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Abstract: The management of plantation forests using precision forestry requires advanced inventory
methods. Unmanned aerial vehicle laser scanning (ULS) offers a cost-effective approach to accurately
estimate forest structural attributes at both plot and individual tree levels. We examined the utility
of ULS data collected from a radiata pine stand for tree detection and prediction of diameter at
breast height (DBH) and stem volume, using data thinned to 13-point densities (ranging from
10–12,200 points/m2). These datasets were created using a DTM with the highest pulse density
and DTMs that used the native decimated point clouds. Models of DBH were constructed using
partial least squares (PLS) and random forest (RF) from seven classes of metrics that characterized the
horizontal and vertical structure of the canopy. Individual tree segmentation was consistently accurate
across the 13-point densities and was insensitive to DTM type (F1 scores > 0.96). Predictions of DBH
using PLS models were consistently more accurate than RF models and accuracy was insensitive to
the DTM type. Using data from the native DTMs, DBH estimation using PLS had the lowest RMSE of
1.624 cm (R2 of 0.756) at a point density of 12,200 points/m2. Stem volume predictions made using
PLS predictions of DBH and height from the ULS had the lowest RMSE of 0.0418 m3 (R2 of 0.792)
at 12,200 points/m2. The RMSE values for DBH and volume remained relatively stable from 12,200
to between 750 and 400 points/m2, with reductions in accuracy occurring as point density declined
below this threshold. Overall, these findings have significant implications, particularly for the precise
estimation of DBH and stem volume at the individual tree level. They demonstrate the potential of
cost-effective ULS sensors for rapid and frequent plantation forest assessment, thereby enhancing the
application of light detection and ranging (LiDAR) technology in plantation forest management.

Keywords: decimation; DBH; forest inventory; individual tree modelling; LiDAR; L1 sensor; PLS;
ULS; volume

1. Introduction

Plantation forests cover approximately 131 million ha, constituting 3 percent of the
global forest area [1]. They play a pivotal role in meeting demands for wood, fuel material,
and various forest products. Additionally, they provide ecological and environmental ser-
vices such as carbon sequestration [2]. Currently, New Zealand has a plantation forest area
of about 1.8 million ha [3], equivalent to approximately 21 percent of its total forest cover.

These plantation areas require frequent inventory and assessment to ensure sustainable
long-term management [4–6]. Therefore, the precise estimation of tree structural attributes
is of paramount importance for forest managers, given their strong correlation with site
productivity, tree growth, and commercial timber volume [7–10]. Using a plot-based
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system, typically Diameter at Breast Height (DBH) is measured from all trees, while height
is measured from a sub-sample, and both metrics are used via volume functions to estimate
total stem volume.

Traditional methods for measuring DBH and height are laborious, time-intensive,
costly, subjective, and error-prone, thereby limiting scalability. In contrast, remote sensing
(RS), particularly Light Detection and Ranging (LiDAR) technology, provides a convenient
toolkit for in situ tree inventories. LiDAR facilitates the acquisition of detailed three-
dimensional (3D) information around important structural metrics such as crown diameter,
volume, height, and shape [11]. These metrics exhibit strong correlations with individual
tree size [12] and can be used to accurately predict stem and tree volume at scale [13].

The adoption of LiDAR for forest inventories has increased markedly over the past few
decades, which has been attributed to declining acquisition costs. However, airborne laser
scanning (ALS) remains operationally complex and relatively expensive for smaller-scale
applications such as stand-level assessments [14]. ALS produces relatively low-density
point clouds and can be expensive to capture in small stands. Static terrestrial laser scanning
(TLS) is often impractical in forestry settings due to the need for unimpeded forest access
and line of sight to all trees. Using this method there are often occlusions above the canopy,
resulting in inaccurate height measurements. Mobile laser scanning (MLS) backpack
systems also face similar limitations to TLS, as they require users to navigate through
forests and this method is prone to occlusions. Both TLS and MLS datasets captured from
young, dense plantation stands are often noisy due to excessive needle leaf cover that
prevents laser pulses from penetrating the stem. This makes it challenging to accurately
reconstruct tree stems for direct measurements of tree attributes such as DBH.

An attractive alternative to these methods is unmanned aerial vehicle laser scanning
(ULS), offering a more budget-friendly means of capturing high-density point clouds across
forested areas of small to medium scale [15,16]. Recent advances in miniaturization and
commercialization of low-cost, solid-state ULS have made entry costs for this technology
even more affordable [17]. Consumer-grade ULS sensors, such as the DJI-Zenmuse L1 (DJI,
Shenzhen, China; hereafter referred to as DJI-L1), have emerged as appealing choices for
stand assessment when acquisitions need to be cost effective, rapid, and/or frequent.

Previous research has extensively investigated the use of area-averaged LiDAR vari-
ables to predict forest attributes across a wide range of ALS pulse densities [18–21]. For
example, distributional metrics determined using reduced point density can provide a rela-
tively stable level of accuracy in estimating important forest structural attributes including
above-ground biomass (AGB) in tropical forests [22]. Similarly, in mixed conifer forests, the
associations between ALS-derived metrics and tree attributes such as height, DBH, and
basal area remained largely unaffected until the point density was reduced to very low
values, i.e., below 1 point/m2 [23].

Considerable research has utilized expensive LiDAR sensors for mainly research-based
applications. However, the development of commercial applications within plantation
settings will largely rely on the use of inexpensive commercial-grade LiDAR sensors, such
as the recently released DJI L1 sensor. Developing an understanding of the accuracy of
such sensors for predicting key attributes within forests is a critical step before such sensors
can be commercially deployed. It is unclear if data from these types of sensors require more
intensive processing and whether the high point density provided by these sensors can be
usefully utilized in the description of key forest metrics. Further research is also required
to identify the parameter combinations that yield the most accurate tree characterization.
In addition, little research has examined how variation in point cloud densities of data
collected from commercial-grade ULS affects the accuracy of structural attribute estimation
in planted forests [24].

This study collected field measurements and high-density ULS data from the commercial-
grade DJI L1 sensor over a nine-year-old radiata pine (Pinus radiata D. Don) plantation.
These data were used to detect and segment individual trees and estimate DBH and stem
volume using decimated ULS data with 13 point densities, ranging from 10–12,200 points/m2.
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Datasets were created using a DTM with the highest point density (24,450 points/m2) and
DTMs that used the 13 native decimated point cloud densities to examine the impact of
DTM quality on detection and predictions. Two contrasting modeling approaches, that
included partial least squares (PLS) and random forest (RF), were used to predict DBH
from seven classes of metrics that characterized horizontal and vertical canopy structure.
The most accurate predictions of DBH were then combined with height from the ULS to
estimate stem volume.

Using these combinations of factors, the objectives of this study were to (i) quan-
tify the influence of point density and DTM type on the accuracy of tree segmentation,
(ii) determine the impact of model approach, point density, and DTM type on prediction
accuracy for DBH, (iii) identify the most important metric class for predictions of DBH, and
(iv) determine the influence of point density on the accuracy of stem volume predictions.

2. Materials and Methods
2.1. Study Site

This study was conducted in a 3-hectare trial within a plantation stand situated in
Kaingaroa forest, which is located in the central region of New Zealand’s North Island
(Figure 1). The site was established as a trial of elite clonal lines of radiata pine that was
nine-year-old at the time of measurement. The trial is divided into 86 square grids, each
covering an area of approximately 346 m2 that included 36 systematically planted trees,
distributed across six rows with uniform square spacing at intervals of 3.1 m.
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Figure 1. (a) The study area, showing UAV orthomosaic and tree locations, (b) RGB imagery of a
representative area, (c) a below canopy photograph showing stand conditions, and (d) the location of
the study site within New Zealand.
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The initial stand density was 1040 stems/ha which was thinned at age 8 to a stand
density of 456 stems/ha. All the remaining trees in the trial were also access pruned to
a height of ~2 m to facilitate trial measurements. The terrain is predominantly flat, with
some noticeable variations in slope along the northern and western boundaries, and has a
moderately dense understory layer of shrubby blackberry (Rubus fruticosus L.).

2.2. Field Measurements

The field measurements were carried out from late February to early March 2023, over
a period of two weeks. The recorded data included measurements of DBH and visual
assessments of the condition of each tree. The DBH was measured using a diameter tape
(accurate to 0.1 cm). The status of each tree was visually assessed according to standard
forest inventory guidelines by an experienced forest inventory and mensuration technician.
The standard forest inventory guidelines comprise more than 30 well-established categories
that include various aspects of tree form, such as stem deformities and double/multi-
leaders above DBH height. Summary statistics of tree attributes are presented in Table 1.
Heights were not measured in the field as previous research has highlighted potential
inaccuracies in field height measurement, caused by the difficulty in locating tree tops that
can introduce bias [25]. As previous research has found minimal differences between field-
and ULS-measured heights [26], ULS heights were used in this study.

Table 1. Description of site characteristics and summary statistics of field measurements. The
summary statistics for DBH were calculated from field measurements while maximum height was
derived from UAV data. Volume was calculated using a combination of field-measured DBH and
UAV-derived maximum height (see Section 2.4.2).

Site Characteristics

Trial area 3 ha
Establishment date August 2014
Planting spacing 3.1 m
Total number of trees measured 1744
Number of trees excluding multileader, dead, and damaged trees 1392
Field measurements started on 27 February 2023
Field measurements completed on 10 March 2023

Attribute Mean Standard deviation Range

Terrain attributes
Elevation (m) 370 2.6 363–374
Slope (◦) 7.8 6.5 0–23
Tree structural attributes
DBH (cm) 23.27 3.63 7.80–37.80
Maximum height (m) 17.66 1.38 11.36–21.52
Total stem volume (m3) 0.28 0.09 0.03–0.73

To facilitate subsequent analysis, a stem map of the trial was created and validated
on-site, and the spatial coordinates of individual trees were linked to their respective entries
within the tree inventory.

2.3. LiDAR Data
2.3.1. Data Collection and Pre-Processing

Remote sensing data was acquired on 23 January 2023 using the DJI-Zenmuse L1
LiDAR and photogrammetry sensor. The sensor was mounted on a DJI Matrice 300 RTK
platform (DJI, Shenzhen, China). The LiDAR acquisition was conducted at a flying speed of
3 m/s and an approximate altitude of 55 m above ground, using the Terrain Follow mode
within the DJI Pilot 2 flight control software (version 1.1.5; DJI, Shenzhen, China). The
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vertical and horizontal beam divergences were recorded as 0.03◦ and 0.28◦, respectively.
The flight lines were systematically arranged in a gridded pattern, with a spacing of
approximately 10 m between them. Flight spacing was planned to maintain an 85%
forward and side overlap to facilitate improved point cloud colorization. The LiDAR
system operated in the repetitive scan mode, with a LiDAR pulse frequency of 160 Hz. Up
to three returns were recorded per laser pulse.

Point clouds were generated from the sensor’s native raw data format using the
DJI Terra software (version 4.0.1; DJI, Shenzhen, China). The initial stage of raw point
cloud processing involved the computation of point coordinates utilizing the base station
coordinates. The point clouds were then georeferenced to the NZGD 2000 New Zealand
Transverse Mercator coordinate system (EPSG 2193) and exported in laz format for further
analysis. Technical specifications of the flight parameters and LiDAR data as well as the
flight plan are detailed in Appendix A Table A1.

To gain insights into the spatial distribution of point density across the site, a density
raster with a resolution of 1 m was generated. The resulting raster exhibited an average
point density of 15,966 points/m2 and a standard deviation of 8500 points/m2. To eliminate
small areas of exceptionally high point densities and ensure consistent point densities
throughout the site, a homogenization process was applied to the point cloud. This homog-
enization aimed to achieve an initial maximum density of 24,450 points/m2, which is equiv-
alent to the rounded mean density plus one standard deviation. The “sample_homogenize”
function within the R software (version 4.3.3), lidR package [27] was implemented for
this purpose [28]. This function employs an algorithm that generates a grid of a defined
resolution and performs a random selection of points to be retained within each grid cell.
The proportion of retained points within each grid cell is determined by assessing the local
density in comparison to the desired density; in cases where the desired density exceeds
the local density, the points remain unchanged.

The homogenized point cloud was then subjected to standard pre-processing steps,
which included denoising, ground point classification, DTM generation, and ground
normalization. These processing steps were executed using the LASTools software package
(version 2.0.2) [29].

2.3.2. Individual Tree Segmentation

A canopy height model (CHM) with a resolution of 25 cm was generated by apply-
ing the pit-free algorithm developed by Khosravipour et al. (2014) [30] on the ground
normalized point cloud. Subsequently, the CHM underwent smoothing through the im-
plementation of a 3 × 3-pixel moving window. Individual tree peaks were then detected
using a local maxima algorithm [31] with a fixed window size of 3 m, corresponding to the
initial planting spacing of the site. Given the site’s predominantly homogeneous nature
following the recent thinning, a minimum tree peak height of 6 m was used as the height
threshold. The accuracy of the detected tree peaks was evaluated against the field-verified
stem map of the study site, and any discrepancies were rectified. The adjusted tree peaks
were then used as markers for individual tree crown delineation.

This delineation process was implemented on the smoothed CHM using the “mcws”
function within the R software, ForestTools package [32], which employs a watershed
algorithm for crown delineation. To ensure that the delineated crowns of individual trees
did not merge into neighboring tree crowns and to prevent the inclusion of low vegetation
within the identified tree crowns, the crown delineation was confined to the upper 75% of
the CHM [33]. The polygons generated through the crown delineation process were subject
to visual assessment to ensure their accuracy. Any inaccurately detected polygons were
excluded from the subsequent analysis. Finally, the accurately delineated crown polygons
were utilized to segment the ground-normalized LiDAR point cloud into discrete segments
representing individual trees.
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2.3.3. Metric Extraction

A comprehensive list of individual tree metrics, including metrics that describe various
aspects of tree structure, was created based on the existing literature [34–37]. This list
included metrics representing both the vertical and horizontal variations of individual
tree foliage, as well as metrics that capture the two-dimensional (2D) and 3D structural
characteristics of trees. These selected metrics were computed for each individual tree point
cloud segment, using packages within the R software [28].

The derived metrics can be classified into three primary categories: point-based,
area-based, and voxel-based. Point-based metrics, including standard height, intensity,
and crown density, were calculated using the “stdmetric” function within the lidR pack-
age [27]. Gap fraction and leaf area density (LAD) metrics [38] were determined using
the “gap_fraction_profile” function within the lidR package. Additionally, shape and scale
parameters for a Weibull Probability Distribution (WPD) [36] were produced to approxi-
mate vertical canopy structure, using the fitdistrplus package [39]. When calculating the
shape and scale, tree heights were normalized between 0 and 1 to focus exclusively on
crown shape. A convex hull was fitted to each individual tree segment using the cxhull
package [28] with the 2D area of the individual crown convex hull (cvx2D_area) and the
3D volume of the individual tree convex hull (cnx3D_vol) being estimated.

The point clouds were voxelized at a resolution of 25 cm using the VoxR package [40].
Subsequent to voxelization, the methodologies outlined by Lefsky et al. (1999) [37] were
applied to derive vertical canopy structural metrics. The comprehensive list of metrics
examined in this study is presented in Appendix A Table A2 and includes the following
seven metric groups: (i) standard height, (ii) standard intensity, (iii) standard crown density,
(iv) gap fraction and LAD, (v) vertical canopy structure, (vi) 2D and 3D convex hull
measurements, and (vii) voxel-based canopy metrics.

2.3.4. Data Thinning

The advent of laser scanners such as DJI-L1 allows very high-density point clouds to
be captured from relatively low-cost equipment. We hypothesize that the point density
obtained from these scanners enables the computation of new metrics that enhance the
spatial descriptions of forests. Similar densities can be achieved with other ULS sensors
such as the VUX1 or VUX240, but this necessitates slower, lower, and denser flight pat-
terns. In addition, sensors such as the DJIL1 provide forest owners with a cost-effective
means of acquiring LiDAR data. When utilized operationally, there is likely to be interest
in understanding how far point densities can be reduced, through flying faster, before
predictive accuracy of key attributes is reduced. To address these concerns, the LiDAR data
were subjected to a thinning process to produce a range of point densities which allowed
the influence of point density on the accuracy of tree attribute modeling to be examined.
The selected densities covered the range of densities achieved within forestry settings by
various LiDAR platforms (i.e., aircraft, helicopter, and unmanned aerial vehicles (UAVs)), as
well as the densities attainable through a combination of various flight parameter settings
within consumer-grade sensors.

A thinning algorithm was applied to the homogenized point cloud, resulting in point
clouds with target densities of 12,200, 6100, 3050, 1550, 750, 400, 200, 100, 50, 40, 30, 20,
and 10 points/m2. The obtained decimated point clouds were utilized to generate 1 m
resolution density rasters, which were later examined to ensure reasonable consistency of
point density across the site.

It is important to note that reducing the point density through decimation might
impact the number of ground points and consequently influence the accuracy of the DTM,
potentially introducing cumulative errors into the ground normalized point cloud. To
address this, a comparison was conducted between the DTMs derived from the decimated
point clouds (referred to as native DTMs hereafter) and the DTM derived from the ho-
mogenized point cloud with a density of 24,450 points/m2 (referred to hereafter as the
high-density DTM).
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Following this, the decimated point clouds were subjected to identical preprocessing
steps including denoising, ground classification, and DTM creation. The resulting pre-
processed point clouds underwent ground normalization using two distinct methods:
1. using the native DTM and 2. employing the high-density DTM.

Subsequently, all 27 ground-normalized point clouds—14 normalized using the native
DTM and 13 normalized using the high-density DTM—were passed through the individual
tree segmentation and metric extraction processes described in Sections 2.3.2 and 2.3.3.
Figure 2 illustrates a segmented individual tree at different point densities.
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2.4. Tree Structural Attribute Prediction

All modeling of tree structural attributes was undertaken within R [28]. All dead
trees or those that had forked stems (also known as multi-leaders) were removed from
the dataset. Following these exclusions, 1381 trees were available for model development.
A test dataset, comprising 20% of the observations (276 trees) was randomly selected,
withheld from model development, and used to test the accuracy of the models. The
training dataset comprised the remaining 80% of observations (1105 trees).

2.4.1. Prediction of DBH

Predictions of DBH were made using partial least squares (PLS) and random forest
(RF) which were implemented through the Caret (Classification And Regression Training)
package that streamlines the creation and comparison of predictive models [41]. Model
training was undertaken using a 10-fold cross-validation with five repeats. Under 10-fold
cross-validation, the training dataset is randomly divided into ten equal-sized groups.
During each round, the model is fitted to 90% of the data, with model validation undertaken
on the remaining 10%. This process is repeated a further nine times until each of the ten
groups has been used for validation. This entire process is then repeated five times and
model evaluation statistics were averaged across all 50 subsampled (ten folds × five repeats)
validation datasets. The final tuned models were then used to predict DBH on the withheld
test dataset and the accuracy and bias of these predictions provided an independent
assessment of model fit.
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Partial least squares [42] is a parametric modeling method that uses uncorrelated com-
ponents, which are linear combinations of the predictor variables, to model the dependent
variable (for more details see [43,44]). In comparison to other parametric methods, PLS is
useful when there are a large number of correlated variables in the dataset. The number
of components is a tunable hyperparameter within PLS. Random forest is a widely used
non-parametric tree-based method that is able to account for non-linear relationships and
is robust to collinearity between predictor variables [45,46]. The RF algorithm was imple-
mented through the ranger package [47], and tunable hyperparameters included the split
rule, number of trees, minimum node size, and the number of predictors that are randomly
selected as candidates for splitting at each node. Models were developed across the range
of point densities using both PLS and RF for datasets that had DTMs created using the
native and highest pulse densities. Thus, there were 54 models in total, which comprised
27 pulse densities (14 point densities with the native DTM—including the highest point
density of 24,450 points/m2—and 13 with the high-density DTM) × two algorithms. These
54 models used the entire suite of LiDAR metrics displayed in Appendix A Table A2. The
most important variables among these LiDAR metrics were identified using the varImp
function in the Caret package.

Among the seven variable types, the groups that had the strongest influence on model
performance were identified by constructing models in turn using metrics from each of
these seven groups. These models were fitted to each of the 14 point densities that were
constructed using the native DTM dataset. Partial least squares were used for variable types
with five or more predictive variables and linear regression for the two groups that included
only two predictive variables (area-based metrics and vertical canopy structure). As there
was high collinearity between the two variables for the area-based metrics (R2 > 0.8) code
was written to select, for each point density, the variable that was most strongly related to
DBH. In contrast, collinearity was relatively low for the vertical canopy structure metrics
(R2 < 0.5), so both variables were included in each of the 14 models. For both variable
types, polynomial terms were included in the linear models when they were significant
and improved model accuracy.

2.4.2. Prediction of Volume

The accuracy of volume predictions was assessed against a reference volume across
the 14 different point densities. Following [48], tree volume was computed from DBH and
height using the following equation,

V = h × ba × (a × (h − 1.4)-b + c), (1)

where h is tree height, ba is basal area and parameters a, b, and c have values of, respectively,
0.860, 0.972, and 0.340. This function was developed using data from radiata pine stands
located in the same region as the study site [48]. Using Equation (1), the reference volume
was computed from the field-measured DBH and LiDAR point-based zmax, which is
defined as the maximum height of the unthinned point cloud.

For each of the 14 point densities, normalized using the native DTM, V was predicted
from zmax, extracted from the individual tree point clouds, and model predictions of tree
DBH that were made using PLS. Using the test dataset, predicted values of volume were
regressed against the reference volume for each point density, and model statistics were
extracted to evaluate accuracy.

2.5. Accuracy Assessment

Detected tree peaks were tested against the field-verified stem map to assess the
accuracy of the tree peak detection. Common accuracy assessment statistics were calculated
using the following formulae:

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP + FN
(3)

F1 score = 2 × Recall × Precision
Recall + Precision

(4)

where TP, FP, and FN are, respectively, true positive (a prediction that correctly indicates
the presence of a tree), false positive (a prediction that incorrectly indicates the presence
of a tree), and false negative (a prediction that incorrectly indicates the absence of a
tree) predictions. Precision measures the proportion of correct positive predictions, while
recall identifies the fraction of true positives accurately identified. As the harmonic mean
of precision and recall, the F1 score can be categorized as representing poor (0.5–0.7),
acceptable (0.7–0.8), excellent (0.8–0.9), and outstanding (>0.9) levels of detection.

The accuracy of the decimated CHM and DTM and models that predicted DBH and
volume was assessed using the root mean square error (RMSE), mean bias error (MBE),
and the coefficient of determination (R2) which were calculated as follows:

RMSE =

√
∑n

i=1 (ŷi − yi)
2

n
(5)

MBE =
1
n

n

∑
i=1

yi − ŷi (6)

R2 =
∑i (ŷi − y)2

∑i (yi − y)2 (7)

where yi, ŷi, y, and n, respectively, represent reference or measured values, predicted values,
an average of the reference or measured values, and the sample size.

3. Results
3.1. Accuracy of Individual Tree Segmentation

An F1 score exceeding 0.96 was observed across all tested point densities and increased
from 0.96 at point densities < 100 points/m2 to 0.97 at all point densities above this value,
for both types of DTM (Appendix A Table A3). While recall marginally increased from
0.95–0.96 at 10 points/m2 to 0.98 at the highest point densities, precision slightly declined
with increasing pulse density from ca. 0.98 to 0.96 across this range, for both DTMs. This
indicated that at low point densities there were slightly more false negatives than false
positives, while the reverse was true at high point densities. The proportion of accurately
delineated crowns increased with point density from 96% at 10 points/m2 to 0.98 at
20 points/m2 and was 0.99 for point densities of ≥ 30 points/m2 for both DTM types.

3.2. DTM and CHM Assessment

There was little difference between the native DTMs obtained from decimated point
clouds and the highest density point cloud, with the RMSE ranging from 0.02 m to 0.11 m
(Table 2). Compared to the high density DTM, the height of the ground was slightly
underestimated by the thinned datasets with MBE increasing from 0–0.06 m as the point
density declined (Table 2). Compared to the unthinned CHM the thinned CHMs showed
increases in height as the point cloud density diminished, with MBE ranging from −0.01 m
at 12,200 points/m2 to −3.12 m at 10 points/m2. This systematic bias was accompanied by
an increase in the RMSE with reductions in point density (Table 2).
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Table 2. Summary statistics of the differences between the highest density DTM and CHM
(24,450 points/m2) and the decimated DTMs and CHMs (i.e., highest point cloud values minus
decimated point cloud values). Shown are the root mean square error (RMSE) and mean bias
error (MBE).

Density of the Decimated
Point Cloud (Points/m2)

DTM CHM

RMSE (m) MBE (m) RMSE (m) MBE (m)

10 0.11 0.06 3.60 −3.12
20 0.09 0.05 2.64 −2.29
30 0.08 0.05 2.44 −2.13
40 0.08 0.04 2.33 −2.03
50 0.07 0.04 1.67 −1.37

100 0.06 0.04 1.20 −0.96
200 0.05 0.03 0.87 −0.67
400 0.04 0.02 0.63 −0.46
750 0.03 0.02 0.46 −0.31

1550 0.03 0.01 0.31 −0.19
3050 0.02 0.01 0.20 −0.10
6100 0.02 0 0.11 −0.05

12,200 0.02 0 0.05 −0.01

3.3. DBH Prediction

Models of DBH using PLS had higher accuracy than those using RF at all point
densities, for both the high and native DTM categories (Figure 3). Differences in accuracy
between the two modeling methods generally increased with point density. For each
algorithm, little variation in accuracy was noted between the two types of DTM across
the point density range. For all four combinations of modeling methods and DTM types,
model accuracy was generally highest at 12,200 points/m2.
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Figure 3. Relationship between point density and (left) root mean square error and (right) coefficient
of determination (R2) for models of diameter at breast height (DBH). The displayed results are from
models using partial least squares (blue lines) and random forest (red lines) with a native digital
terrain model (dashed lines) (DTM) and a DTM created using the highest (24,450 points/m2) point
density (solid lines).

As data was thinned accuracy remained relatively stable until point densities of ca.
750 points/m2 were reached, below which there was a gradual decline in accuracy to ca.
50 points/m2 after which point accuracy declined far more rapidly. Given that PLS was
the more accurate algorithm and the use of the high-density DTM did not provide any gain
in accuracy, further analyses use PLS with the native DTM.
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Focusing on the PLS method, using the native DTM, the accuracy at 12,200 points/m2

(RMSE = 1.624 cm and R2 = 0.756) was relatively similar for thinned datasets to a point
density of 400 points/m2 (RMSE = 1.635 cm; R2 = 0.752) (Figure 3). As data was thinned,
below this point, accuracy declined slowly to 50 points/m2 (RMSE = 1.693 cm; R2 = 0.735)
and then more rapidly to 10 points/m2 (RMSE = 1.983 cm; R2 = 0.618). Across these
14 models, the most important variable was cnx3D_vol (in 9 models), followed by imean
(in two models) then isd, imean, and zmax, which were all most important in one model
(see Appendix A Table A2 for metric description).

Further insight into the most important variable types is given in Figure 4 which
shows changes in model accuracy in response to point density by variable type. The
area-based, crown density, and intensity metrics were the metric classes that produced the
most accurate models, and all showed similar changes in accuracy with point density. The
accuracy of models created using thinned point clouds with metrics from these three classes
was relatively invariant down to a point density of 100 points/m2, below which accuracies
showed a marked decline. Generally, models created using crown density metrics were
more accurate than those using intensity metrics which in turn slightly exceeded the
accuracy of models using area-based metrics. However, there was an interchange in this
ranking between these groups particularly at lower and very high point densities. Models
that used area-based metrics were more accurate than those using intensity metrics at point
densities ≤ 50 points/m2 and the variable selection process, chose cnx3D_vol as the most
important variable for all 14 models created using area-based metrics.
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from 10 to between 20–100 points/m2 before declining with further increases in point 

Figure 4. Relationship between point density and (left) root mean square error and (right) coefficient
of determination (R2) for models of diameter at breast height (DBH) developed using the seven metric
types. The metric types include area-based (red), gap fraction (light green), intensity (blue), voxelized
(pink), crown density (orange), height (dark green), and vertical canopy structure (purple). All model
statistics shown were fitted to data with the native digital terrain model.

Models created using voxelized metrics increased in accuracy to a point density of
50 points/m2, above which there were significant reductions in accuracy, that stabilized
at ca. 400 points/m2 (Figure 4). This pattern broadly reflected changes in models created
using the most important variable in this class (filled canopy) where accuracy increased
sharply from 10 to between 20–100 points/m2 before declining with further increases in
point density. Models of DBH created using height metrics had an intermediate accuracy
that was relatively invariant to point density with RMSE and R2, respectively, ranging
across point densities by 2.68–2.83 cm and 0.261–0.304. Models that used either vertical
crown structure metrics or gap fraction metrics were relatively inaccurate across the range
of point densities (Figure 4).
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3.4. Volume Prediction

Using Equation (1), PLS predictions of DBH were used in combination with the LiDAR
metric zmax, derived from the individual tree point clouds, to predict tree volume for the
14 point densities created using the native DTMs. These predicted values were then plotted
against a reference volume derived from actual DBH and the zmax obtained from the
unthinned point cloud (point density = 24,450 points/m2). The accuracy of these volume
predictions, obtained from the test dataset, is shown in Figure 5. At the maximum thinned
point density of 12,200 points/m2, volume was predicted with high accuracy, with RMSE
of 0.0418 m3 and R2 of 0.792. The accuracy of these predictions was relatively invariant
to reductions in point density until 750 points/m2 (RMSE = 0.0402 m3; R2 = 0.788), below
which there was a gradual reduction in accuracy to 50 points/m2 (RMSE = 0.0423 m3;
R2 = 0.765) and then a sharp drop to 10 points/m2 (RMSE = 0.0529 m3; R2 = 0.614).
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Predictions using the most accurate (12,200 points/m2) and least accurate (10 points/m2)
point densities are shown in Figure 6. At the lower point density, the reference volume
was slightly underpredicted across the range in volume. In contrast, the plot of predicted
against reference volume for the higher point density showed little apparent bias.
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4. Discussion
4.1. Robustness of Individual Tree Segmentation, DTM and CHM across Varying Point Densities

The accurate detection and segmentation of trees play a crucial role in various forestry
applications, including tree counting, biomass estimation, and forest health assessment.
The detection accuracy depends on many factors, including tree species, forest complexity,
point density, algorithm selection, and data quality [31,49–52]. One of the most important
factors for tree-level characterization is the density and accuracy of point clouds. The
advent of commercial-grade solid-state LiDAR units such as the L1 makes the acquisition
of ultra-high-density forest point clouds practical and cost-effective.

The use of the LiDAR L1 data in combination with a local maxima-based technique
provided a very accurate means of detecting individual tree peaks. Detection accuracy was
outstanding with the F1 score varying from 0.96 to 0.99 across the range of point densities.
This very high classification accuracy was most likely enhanced by the recent thinning of
the stand coupled with the utilization of key structural features of the stand. As the stand
had been recently thinned and had minimal canopy overlap, there were few hard-to-detect
suppressed trees beneath the larger canopies. Through using the initial planting spacing as
the window size for the local maxima algorithm we were able to prevent multiple peak
detection within a single crown. The use of a high minimum height threshold of 6 m further
restricted excessive false positive detections.

The CHM resolution can have a strong impact on local maxima detection [51,53].
Extremely low resolutions may lead to a smoothing effect on individual canopy heights,
resulting in tree peaks being missed, while extremely high resolutions can lead to multiple
peak detections on an individual tree from fine details such as large branches [54]. In this
study, the optimal overall segmentation accuracy was achieved with a CHM resolution of
25 cm, although customization may be needed for other forest types and plantation settings.
Previous literature indicates that unsupervised CHM-based segmentation methods, such
as the watershed algorithm, are prone to over-segmentation [16,51]. This research used
detected tree peaks as seed points for segmentation initiation, effectively demonstrating
how a supervised watershed segmentation method can address challenges related to
over-segmentation and achieve higher accuracy.

Point clouds contain a collection of 3D data points that intricately describe the surface
of various objects within a forest environment, including tree crowns, other vegetation,
and terrain. Therefore, the accuracy and reliability of forest surfaces such as the DTM
and CHM are inherently linked to the abundance of data points captured within the point
cloud [50,51]. The created native DTMs were relatively accurate down to several low
point densities and exhibited little disparity with the high-density DTM due to the relative
flatness of the site. However, underestimation of DTM values can occur due to ground
elevation interpolation between points in complex terrain and where laser penetration is
hindered by dense understory not adequately captured in low-density point clouds [24,55].

In contrast to the DTMs, point density had a stronger impact on the CHMs. Increasing
point cloud density improved CHM detail and the accuracy of the crown delineation. This
enhancement was mainly attributed to the increased availability of data points, which
allows for a more accurate depiction of fine details in canopy structures, including the
extended branches [56–58]. In contrast, CHMs from low-density point clouds overesti-
mated values due to limitations in representing vegetation height details [57]. In cases of
insufficient point density, models inaccurately portray complex canopy features, leading to
imprecise crown delineations [58]. Our results support this finding as we also observed
crown delineation imprecision increasing at densities below 100 points/m2.

4.2. Accuracy and Sensitivity of Forest Structural Attribute Estimation

The predictions of DBH and volume shown here were relatively accurate. Previous
research has developed similar models in tropical forests [22], mixed coniferous forests [23],
and broadleaf plantations [24], utilizing both ALS [22,23] and ULS [24] data. Comparable
prediction accuracies have previously been observed in several studies that examined the
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effectiveness of various modeling algorithms for predicting forest structural attributes in
different forest settings. These studies examined a range of techniques, including PLS,
RF, linear regression model (LM), linear model with ridge regularization (LMR), support
vector regression (SVR), k-Nearest Neighbors (k-NN), and artificial neural network (ANN).
Our predictions of model accuracy at higher pulse densities using PLS were within this
previously reported range where R2 values varied from 0.68 to 0.89 for estimations of
DBH [24,49,54,59] and 0.70 to 0.93 [24,54,60] for stem volume predictions. [24,54,60]

This study showed that PLS consistently outperformed RF models in terms of accu-
racy, irrespective of point density, and DTM type. This finding suggests that PLS is more
effective in capturing the relationships between LiDAR-derived metrics and individual
tree structural attributes, thus leading to improved model predictions. Previous research
has reported that PLS had the highest prediction accuracy (R2 = 0.97) compared to RF
and k-NN for Lorey’s mean height, whereas k-NN outperformed PLS in predicting vol-
ume [24]. Interestingly, the disparity in accuracy between PLS and RF models appeared
to increase as point density increased. This trend could be attributed to the ability of PLS
to more effectively handle multicollinearity among variables [44], which becomes more
pronounced at higher point densities. For both modeling approaches, model predictions
of DBH had a very similar accuracy between the two DTM types. In contrast to previous
studies [55,61,62], this finding suggests that DTM quality may not have a major influence
on attribute prediction particularly on sites with relatively flat terrain.

Using the PLS method model accuracy was generally stable down to 400 points/m2

after which there were slight reductions in accuracy to 50 points/m2 and then more marked
reductions to 10 points/m2. The threshold point density of 400 points/m2 may represent a
balance wherein sufficient information is available to support accurate predictions without
introducing unnecessary noise. Although accuracy did not decline above this threshold of
400 points/m2 the results suggest that higher point densities do not contribute additional
useful information to the models.

The key predictive variables that were identified offer valuable insights for making
informed decisions when selecting important metrics for DBH and volume modeling. The
metric cnx3D_vol, which was the most frequently used variable, and accounted for > 50%
of the variance in almost all models, had a sound basis for inclusion as it represents the
3D volume of the convex hull fitted around the individual tree segment. Previous studies
have consistently reported that crown metrics, including crown projection area, crown
surface area, and crown volume, are an important class of variable for DBH and volume
predictions [52,63,64].

Voxel metrics were important predictors of DBH at point densities ranging from
20–100 points/m2 but the strength of these correlations diminished at point densities lower
or higher than this range. At densities of 10 points/m2, the points were likely to be too
sparsely distributed to allow the development of meaningful metrics. In contrast, at higher
point densities, the reduced predictive power most likely resulted from data saturation
and redundancy.

A number of studies have used ULS to predict tree diameter or volume directly
from point cloud data using methods such as quantitative structure modeling (QSM)
that reconstruct the surface geometry of the stem [65–67]. However, these methods are
often used under ideal conditions and recent research shows QSM predicts DBH with
low accuracy under standard forestry conditions [65]. Under these circumstances, it was
necessary to fuse ULS data with LiDAR collected from ground-based sensors to estimate
DBH with high precision [65]. However, we have tested LiDAR from a mobile laser scanner
within a range of unpruned radiata pine stands and found that the dense needle cover
makes it impossible to reconstruct the stem in unpruned stands [68] which constitute the
majority of New Zealand plantation forests [3]. In contrast, the models employed here, use
canopy metrics, that can be more robustly characterized from ULS. Although the methods
used here do not measure DBH and volume as directly as QSM, the developed models
were relatively accurate and show significant potential for commercial deployment.
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Further research should focus on exploring the generality of the approach used in
this study. The method should be extended to different forest types, species, and stand
conditions, under a range of environmental conditions to assess the robustness of the
method and consumer-grade UAV data. Conducting temporal studies within the same
stand or testing consumer-grade LiDAR sensors within stands of differing age classes and
silvicultural treatments will also provide insight into the method generality. The approach
used here may not suit all stands and site conditions and it is important to identify factors
that limit the application of the method. The assembly and analysis of these data will
provide a means of assessing the stand conditions that most suit the approach and could be
distilled into a set of guidelines outlining conditions under which the method can be used.

5. Conclusions

This study presented a comprehensive analysis of the potential of a consumer-grade
LiDAR sensor for key inventory applications that included individual tree segmentation,
and the prediction of DBH and stem volume. The accuracy of these products was evaluated
across varying point densities using DTMs that were created at native and the highest
point density (24,450 points/m2). The local maxima-based method used for tree peak
detection accurately detected individual trees, consistently yielding outstanding F1 scores
that exceeded 0.96 at all examined densities. Models of DBH created using PLS had a
consistently higher accuracy than those that used RF, but there was little variation in
accuracy between the models created using different DTMs. Using data from the native
DTMs, DBH estimation using PLS had the lowest RMSE of 1.624 cm (R2 of 0.756) at a
point density of 12,200 points/m2. Predictions of stem volume had an RMSE of 0.0418 m3

(R2 of 0.792) at the same point density. The accuracy of these predictions for DBH and
volume were stable in decimated point clouds to 400 points/m2 after which there were
small reductions in precision to 50 points/m2 and then more marked reductions in accuracy
to 10 points/m2. The recurring prominence of 3D crown volume metrics within models
created using a range of point densities demonstrated the pivotal role of crown metrics
in predicting DBH and volume at the individual tree level. These findings demonstrate
the potential of consumer-grade ULS sensors for the rapid and frequent assessment of
plantation forests and these sensors could provide forest managers with an affordable
method to obtain tree-level inventory data. Further research should test the accuracy of the
methodology described here across a broader range of species, stand, and site conditions,
in order to gain an improved understanding of the generality of the approach.

Author Contributions: Conceptualization, S.J. and G.D.P.; methodology, M.S.W., S.J. and R.J.L.H.;
validation, M.S.W. and S.J.; formal analysis, M.S.W. and S.J.; investigation, M.S.W. and S.J.; resources,
R.J.L.H. and P.D.M.; data curation, R.J.L.H., P.D.M., D.C., B.S.C.S. and H.J.C.E.; writing—original
draft preparation, S.J. and M.S.W.; writing—review and editing, R.J.L.H., G.D.P., P.D.M., D.C., B.S.C.S.
and H.J.C.E.; supervision, M.S.W. and G.D.P.; funding acquisition, M.S.W. and G.D.P.; Visualization,
B.S.C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Business, Innovation and Employment (MBIE),
programme entitled “Seeing the forest for the trees: transforming tree phenotyping for future forests”
(programme grant number C04X2101).

Data Availability Statement: The data used in this study cannot be made publicly available due to
privacy restrictions imposed by the forest owners and managers.

Acknowledgments: The authors extend their gratitude to Nicholas Coops and the members of
his laboratory, particularly Liam Irwin and Sarah Smith-Tripp, for their invaluable insights and
suggestions on the processing of DJI L1 data. We also would like to acknowledge Lukas Winiwarter
for his invaluable insights on point decimation. Additionally, the authors would like to thank
Timberlands Ltd. and Radiata Pine Breeding Company for access to the site and express their
appreciation to Interpine Innovation for their assistance in the field inventory. The authors also
would like to acknowledge Warren Yorston, and Samuel Wong for their contributions to the on-site
validation of the stem map, and John Henry for assisting with site set up. Also, we extend our



Forests 2024, 15, 899 16 of 20

gratitude to Grant Evans, Joane Elleouet, and Russell Main from Scion for their feedback on the
manuscript before its submission. We are grateful to the anonymous reviewers for comments that
greatly improved the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Technical specifications of the flight parameters and LiDAR data characteristics.

Parameter Specification

Sensor DJI-Zenmuse L1 LiDAR and Photogrammetry sensor
Capture date 23 January 2023

Flying speed (m/s) 3
Flying height above ground (m) 55
Distance between flight lines (m) 10

Number of scan layers 2 (Gridded: Perpendicular to each other)
Scan mode Repetitive scanning

LiDAR strike frequency (Hz) 160
Laser wavelength (nm) 905

Field of view (◦) 70.4 (horizontal) × 4.5 (vertical)
Beam divergence (◦) 0.03 (horizontal) × 0.28 (vertical)
Number of returns 3

Average (standard deviation) density of
resulting point cloud (points/m2) 15,966 (8500)

Table A2. Description of LiDAR metrics used in this study. NA: Not applicable.

Class Abbreviation Description R Package

Point-based metrics

1. Standard height metrics zmax Maximum height above ground

lidR

zmean Mean height above ground
zsd Standard deviation of height distribution
zcv Coefficient of variation of height distribution

zskew Skewness of height distribution
zkurt Kurtosis of height distribution

zentropy Entropy of height distribution

zq(X), where X is a percentile,
(e.g., zq95)

Percentile heights (5th, 10th, 15th, 20th, 25th, 30th, 35th,
40th, 45th, 50th, 55th, 60th, 65th, 70th, 75th, 80th, 85th, 90th,

and 95th)

2. Standard intensity metrics itot Sum of the intensity of returns

lidR

imax Maximum intensity of returns
imean Mean intensity of returns

isd Standard deviation of intensity distribution
icv Coefficient of variation of intensity distribution

iskew Skewness of intensity distribution
ikurt Kurtosis of intensity distribution

ipground Intensity of ground returns
ipcumzq(X),

e.g., ipcumzq90
Percentage of intensity returned below the Xth

height percentile

3. Standard crown
density metrics zpcum(X), e.g., zpcum9, Cumulative percentage of return in the Xth layer

lidR
pground Percentage of returns classified as “ground”

pzabovezmean Percentage of returns above the mean height of each tree
pzabove2 Percentage of returns above 2 m height

p1st, p2nd, p3rd Percentage of returns (first return–third return)
n Total number of points
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Table A2. Cont.

Class Abbreviation Description R Package

Point-based metrics

4. Gap fraction and
LAD metrics gfp_m Mean of gap fraction profile (layer thickness: 1 m) lidR

gfp_sd Standard deviation of gap fraction profile
gfp_IQR Interquartile range of gap fraction profile
lad_m Mean of leaf area density
lad_sd Standard deviation of leaf area density

5. Vertical canopy
structural metrics wpd_scale Weibull probability distribution fitted to foliage profile:

scale parameter α fitdistrplus

wpd_shape Weibull probability distribution fitted to foliage profile:
shape parameter β

Area-based metrics

6. 2D and 3D convex
hull metrics cvx2D_area 2D area of individual crown convex hull

cxhull
cnx3D_vol 3D volume of the individual tree convex hull

Voxel-based metrics (25 cm voxel res)

7. Voxel-based vertical canopy
structural metrics filled_canopy Filled canopy volume percentage: Proportion of total

number of voxels containing points

NA

open_gap Open gap volume percentage: Proportion of voxels
containing no points above the canopy

closed_gap Closed gap volume percentage: Proportion of voxels
containing no points below the canopy

euphotic Euphotic volume percentage: Proportion of voxels in the
uppermost 65% of cells that contain points of a column

oligophotic Oligophotic volume percentage: Proportion of voxels in the
lower 35% of cells that contain points in a column

Table A3. Assessment of individual tree detection and segmentation results across varying point
densities. NA: Not applicable.

Maximum
Density of

Source
Point
Cloud

(points/m2)

Point Cloud Ground Normalized Using the Highest
Density DTM

Point Cloud Ground Normalized Using the
Native DTM

Tree Peak Detection Accuracy
Crown

Delineation
Accuracy

Tree Peak Detection Accuracy
Crown

Delineation
Accuracy

Precision Recall F1

Proportion of
Accurately
Delineated

Crowns

Precision Recall F1

Proportion of
Accurately
Delineated

Crowns

10 0.98 0.95 0.96 0.96 0.97 0.95 0.96 0.96
20 0.98 0.95 0.96 0.98 0.98 0.95 0.96 0.98
30 0.98 0.95 0.96 0.99 0.98 0.95 0.96 0.99
40 0.98 0.95 0.96 0.99 0.98 0.95 0.96 0.99
50 0.97 0.96 0.96 0.99 0.97 0.96 0.96 0.99

100 0.97 0.97 0.97 0.99 0.97 0.96 0.96 0.99
200 0.97 0.97 0.97 0.99 0.97 0.97 0.97 0.99
400 0.97 0.98 0.97 0.99 0.97 0.98 0.97 0.99
750 0.96 0.98 0.97 0.99 0.96 0.98 0.97 0.99
1550 0.96 0.98 0.97 0.99 0.96 0.98 0.97 0.99
3050 0.96 0.98 0.97 0.99 0.96 0.98 0.97 0.99
6100 0.96 0.98 0.97 0.99 0.96 0.98 0.97 0.99

12,200 0.96 0.98 0.97 0.99 0.96 0.98 0.97 0.99
24,450 NA NA NA NA 0.96 0.98 0.97 0.99
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