 107* 2.0109 24.71 093  —138 1.3700
SF 2 0.0834 1.85 x 107 25.27 096  —126 1.2381
3 3x 1074 1.6954 0.5059  23.35 0.95 —140 1.6086
1 476 x 1074 1.928 25.31 083  —142 2.3081
RF 2 0.05 1.83 x 10~° 25.21 0.80 —130 1.2925
3 0.0004 1.5896 0.4580 24.22 082  —137 2.3529

BO, B1, and B2, regression coefficients (non-significant coefficients shown underscored); Syx%, relative standard
error of the estimate; Ryy, coefficient of determination; AIC, Akaike Information Criterion; SF, Semideciduous
Forest; RAF, Rainforest; RF, Restinga Forest. The best models are highlighted in bold. Non-significant coefficients
are underlined.

The non-linear Schumacher and Hall model (Model 3) provided the best fit for the
total dataset and all forest types. Compared to the other tested models, Model 3 produced
the lowest standard errors of the estimate (Syx%), the highest coefficients of determination
(Ryy), and the lowest AIC values (Table 2). However, despite Model 3 showing the best
statistical results for the Restinga Forest (RF), the regression coefficients were not significant,
which hinders the utility of this model. For this forest type, the BO coefficient of the single-
predictor Husch model (Model 1) was also not significant. Therefore, due to its good fit
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and appropriate residual distribution (Table 2), the Spurr model (Model 2) was chosen to
estimate biomass in RF.

Graphical analysis of the residuals revealed non-constant error variance, indicating
heteroscedasticity trends (Supplementary Information Figures S2-S5). All fitted models
exhibited this behavior, which was stronger for the RAF and the total dataset. Outliers were
also observed, likely due to the presence of atypical data points in the sample, indicating
an inadequate fit of the models for one or more observations. The RF, which contained a
smaller dataset, showed more evenly distributed residuals (Supplementary Information
Figure S5). Despite the issues detected, the graphical analysis of residuals reinforces the
non-linear Schumacher and Hall model (Model 3) as the most adequate to estimate biomass
in RAF, SE and the entire dataset, while the Spurr model (Model 2) was the most adequate
for the RE.

The specific equations fitted for the three forest types were more precise (lower Syx%)
than the local-generic equation, which was fitted for the entire dataset (Table 2). How-
ever, the hypothesis tests (regression-based TOST) did not reveal significant differences
(p-value > 0.01) between the observed values (measured on-site) and those obtained by
either the forest-specific or the local-generic equations (Figure 3; Supplementary Informa-
tion Table S1). Hence, the forest-specific and local-generic equations produced statistically
similar biomass estimates. Conversely, the pantropical equation yielded estimates that were
significantly different from the observed values (measured on-site) and those generated by
forest-specific and local-generic equations (Figure 3; Supplementary Information Table S1).

@
2.5+
2.04
—~ 151 a a a
=)}
3
m
Q
< 10_
0.5+ } I
0.0+
AGB ((‘;eneric) AGB (méasured) AGB (Pa'mropical) AGB (S'pecific)
Treatments
Treatments D AGB (Generic) D AGB (measured) D AGB (Pantropical) D AGB (Specific)
(b) (©) (d)
e 4 '
_ 1s{ PRMSE=28367% 7 | _ ;5. PRMSE=29.286 % 4 | _ 15, PRMSE=53.799% 7
s ko , 8
3 3 P2 o
& & 104 4 @ 104
(5] 5] p [F]
E E s £
m 0 7 s}
o @ 05+ o @ 05+
< < 7 <
s
0.0, 0.0
0.0 0.5 10 15 0.0 0.5 1.0 15 0.0 0.5 1.0 15
AGB (Specific) AGB (Generic) AGB (Pantropical)

Figure 3. Cont.



Forests 2024, 15, 1568

10 of 19

(e) ® (@)
Ve 7 s
15{ PRMSE =56.264% 4 151 PRMSE =56.653 % 4 151 PRMSE=73269% 4
‘© Q ‘c
2 T 1.0 2 104
a 8 )
m m [an]
2 Q os 2 o5
0.04 0.04
O:O Ot5 170 115 O"O 075 1:0 175 OTO 0t5 170 1:5
AGB (Pantropical) AGB (Pantropical) AGB (Generic)

Figure 3. Equivalence test (regression-based TOST using Bootstrap) for comparing means or similari-
ties between field-measured biomass and the estimates produced by the forest-specific, local-generic,
and pantropical equations. The analyses were based on biomass samples taken from 172 trees mea-
sured on site: (a) Distribution of AGB values across the different equations for measured trees on
site. There were no significant differences (p-value > 0.01) between the observed values (measured on
site) and those obtained using either local-generic equations or the forest-specific, though there was a
significant difference when compared to values based on pantropical equation. The letters “a” and
“b” represent the statistically significant difference between the treatments. (b) Relationship between
AGB estimated based on specific equation per forest types and measured AGB. (c) Relationship
between AGB estimated from the generic equation and measured AGB. (d) Relationship between
AGB estimated from the pantropical equation and measured AGB. (e) Relationship between AGB
estimated from pantropical equation and AGB estimated based on specific equation per forest types.
(f) Relationship between AGB estimated from pantropical equation and AGB estimated from a generic
equation for all forest types. (g) Relationship between AGB estimated from generic equation for all
forest types and AGB estimated based on specific equation per forest types. RMSEs are expressed as
the percentage of mean square value (PRMSE).

3.2. Estimates of the Biomass and Carbon Stocks

Although the forest-specific models showed higher precision in estimating biomass
stocks than the local-generic model, they were statistically similar. Both types of equation
exhibited good fit and precision in the biomass estimates (Tables 3 and 4). The difference
in precision, as indicated by the sampling error, was approximately 1%; while the forest-
specific equations generated a sampling error of 7.67%, that number was 8.74% for the
local-generic equation.

Table 3. Estimates and associated statistics of the above-ground biomass of each vegetation type and
the entire Atlantic Forest cover of Rio de Janeiro state produced with specific allometric equations
fitted for the state’s main vegetation types and data from the National Forest Inventory collected in
Rio de Janeiro (NFI-R]).

Vegetation Biomass CI Ccv Sampling Error
g["ype Area (ha) UAs (Mgha 1) (Mghal) (%) % )g
DF 5868.4 13 32.8 +94 16.0 28.55
SF 452,922.5 63 76.4 +84 6.63 11.06
RAF 895,278.8 68 85.5 +10.0 7.02 11.71
MF 18,936.6 19 53.0 +10.2 11.10 19.25
RF 37,561.3 22 48.7 +11.7 13.96 24.02
TOTAL 1,410,567.6 185 70.7 +5.4 4.64 7.67

UAs, sampling units; CI, confidence interval; CV, coefficient of variation; DF, Deciduous Forest; SF, Semideciduous
Forest; RAF, Rainforests; MF, Mangrove Forest; RF, Restinga Forest.

The average above-ground biomass stocks per hectare, estimated by forest type and
for the entire Atlantic Forest cover in Rio de Janeiro state using forest-specific allometric
equations, was 70.7 Mg ha~! (+5.4 Mg ha~!), with a sampling error of 7.67% (Table 3).
This corresponds to approximately 35.4 Mg ha~! (+£2.7 Mg ha™!) of stored carbon. Con-
sidering the overall forest cover in Rio de Janeiro state (approximately 1,410,568 ha), the
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specific equations indicate that the total above-ground biomass stored in the state is 99.8 Tg
(7.6 Tg), corresponding to 49.9 Tg (£3.8 Tg) of stored carbon.

Table 4. Estimates and associated statistics of the above-ground biomass of each vegetation type and
the entire Atlantic Forest cover of Rio de Janeiro state produced with a generic allometric equation
fitted for the state’s total forest cover and data from the National Forest Inventory collected in Rio de
Janeiro (NFI-R)).

Vegetation Biomass CI cv Sampling Error

Type Area (ha) UAs (Mgha-1) (Mgha1) (%) (%)

DF 5868.4 13 32.8 +94 16.02 28.55

SF 452,922.5 63 66.7 +7.9 7.15 11.93

RAF 895,278.8 68 924 +10.6 6.86 11.44

MF 18,936.6 19 53.0 +10.2 11.10 19.25

RF 37,561.3 22 27.7 +10.8 22.84 39.29
TOTAL 1,410,567.6 185 67.5 +59 5.29 8.74

UAs, sampling units; CI, confidence interval; CV, coefficient of variation; DF, Deciduous Forest; SF, Semideciduous
Forest; RAF, Rainforests; MF, Mangrove Forest; RF, Restinga Forest.

The local-generic equation estimated a similar (although inferior) biomass stock to
the forest-specific equations. With a sampling error of 8.74%, it estimated 67.5 Mg ha™!
(£5.9 Mg ha~!) of biomass (Table 4), which corresponds to 33.8 Mg ha—! (£2.9 Mg ha™!)
of carbon stock. Compared to the estimates produced by the forest-specific equations, the
local-generic equation also underestimated the biomass and carbon stocks in SF and RF.
Conversely, the RAF estimate obtained using the local-generic equation was higher than
that obtained using the RAF-specific equation.

The biomass stored in RAF was greater than in any other forest type. The RAF-specific
equation estimated its above-ground biomass stock at 85.5 Mg ha~! (+10.0 Mg ha™!),
corresponding to 41.3 Mg ha~! (4:5.1 Mg ha~!) of carbon, while the local-generic equation
estimated 92.4 Mg ha~! (£10.0 Mg ha!) of biomass and, accordingly, 46.8 Mg ha~!
(5.0 Mg ha~!) of carbon. According to the forest-specific equations, the vegetation types
in Rio de Janeiro’s Atlantic Forest with the lowest biomass stocks per hectare are DF
(32.8 £ 9.4 Mgha!)and RF (48.7 + 11.7 Mg ha™1).

The estimates generated with the pantropical equation [12] for comparison purposes
further highlighted the greater precision of the forest-specific equations (Table 5). The
average biomass per hectare quantified for the total dataset using the pantropical equation
was 79 Mg ha~! (+£9.3 Mg ha1!), which was greater than the estimate produced by the
forest-specific equations. The total biomass stock estimated in the state with the pantropical
equation had a sampling error of 11.81%, compared to 7.67% obtained with the specific
equations. The pantropical equation, widely used to estimate above-ground biomass in
tropical forests, tended to overestimate the biomass stocks contained in the Atlantic Forest
of Rio de Janeiro state by 11.7%.

The hypothesis tests revealed no significant differences (p-value > 0.01) between the
biomass estimates produced with forest-specific equations and those produced with the
local-generic equation for 185 field-sampled plots with a total of 25,357 trees (Figure 4;
Supplementary Information Table S2). In other words, the forest-specific equations and the
local-generic equation provided statistically similar estimates. Consequently, we rejected
hypothesis H1, asserting the superior precision of forest-specific equations over the local-
generic equation, while accepting hypothesis H2, stating that both types of equation
(forest-specific and local-generic) produce more accurate estimates compared to those
obtained with the pantropical equation.
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Table 5. Estimates and associated statistics of the above-ground biomass of each vegetation type
and the entire Atlantic Forest cover of Rio de Janeiro state produced using a pantropical allomet-
ric equation from the literature and data from the National Forest Inventory collected in Rio de

Janeiro (NFI-R]).

Vegetation Biomass CI Ccv Sampling Error
gType Area (ha) UAs (Mgha 1) (Mghal) (%) % )g
DF 5868.4 13 29.5 +11.2 21.21 37.81
SF 452,922.5 63 74.3 +11.5 9.30 15.53
RAF 895,278.8 68 115.7 +18.5 9.58 15.97
MF 18,936.6 19 58.9 +15.2 14.92 25.88
RF 37,561.3 22 27.2 +13.0 27.75 47.75
TOTAL 1,410,567.6 185 79.0 +9.3 7.14 11.81

UAs, sampling units; CI, confidence interval; CV, coefficient of variation; DF, Deciduous Forest; SF, Semideciduous
Forest; RAF, Rainforests; ME, Mangrove Forest; RF, Restinga Forest.
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Figure 4. Equivalence test (regression-based TOST using Bootstrap) to compare means or similarities
between the estimates generated by the forest-specific, local-generic, and pantropical equations. The
analyses were based on field-measured biomass samples from 185 plots. (a) Distribution of AGB
values across the different equations: Generic equation for all forest types, pantropical equation,
and specific allometric equation for all forest types. Both AGBs estimated based on generic and
specific per-forest types were significantly different for the pantropical equation. The letters “a”
and “b” represent the statistically significant difference between the treatments. (b) Relationship
between AGB estimated from the pantropical equation and AGB estimates based on specific equation
per forest type. (c) Relationship between AGB estimated from the pantropical equation and AGB
estimates from the generic equation. (d) AGB estimates from the generic equation and AGB estimates
based on the specific equation per forest type. RMSEs are expressed as the percentage of mean square

value (PRMSE).

4. Discussion

Our results showed that the specific allometric equations fitted for the three main
Atlantic Forest vegetation types and the local-generic equation, fitted for the entire dataset,
demonstrated good fits and generated statistically similar estimates (Figure 3, Supple-
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mentary Information Table S1). Thus, our hypothesis H1 that forest-specific equations
would outperform the local-generic equation was rejected, highlighting the possibility of
generalizing estimates using a single locally produced equation. Conversely, the estimates
generated by the pantropical equation [12] differed significantly from those produced with
the equations presented in this study, supporting our hypothesis H2. More specifically,
the locally developed equations generated more precise and accurate estimates than the
pantropical alternative (Figures 3 and 4; Supplementary Information Tables S1 and S2).
Although it was based on a global dataset of field-measured trees in 58 locations encompass-
ing broad variation in climate and vegetation types (4004 trees with stem diameter > 5 cm),
the pantropical equation overestimated the local biomass stock by 11.7%, emphasizing
the need for locally fitted equations for more consistent biomass and carbon estimates.
Indeed, the choice of allometric equation represents one of the main bottlenecks for ac-
curately estimating biomass and carbon in a specific forest area. In particular, the use of
non-conservative allometric equations can overestimate biomass stocks by up to 30% [22].

Although statistically similar, the forest-specific equations slightly improved the
biomass estimates and showed greater precision than the local-generic equation. This
was demonstrated by the specific equations” higher coefficients of determination (Ryy) and
lower relative standard errors of the estimate (Syx%). Compared to the specific equations,
the local-generic equation overestimated by 8% and underestimated by 12.7% and 43% the
biomass stocks of the Rainforest (RAF), the Semideciduous Forest (SF), and the Restinga
Forest (RF), respectively. The standard error of the biomass estimate obtained with the
local-generic equation for the RF was about 40%, indicating low estimate precision, in com-
parison with the 24% error obtained with the specific equations. Despite these differences,
our results highlight that the forest-specific equations and the local-generic equation can
be used to obtain precise estimates of above-ground biomass stored in the forest cover
of Rio de Janeiro state. Because the local-generic equation was fitted using data from the
three main vegetation types in Rio de Janeiro’s Atlantic Forest (RAF, SE, and RF) [17], their
biomass variability could be integrated into the final model. Thus, the use of specific
equations is recommended for typical RAF, SF, and RF forests, especially if located in other
Atlantic Forest sites outside Rio de Janeiro.

Differences in structure and species composition reported for the RAF and SF forest
types [47,48] translate into their biomass stocks. On average, the RAF had a biomass stock
10% greater than that estimated for the SF. At the same time, both showed much greater
biomass values than other vegetation types of Rio de Janeiro’s Atlantic Forest, such as
the Deciduous Forest (DF), the Restinga Forest (RF), and the Mangrove Forest (MF). For
instance, the biomass stocks estimated for the RAF and SF were, respectively, 43% and 36%
greater than that estimated for the RE. While the RAF occurs in humid environments with
favorable conditions for tree growth and typically contains larger trees with a greater above-
ground biomass stock, the RF occurs on sandy coastal plains with low soil fertility subject
to frequent inundations, which impose environmental constraints on tree growth [49].

The average biomass stocks estimated with the specific equations for RAF and SF
(85.5 Mg ha~! and 76.4 Mg ha~!) were lower than those found in other Atlantic Forest
regions. For example, in Santa Catarina state, Atlantic Forest biomass estimates were
38% higher for the RAF (117.7 Mg ha~!) and 14% higher for the SF (86.9 Mg ha~!) [50].
In Minas Gerais state, Atlantic Forest biomass estimates were 58% higher for the RAF
(135.3 Mg ha—1) and 35% higher for the SF (102.9 Mg ha~!) [8]. Even when considering
a comparable area encompassing the entirety of the forested regions in Rio de Janeiro,
calculations using Atlantic Forest equations tailored for Minas Gerais, a neighboring state
under distinct environmental conditions, a recent study yielded estimates of 91 tons per
hectare [21]. This figure is approximately 28% higher than our estimates derived from our
locally developed equations. These differences reinforce the need to develop local equations
to accurately capture biomass variation among Atlantic Forest fragments and could be
an indication of the secondary successional status of Rio de Janeiro’s forests. Secondary
forests are characterized by fast-growing, short-lived, and low-wood-density trees, which
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result in lower carbon stocks per unit area [51]. Although the carbon reserves of secondary
forests are lower compared to mature forests, their rapid growth rates enhance their carbon
absorption potential [52,53], making them important carbon sinks [51]. However, they
are also more susceptible to natural and anthropogenic disturbances like windstorms and
fires [54]. Thus, despite their lower biomass stock, secondary forests are more susceptible to
extreme events and have an important role in climate change mitigation, which highlights
their conservation need. In addition to avoiding further deforestation and promoting
sustainable forest management, fostering secondary forest regeneration provides a low-cost
carbon sequestration mechanism with multiple benefits for biodiversity and ecosystem
services [52].

The average above-ground biomass stock in Rio de Janeiro’s forests was estimated
at 70.7 & 5.4 Mg ha~! using specific allometric equations. Compared to our estimate,
the widely used pantropical equation proposed by Chave et al. (2014) [12] overestimated
biomass stocks by 11.7%. It is important to state that, similarly, our local equations can
be expected to generate uncertainties in different forest types or even in the same forest
type under completely distinct environmental conditions; thus, it should be applied with
caution. Our observed uncertainties could be attributed to the equation being fitted to a
large dataset that included primary forests of the Amazon Rainforest Domain. Models
fitted with Amazon data using only diameter at breast height (DBH) as a predictor variable
are likely to overestimate the biomass of Atlantic Forest trees because, on average, for a
given DBH, Amazon trees tend to be taller than those in the Atlantic Forest [55]. Including
total tree height (Ht) and wood density (WD) as predictor variables in addition to DBH in
the pantropical model improves the precision of the estimates [56,57] and enables broader
applicability, including a better fit to environmental variation. At the same time, however,
including these variables as predictors in the model also produces uncertainty in the
biomass estimates.

Because tree height is difficult to measure and often estimated visually in forest
inventories, including it in allometric models is not recommended [58]. However, tree
height is also an important component in describing tree shape and improving biomass
estimates [17], which led us to include it as a predictor. Similarly, including wood density
can produce uncertainty in biomass estimation due to its high geographical, within-species,
and even within-tree variability along vertical and radial axes [59,60]. It is important to
highlight the caveats and limitations of the present study, and we can list a few that may
have influenced our analysis and interpretations. First, we assumed that measured biomass
was accurate, although it has not been measured through a widely used destructive method.
This methodology was adapted and developed as an alternative to destructive methods due
to the current highly threatened status of the Atlantic Forest. Field-measured dry biomass
of the trees sampled in this study, used as a response variable for fitting the equations,
was obtained through a non-destructive method by multiplying rigorously measured tree
volume by scaling standing trees, and average wood density was collected at different
tree heights. To assess the uncertainty associated with this non-destructive approach, we
suggest that future studies collect these data through a destructive method that allows the
sample trees to be felled and weighed in licensed areas for vegetation removal. Second, our
AGB estimates focused on three main vegetation types in the Atlantic Forest. Additional
sampling within the less represented forest types, such as the particularly challenging
mangrove ecosystems and deciduous forests within small and highly fragments, is likely
needed to expand our work.

For the entire forest cover of Rio de Janeiro state (43,782 km?), the specific equations es-
timated an above-ground biomass stock of 99.8 & 7.6 Tg and a carbon stock of 49.9 & 3.8 Tg.
We highlight that these values correspond to only a portion of the entire carbon stock in
the state and the Atlantic Forest Domain. Although live above-ground biomass is mainly
contained in trees, carbon is also stored in other forest compartments, such as in roots,
necromass, litter, and soil organic matter. Moreover, the carbon stored in other land cover
types, including anthropogenic land uses such as pastures, agricultural land, and planted
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forests, should also be considered for a more comprehensive estimate. For example, in
the state of Acre (160,000 km?), located in the Amazon Forest Domain, the above-ground
biomass stock was estimated at 3.6 £ 0.8 Pg, including anthropogenic land uses [61]. These
authors found that, although they occupy 14% of the state’s area, anthropogenic land uses
contribute only 6% of the state’s total carbon stock.

The allometric equations fitted in this study to estimate above-ground biomass are
pioneering in the state of Rio de Janeiro and are some of the few developed for the Atlantic
Forest Domain. We suggest that these equations serve as a baseline for the implementation
of public policies toward the conservation of ecosystem services and the reduction of CO,
emissions. For example, public policies that monitor aboveground carbon stocks and re-
movals within the state. In the future, carbon monitoring, reporting, and verification (MRV)
protocols will become increasingly reliant on remote sensing techniques, but their calibra-
tion will still depend on the precision of ground-based carbon storage estimates [62-65],
and our study can largely contribute to that. In this regard, we recommend that other local
and specific equations for other Atlantic Forest vegetation types be developed to improve
the precision of biomass and carbon stock estimates on regional and global scales.

These results are particularly important given the current strategies targeting forest
conservation and local climate change mitigation. The choice of allometric equation is one
of the most important sources of imprecision in biomass estimation [22]; hence, the equa-
tions presented in this study can aid in improving the quality of these estimates. Projects
conducted in regions with low data availability can use ill-suited allometric equations, re-
sulting in less robust estimates of above-ground biomass [66]. Given the growing pressures
from real estate speculation and associated infrastructure enterprises in Rio de Janeiro state,
these locally developed equations are recommended for environmental licensing projects.
This application would not only quantify the wood volume to be removed but also the
corresponding carbon stock, providing a baseline for competent environmental authorities
to demand compensatory measures for these emissions.

Moreover, given the growing number of Payment for Ecosystem Services programs [67-69]
and the expansion of the voluntary carbon market, the equations developed in this study can
be potentially relevant to improve the accuracy of these estimates. Generic allometric
equations yield estimates around 15.4% higher than the average obtained with better-
fitted and conservative equations [22]. Therefore, the fact that compensation for forest
conservation in the voluntary carbon market is directly proportional to the amount of stored
carbon emphasizes the importance of choosing locally produced and more conservative
equations. This choice improves the accuracy of credit issuance calculations and avoids
over-crediting risks that affect carbon credit performance.

5. Conclusions

Our results highlight the better performance of local-specific allometric equations in
providing precise estimates for aboveground biomass stocks. Locally developed equations
proved to be more accurate than widely used pantropical equation, which were found to
yield non-conservative biomass estimates. This finding underscores the need of consid-
ering the specific characteristics of each region and forest type when modeling biomass,
particularly in highly diverse ecosystems such as the Atlantic Forest. Further, these results
have important implications for the formulation of public policies aimed at mitigating
CO; emissions, offering robust scientific support for more effective conservation and forest
management strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/f15091568/s1, Figure S1: Non-destructive climbing method for
tree measurements. (A): tree stem measurements with ladder; (B): tree stem measurements with
climbing equipment; (C): tree crown measurements with climbing equipment; (D): adapted method
with two measurers for large trees.; Figure S2: Graphical analysis of percentage residuals (al, a2,
a3), correlations between observed and predicted above-ground biomass values (b1, b2, b3), and
frequency histogram of the relative errors (cl1, c2, ¢3) produced by the models of Husch (al, b1, c1),
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Spurr (a2, b2, ¢2), and Schumacher and Hall (a3, b3, c3) based on the total dataset to estimate the
total above-ground biomass in the Atlantic Forest cover of Rio de Janeiro state, Brazil.; Figure S3:
Graphical analysis of percentage residuals (al, a2, a3), correlations between observed and predicted
above-ground biomass values (b1, b2, b3), and frequency histogram of the relative errors (cl, c2,
c3) produced by the models of Husch (al, b1, c1), Spurr (a2, b2, c2), and Schumacher and Hall (a3,
b3, c3) to estimate the total above-ground biomass of Rainforests in Rio de Janeiro state, Brazil.;
Figure S4: Graphical analysis of percentage residuals (al, a2, a3), correlations between observed
and predicted above-ground biomass values (b1, b2, b3), and frequency histogram of the relative
errors (cl, c2, ¢3) produced by the models of Husch (al, b1, c1), Spurr (a2, b2, ¢2), and Schumacher
and Hall (a3, b3, ¢3) to estimate the total above-ground biomass of Semideciduous Forests in Rio de
Janeiro state, Brazil.; Figure S5: Graphical analysis of percentage residuals (al, a2, a3), correlations
between observed and predicted above-ground biomass values (b1, b2, b3), and frequency histogram
of the relative errors (cl, c2, c3) produced by the models of Husch (al, b1, c1), Spurr (a2, b2, c2), and
Schumacher and Hall (a3, b3, c3) to estimate the total above-ground biomass of Restinga Forests
in Rio de Janeiro state, Brazil. Table S1: Results for equivalence test (regression-based TOST using
bootstrap) for comparing means or similarities between field-measured biomass and the estimates
produced by the forest-specific, local-generic, and pantropical equations. The analyses were based
on biomass samples taken from 172 trees measured on-site.; Table S2: Results for equivalence test
(regression-based TOST using bootstrap) to compare means or similarities between the estimates
generated by the forest-specific, local-generic, and pantropical equations. The analyses were based
on field-measured biomass samples from 185 plots.; Table S3: Summary of the statistical results for
biomass samples taken from 172 trees measured on site.
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