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Abstract: Forest fires have become increasingly prevalent and devastating in many regions world-
wide, posing significant threats to biodiversity, ecosystems, human settlements, and the economy.
The United States (USA) and Portugal are two countries that have experienced recurrent forest fires,
raising concerns about the role of forest fuel and vegetation accumulation as contributing factors.
One preventive measure which can be adopted to minimize the impact of the forest fires is to cut
the amount of forest fuel available to burn, using autonomous Unmanned Ground Vehicles (UGV)
that make use of Artificial intelligence (AI) to detect and classify the forest vegetation to keep and
the forest fire fuel to be cut. In this paper, an innovative study of forest vegetation detection and
classification using ground vehicles’ RGB images is presented to support autonomous forest cleaning
operations to prevent fires, using an Unmanned Ground Vehicle (UGV). The presented work com-
pares two recent high-performance Deep Learning methodologies, YOLOv5 and YOLOR, to detect
and classify forest vegetation in five classes: grass, live vegetation, cut vegetation, dead vegetation,
and tree trunks. For the training of the two models, we used a dataset acquired in a nearby forest. A
key challenge for autonomous forest vegetation cleaning is the reliable discrimination of obstacles
(e.g., tree trunks or stones) that must be avoided, and objects that need to be identified (e.g., dead/dry
vegetation) to enable the intended action of the robot. With the obtained results, it is concluded that
YOLOv5 presents an overall better performance. Namely, the object detection architecture is faster
to train, faster in inference speed (achieved in real time), has a small trained weight file, and attains
higher precision, therefore making it highly suitable for forest vegetation detection.

Keywords: object detection; deep learning; computer vision; autonomous vehicle; forest cleaning

1. Introduction

Forest fires continue to pose significant threats to the environment, economy, and
human lives in various regions across the globe. The USA and Portugal have both expe-
rienced recurrent and devastating forest fires, often exacerbated by the accumulation of
forest fuel—dead vegetation that acts as fuel for wildfires. The accumulation of forest fuel
is a critical factor contributing to the frequency and intensity of forest fires. Traditional
forest management approaches for fuel reduction and wildfire prevention have proven to
be insufficient, highlighting the need for innovative and efficient solutions. Autonomous
robotics with Artificial Intelligence (AI) have demonstrated remarkable potential in various
domains, and its application in forest fuel management could provide a valuable contribu-
tion to effectively reduce wildfire risks. An autonomous UGV for forest vegetation cleaning
needs to correctly distinguish between the vegetation to remain, the vegetation already cut
and the vegetation to be cleaned.

To recognize objects, where they are and how they interact, humans only need to
look at a scene. It is a promising objective if an autonomous system could do the same
instantaneously with images. The human visual system is fast and accurate, allowing us
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to perform complex tasks such as the recognition and localization of objects of interest
instantaneously. Presently, autonomous vehicles perform complex tasks such as lane [1],
pedestrians [2], and road signs (e.g., [3,4]) detection to perform safe autonomous driving.
In the agriculture or forestry fields of study, a specialized robot, with this kind of computer
vision detection, classification, and localization, could autonomously achieve the harvest of
corn [5], weed removal [6], or forest vegetation cleansing.

Object detection is a computer vision technique that allows a computer to detect,
classify, and localize objects in images. In recent years, object detection has been greatly
improved with the use and development of Deep Learning (DL) techniques. Recent studies
indicate that DL provides high accuracy, outperforming existing commonly used image
processing techniques [7].

The main goal of this work is to solve the problem of detecting, classifying, and
localizing vegetation to be cleaned by an autonomous Unmanned Ground Vehicle (UGV) in
forests, to prevent wildland and wildland-urban interface fires (see in Figure 1). To achieve
better forest fires fuel cleansing results and help autonomous navigation, a DL model is
used to detect, classify, and localize forest vegetation in images, in real time. In this study,
we compare two of the most modern DL object detection models to determine the best
one for an autonomous UGV in forest environments. The goal is to use this chosen model
with a cleansing tool attached to the UGV to prevent forest fires while clearing vegetation.
YOLOv5 and YOLOR were chosen because they achieved the best average precision in
the MS COCO dataset [8] as object detectors when they were presented to the computer
vision community. For the training of the two models, a dataset acquired in a nearby forest
was used.

Figure 1. SafeForest Unmanned Ground Vehicle (UGV), showing the sensor system (including
LiDAR, RGB, and depth cameras on the top of the vehicle) and the vegetation cleaning attachment at
the front.

Zare et al. [9] used vegetation detection for mine detection to minimize false alarms
because of the misclassification of vegetation and mines by mine detection algorithms.
Some conventional vegetation detection methods are based on normalized difference
vegetation index (NDVI) [10–12], which is based on red spectral and near-infrared spectral
regions [13]. Zhang et al. [14] provided a comprehensive review of land cover classification
and object detection approaches using high-resolution imagery, comparing DL models
against traditional approaches. Bulent et al. [15] used DeepLabv3+ to detect the type of
vegetation to develop a more accurate digital terrain model. In Torres et al. [16] work it
was concluded that DeepLabV3+ performance is worse than Fully Convolutional Network
(FCN) in semantically segmenting a single tree species.

The presented work consists of an innovative study in forest vegetation detection,
using ground vehicles RGB images, using two of the best computer vision DL object
detectors. To the best of the authors’ knowledge, this type of study is still not available
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in the literature and the above-referred publications do not provide a proper solution to
our problem.

The main contribution of this work is the detection, classification, and distinction of
forest vegetation to be cut and to be preserved by a UGV performing fuel cleaning in forests
complex environments.

This paper is organized as follows: a brief state-of-the-art (SOTA) in object detection
is presented in Section 2, in Section 3 the YOLO DL network is presented, in Section 4
the YOLOR network is presented, in Section 5 the methodology and results are presented,
which are discussed in Section 6, followed by the conclusions.

2. Object Detection State of the Art
2.1. Pioneer Work

Most of the early object detection algorithms were built based on handcrafted features.
P. Viola and M. Jones in 2001 achieved real-time detection of human faces, for the first
time, without any constraints [17,18]. The Viola and Jones detectors go through all possible
scales and locations in an image to verify if any window contains a human face, using
sliding windows. The Viola and Jones detector highly improved its detection speed by
incorporating three important techniques: detection cascades, Haar-like features, and
integral image. Viola Jones algorithm is still used in low-specification devices as it is very
fast and efficient in object detection.

N. Dalal and B. Triggs presented the Histogram of Oriented Gradients (HOG) feature
descriptor in 2005 [19]. HOG is considered to be an important improvement of the shape
context [20] and scale-invariant feature transform [21] of its time. Dalal and Triggs studied
the question of feature sets for robust visual object recognition using a linear Support Vector
Machine (SVM) and showed experimentally that HOG significantly outperformed existing
feature sets for human detection [19]. To balance the feature invariance and nonlinearity
such as illumination, translation, or scale, the HOG descriptor is designed to be computed
on a dense grid of uniformly spaced cells and uses overlapping local contrast normalization
for improving accuracy. HOG can be used to detect various object classes but it was
motivated, primarily, by the problem of pedestrian detection.

Felzenszwalb et al. presented a system named Deformable Parts Models (DPM) [22] in
2008. DPM uses a sliding window where the classifier is run at evenly spaced localizations
over the entire image. DPM achieved higher accuracy than HOG. The DPM detector is
defined by a root filter and various part filters. Instead of specifying the configuration of
the part-filters (e.g., size and localization) a weakly supervised learning method is used to
learn automatically the configuration of the part-filters, as latent variables. Girshick et al.
concluded this process as a special case of multi-instance learning [23]. To improve detection
accuracy, Girshick et al. applied other techniques named “bounding box regression”, “hard
negative mining” and “context priming”. To improve detection speed, Girshick et al.,
developed a cascade architecture where detection models were compiled into a faster one
that achieved over 10 times acceleration without sacrificing any accuracy [24,25].

2.2. Two-Stage Detectors

Object detection could be defined by two genres that are “two-stage detectors” and
“one-stage detectors”. A network which has a separate module to generate region proposals
is known as a “two-stage detector”. These networks find an arbitrary number of object
proposals in an image during the first stage and secondly classify and localize them. These
systems have two separate steps and they usually take more time to generate proposals.

Girshick et al. presented a Region-based Convolutional Neural Network (R-CNN) in
2014. R-CNN uses regional proposal methods to first generate potential bounding boxes in
an image and then run a classifier on these proposed boxes. After classification using an
SVM, post-processing is used to refine the bounding boxes, eliminate duplicate detections,
and re-score the boxes based on other objects in the scene [26]. These complex modules are
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hard to optimize because each single component must be trained separately resulting in
slow processing.

Krizhevsky et al. presented deep ConvNets [27], in 2012, which improved object
detection and image classification accuracy. Object detection is a challenging task that
requires complex architectures, because of this complexity some approaches from the past
(e.g., [28–31]) train models in multi-stage pipelines that haves a slow processing.

In 2014, K. He et al. presented Spatial Pyramid Pooling Networks (SPP-Net) [29].
SPP-Net is more than 20 times faster than R-CNN without sacrificing detection accuracy. K.
He et al. presented work that eliminated the requirement in Deep Convolutional Neural
Networks (DCNNs) to have a fixed-size input image of 224 × 224 pixels, mentioning that
this requirement could reduce the recognition accuracy [29]. The main contribution of SPP-
Net is the introduction of a pooling strategy, the Spatial Pyramid Pooling (SPP) layer, that
enables a Convolutional Neural Network (CNN) to generate a fixed-length representation
regardless of the size of the image/region of interest without re-scaling it. Pyramid pooling
is also robust to object deformations. When using SPP-Net for object detection, the feature
maps are calculated from the entire image only once. Then, fixed-length representations of
arbitrary regions are generated to train the detectors, which avoids repeatedly calculating
the convolutional features.

In 2015, Girshick et al. presented the Fast Region-based Convolutional Neural Net-
work (Fast R-CNN) [32]. The biggest problem with R-CNN and SPP-Net is the need to
train multiple systems separately. By contrast, Fast R-CNN enables simultaneously train-
ing a bounding box regressor and a detector. Fast R-CNN was developed with several
innovations to improve testing speed, training, and detection accuracy. “Fast R-CNN
trains the very deep VGG16 network 9× faster that R-CNN, is 213× faster at test-time,
and achieves a higher mAP on PASCAL VOC 2012” [32]. Fast R-CNN without the region
proposal network attains near real-time inference with considerable accuracy. Admitting
the presented method integrates the improvements of SPP-Net and R-CNN, the detection
speed is limited by that region proposal network.

In 2015, Ren et al. presented the Faster R-CNN [33]. Faster R-CNN is the first end-
to-end, and the first near real-time DL detector achieving 5 frames per second on a GPU
(Graphics Processing Unit). Ren et al. introduced a Region Proposal Network (RPN) that is
a fully convolutional network that simultaneously predicts object bounds and objectness
scores at each position of the input image. RPN enables nearly cost-free region proposals
for the input image. It could be said that Faster R-CNN is the Fast R-CNN architecture
with RPN integrated as a region proposal module. Faster R-CNN RPN improves region
proposal quality resulting in higher object detection accuracy.

In 2016, Dai et al. presented R-FCN (Region-based Fully Convolutional Network) [34]
for accurate and efficient object detection. “In contrast to previous region-based detectors
such as Fast/Faster R-CNN that apply a costly per-region subnetwork hundreds of times,
our region-based detector is fully convolutional with almost all computation shared on
the entire image” [34]. Dai et al. proposed an innovative method to solve the problem of
translation-variance in object detection and translation-invariance in image classification.
R-FCN achieved a test-time speed of 170 ms per image, about 2.5× to 20× faster than Faster
R-CNN [34]. To achieve a faster detector with higher accuracy, R-FCN combines Faster
R-CNN and the Fully Convolutional Network (FCN) [35].

In 2017, Lin et al. presented Feature Pyramid Networks (FPN) [36], a two-stage
detector based on Faster R-CNN. “This architecture, called a Feature Pyramid Network
(FPN), shows significant improvement as a generic feature extractor in several applications.
Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model
results on the COCO detection benchmark . . . ” [36]. FPN shows great advances in detecting
objects with a wide variety of scales.

In 2017, He et al. presented Mask R-CNN, “. . . a conceptually simple, flexible, and
general framework for object instance segmentation” [37]. He et al.’s method efficiently
detects objects while simultaneously generating a high-quality segmentation mask for each
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instance in an image. Mask R-CNN is based on Faster R-CNN by integrating a module for
predicting an object mask in parallel with the existing module for bounding box recognition.
Mask R-CNN is simple to train, runs at 5 frames per second, and is easy to generalize to
other tasks such as pose estimation.

2.3. Single-Stage Detectors

Single-stage detectors classify and localize objects in a single time. They use predefined
bounding boxes of various scales and aspect ratios to localize objects. Single-stage detectors
have a simpler design, attain real-time performance, and surpass two-stage detectors.

In 2016, Redmon et al. presented “You Only Look Once” (YOLO) [38], it was the
first single-stage detector in the DL era. This network divides the image into regions
and predicts bounding boxes and probabilities for each region simultaneously. Later,
Redmon et al. made a series of improvements to YOLO and proposed its second and third
versions [39,40], which further improve the detection accuracy while keeping a very high
detection speed.

In 2016, Liu et al. presented Single Shot MultiBox Detector (SSD) [41]. It was the
second single-stage detector in the DL era. “Our approach, named SSD, discretizes the
output space of bounding boxes into a set of default boxes over different aspect ratios and
scales per feature map location. At prediction time, the network generates scores for the
presence of each object category in each default box and produces adjustments to the box
to better match the object shape” [41]. SSD does not use proposal generation and feature re-
sampling. It combines predictions from multiple feature maps with different resolutions to
easily detect objects of various sizes. The contributions of SSD, multi-reference, and multi-
resolution detection techniques significantly improve the detection accuracy of single-stage
detectors. Furthermore, SSD was significantly faster and more accurate than both SOTA
networks like Faster R-CNN and YOLO but it had difficulty in detecting small objects.

In 2017, Redmon et al. presented YOLOv2 and YOLO9000 [39] as an improvement
to the first version of YOLO [38]. YOLOv2 offered an easy trade-off between speed and
accuracy while the YOLO9000 model could predict 9000 object classes in real time. Redmon
et al. replaced the backbone architecture of GoogLeNet [42] with DarkNet-19 [43].

In 2017, RetinaNet was presented by Lin et al. [44]. RetinaNet predicts objects by
the dense sampling of the input image in aspect ratio, location, and scale. A new loss
function named “focal loss” has been introduced in RetinaNet by reshaping the standard
cross entropy loss so that the RetinaNet detector will put more focus on hard and mis-
classified examples during training. Focal Loss makes it possible for the single-stage
detectors to achieve comparable accuracy of two-stage detectors while keeping a very high
detection speed.

In 2018, Redmon et al. presented YOLOv3 [40], an improvement on YOLO [38],
YOLOv2 and YOLO9000 [39]. Redmon et al. replaced the feature extractor network with a
larger Darknet-53 network [43]. They also incorporated numerous techniques like batch
normalization, data augmentation, and multiscale training, among others. In YOLOv3, the
Softmax classifier layer was replaced by a logistical classifier.

In 2019, EfficientDet was presented by Tan et al. [45]. Tan et al. studied network archi-
tecture design choices for efficient object detection and proposed a weighted bidirectional
feature network and a customized compound scaling method, in order to improve the
efficiency and accuracy of the detector. Based on these optimizations and better backbones,
Tan et al. developed a new family of detectors that achieved better efficiency and accuracy
than the SOTA architectures, named EfficientDet [45].

In 2020, Bochkovskiy et al. presented the YOLOv4 [46] model by efficiently scaling the
network design and scale, surpassing the previous SOTA EfficientDet [46]. The backbone
of the YOLOv4 network is the CSPDarkNet53, a feature extraction network that calculates
the feature maps from the source image. The YOLOv4 architecture neck is composed
of an SPP module and a Path Aggregation Network (PANet). The architecture head
processes the aggregated features and predicts the bounding boxes, objectness scores, and
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classification scores. The YOLOv4 network uses the YOLO layer (same as YOLOv3 [40]) as
the architecture head.

Finally, YOLO is the fastest general-purpose object detector in the literature and YOLO
pushes the SOTA in real-time object detection [47]. YOLO also generalizes well to new
domains, making it ideal for applications that rely on fast and accurate object detection. In
2021, YOLOR was presented to the computer vision community and achieved comparable
object detection accuracy as YOLOv4, while the inference speed was increased by 88% [48].
Some examples of custom DL techniques developed for the end of object detection could
be seen in [49–53].

In the next two sections, the DL YOLOv5 and YOLOR object detectors are presented
in more detail.

3. YOLOv5

The YOLO architecture was presented by Joseph Redmon et al. in 2016 [38]. The YOLO
architecture is defined by a single neural network trained end-to-end with an image input
and predicts bounding boxes and class labels. YOLO operates at 45 frames per second and
can operate up to 155 frames per second for a speed-optimized version of the model [38].
This architecture works by splitting the input image into a grid of cells and each cell is
responsible for predicting a bounding box only if the center of a bounding box falls within
the cell. Each grid cell predicts a bounding box involving the x and y coordinates, the
width, height, and the confidence of the prediction. A class prediction is based on each cell.
The bounding boxes with confidences and the class probability map are then combined
into a final set of bounding boxes and class labels.

The YOLO architecture was updated by Joseph Redmon and Ali Farhadi in an effort
to further improve the model performance [39]. Various training and architectural changes
were made to the YOLO model, such as batch normalization and the use of high-resolution
input images. YOLOv2 architecture makes use of anchor boxes like Faster R-CNN and
predefined bounding boxes with useful sizes and shapes that are tailored during training.
The choice of bounding boxes for the image is pre-processed using a k-means analysis on
the training dataset. Importantly, the predicted representation of the bounding boxes is
changed so that small changes have less effect on the predictions, resulting in a stronger
architecture. Rather than predicting position and size directly, for reshaping and moving
the predefined anchor boxes, offsets are predicted relative to a grid cell and dampened by a
logistic function.

Further improvements to the model were proposed by Joseph Redmon and Ali Farhadi
in YOLOv3 [40]. The improvements were reasonably minor, including minor representa-
tional changes and a deeper feature detector network.

Bochkovskiy et al. presented the YOLOv4 [46] architecture in 2020. YOLOv4 has been
developed by efficiently scaling the network scale and design, surpassing the previous
SOTA EfficientDet [45]. Bochkovskiy et al.’s developments of the YOLO model surpass
prior benchmarks from previous object detection architectures on the speed versus accuracy
frontier [46]. “We offer a state-of-the-art detector which is faster (FPS) and more accurate
(MS COCO AP50...95 and AP50) than all available alternative detectors” [46]. In general,
the authors of YOLOv4 presented a few scaling concepts in balance as they developed
the model (e.g., image size, number of layers, and number of channels), while optimiz-
ing for inference speed and model performance. To detect large objects in large images,
Bochkovskiy et al. concluded that it is important to increase the depth and number of
stages in the CNN backbone and neck. This allowed them to first scale up the input size
and number of stages, and dynamically adjust width and depth according to real-time
inference speed requirements.

YOLOv5 [54] was released in 2020, very shortly after YOLOv4. This implementation
shares the same design and provides higher performance than YOLOv4. YOLOv5 is fully
written in the PyTorch framework, different from the past versions of YOLO that use the
Darknet framework. YOLOv5 is significantly smaller, faster to train, and more accessible to
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use in a wider range of development environments (Ultralytics YOLOv5 GitHub repository
(last seen 12 December 2022): https://github.com/ultralytics/yolov5). A performance
comparison between EfficientDet and YOLOv5 can be seen in Figure 2.

Figure 2. Performance of YOLOv5 and EfficientDet (information taken from Ultralytics YOLOv5
GitHub page).

The main differences between YOLOv3, YOLOv4, and YOLOv5 architectures are that
YOLOv3 uses Darknet-53 backbone, YOLOv4 architecture uses CSPdarknet53 backbone,
and YOLOv5 uses focus structure with CSPdarknet53 as a backbone. The focus layer is
first introduced in YOLOv5. The CSPDarknet53 backbone solves the repetitive gradient
information in large backbones and integrates gradient change into a feature map that
reduces the inference speed, increases accuracy, and reduces the model size by decreasing
the parameters [55]. YOLOv5 uses PANet as a neck to boost the information flow. PANet
adopts a new FPN that includes several bottom-up and top-down layers, improving
the propagation of low-level features in the model. PANet improves the localization in
lower layers, which enhances the localization accuracy of the object. In addition, the
head in YOLOv5 is the same as YOLOv4 and YOLOv3, the YOLO layer, which generates
three different outputs of feature maps to achieve multiscale prediction. It also helps to
enhance the prediction of small to large objects efficiently in the model. The image is fed to
CSPDarknet53 for feature extraction and again fed to PANET for feature fusion. Finally,
the YOLO layer (YOLOv5 head) generates the results (class, score, location, and size). A
YOLOv5 structure diagram can be seen in Figure 3.

Figure 3. The structure diagram of the YOLOv5 network [56]. It consists of three parts: the Backbone
that is the CSPDarknet53, the neck that is PANet and the Head that is the YOLO Layer.

4. YOLOR

In 2021, Wang et al. presented YOLOR [48], a SOTA DL algorithm for object detection.
YOLOR stands for “You Only Learn One Representation” and it was presented as a “unified
network to encode implicit knowledge and explicit knowledge together”. The presented
YOLOR concept can be seen in Figure 4.

https://github.com/ultralytics/yolov5
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Figure 4. YOLOR concept with implicit and explicit knowledge-based multitask learning [48].

Wang et al. YOLOR paper describes an approach to combine explicit knowledge,
defined as learning based on given data and input, with implicit knowledge learned
subconsciously. “YOLOR unified network can generate a unified representation to simul-
taneously serve various tasks” [48]. YOLOR architecture applies prediction refinement,
kernel space alignment, and multitask learning in a CNN and according to the results
achieved, when implicit knowledge is introduced to the neural network that was already
trained with explicit knowledge, the network benefits the performance of various tasks [48].
YOLOR achieved comparable object detection accuracy as the YOLOv4, while the inference
speed was increased by 88% [48]. This made YOLOR one of the fastest object detection
architectures in modern computer vision. A performance evaluation between YOLOv4,
YOLOR, EfficientDet, and others, tested in the MS COCO dataset [8], is presented in
Figure 5 (Information taken from Wong Kin-Yiu GitHub repository (last seen 12 December
2022): https://github.com/WongKinYiu/yolor). Tests made in the MS COCO dataset show
that the mean average precision of YOLOR is 3.8% higher compared to the PP-YOLOv2,
at the same inference speed [48]. Wang et al. adopted the MS COCO dataset because it
provides rich annotation content with the Ground Truth (GT) for many different tasks
including object detection, instance segmentation, and multi-image classification.

Figure 5. Performance evaluation of YOLOR vs. YOLOv4 vs. EfficientDet vs. others tested in the MS
COCO dataset [8].

Wang et al. mention in their paper that YOLOR architecture is based on the architecture
of YOLOv4 [48]. “YOLOR-P6 has same architecture as YOLOv4-P6-light, we replace all
Mish activation in YOLOv4-P6-light by SiLU activation” [48]. “YOLOR-W6 is wider
YOLOR-P6, base channels are set as {128, 256, 512, 768, 1024}” [48]. “YOLOR-E6 expands
the width of YOLOR-W6, the width scaling factor is set as 1.25, and all of the convolution
down-sampling modules are replaced by CSP convolution” [48]. The YOLOv4-P5, YOLOv4-
P6 (same architecture as YOLOR-P6) and YOLOv4-P7 architecture diagrams can be seen in
Figure 6.

https://github.com/WongKinYiu/yolor
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Figure 6. Architecture of YOLOv4-large, including YOLOv4-P5, YOLOv4-P6 (same architecture as
YOLOR-P6) and YOLOv4-P7 [57].

5. Methodology and Results
5.1. YOLOv5 and YOLOR Training

Using Google Colab (Google Colab website (last seen 22 February 2022): https://colab.
research.google.com/) a YOLOv5 network was trained for vegetation detection in a forest
environment for a thousand epochs and a YOLOR network was trained for five hundred
epochs. The training was made using an NVIDIA Tesla T4 GPU with 16 GB of memory
for both models. YOLOv5 and YOLOR used base models that were pre-trained in COCO
Dataset [8].

The training dataset is composed of three hundred images. Two-hundred ten for
training, 45 for validation, and 45 for testing. These training images were labeled with
five classes (using RoboFlow label tool (RoboFlow website (last seen 22 February 2022):
https://roboflow.com/)): “Live Vegetation”, “Grass”, “Cut Vegetation”, “Tree Trunk” and
“Dead Vegetation”. The class “Live Vegetation” can be defined as green vegetation in an
upright position, the class “Grass” can be defined as small live and green vegetation low
on the ground, the class “Cut Vegetation” can be defined as cut down vegetation and also
minor tree branches on the ground. The class “Tree Trunk” can be defined as tree trunks
in an upright position. Lastly, the class “Dead Vegetation” can be defined as dead/dry
vegetation that was not cut down and is in an upright position. The dataset was acquired
in a forest, near the Department of Electrical and Computer Engineering of the University
of Coimbra. The vegetation in and around Coimbra includes a mix of Mediterranean
and Atlantic flora. The dataset images were acquired with a JAI FS-1600D-10GE (JAI
cameras website (last seen 21 July 2023): https://www.jai.com/products/fs-1600d-10ge)
and with an Intel RealSense D455 (Intel Realsense cameras website (last seen 21 July 2023):
https://www.intelrealsense.com/depth-camera-d455/).

The YOLOv5 model was trained with the default parameter settings (with default
hyperparameters). The used batch size for training was 16 and the image size was
640 × 640 pixels. The YOLOR-P6 model version was trained with the default parame-
ter settings (with default hyperparameters). The used batch size for training was 16 and
the image size was 640 × 640 pixels.

Figure 7 shows the methodology used, as a diagram, for the model training and
assessment and dataset development.

Data acquisition

(using JAI FS-1600D-10GE

and Intel RS D455)

Dataset data labelling

(using Roboflow)

Dataset data augmentation

(using Roboflow)

Model training

(using Google Colab)

Model training evaluation

(using WandB)

Inference evaluation

(using IOU based metrics)

Figure 7. Diagram of the methodology used for the models training and dataset development.

https://colab.research.google.com/
https://colab.research.google.com/
https://roboflow.com/
https://www.jai.com/products/fs-1600d-10ge
https://www.intelrealsense.com/depth-camera-d455/
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5.1.1. Computation Times for Training

Table 1 presents the computation times of the YOLOv5 and YOLOR models training
with images with 1440 × 1080 pixels, in hours. These training computation times were
obtained with an NVIDIA Tesla T4 GPU with 16 GB of memory. The processing was made
using the GPU only.

Table 1. Processing time of YOLOR and YOLOv5 models for training with images with
1440× 1080 pixels in a NVIDIA Tesla T4 GPU in hours.

Training for 500 Epochs Training for 1000 Epochs

YOLOv5 (h) 0.417 1.121

YOLOR (h) 2.383 4.466

As it can be concluded from Table 1, the YOLOv5 training time takes 17.5% of the
YOLOR training time when training for 500 epochs. Also, YOLOv5 training time takes
25.1% of the YOLOR training time when it is trained for 1000 epochs. YOLOv5 is faster to
train, which results in faster deployment of models for object detection in any system.

5.1.2. Size of the Trained Weight File

Table 2 presents the trained weight file size of the YOLOv5 and YOLOR models. The
weight file is used to load the DL network to make inferences about objects in images.

Table 2. Size of the YOLOR and YOLOv5 best epoch trained weight file in megabytes (MB).

Size in Megabytes

YOLOv5 14.8 MB

YOLOR 295.7 MB

YOLOv5 weight file is 95% smaller than YOLOR, which results in an easier deployment
of projects for object detection in embedded systems with low memory.

Also, YOLOv5 allows exporting the trained weight file to eleven different formats
such as TorchScript, ONNX, TensorFlow Lite, or TensorRT. The YOLOv5 exported weight
file in the TensorFlow Lite format allows object detection project development for Android
smartphones. YOLOR only allows users to save the trained weight file as a .pt weight file
to be used in any given system with a GPU.

5.2. Vegetation Detection with the YOLOv5 Trained Model

Next, we present the obtained results of the vegetation detection using the YOLOv5-
trained network.

Figures 8–11 present the mean Average Precision (mAP) at 0.5 and from 0.5 to 0.95
Intersection Over Union (IOU), precision, recall, box loss, classification loss, and objectness
loss that resulted from the YOLOv5 training for a thousand epochs. These metrics are
obtained over the training and validation sets from the training dataset.

From the resulting training performance metrics, it is possible to conclude that the
maximum mAP achieved at 0.5 IOU of all classes is 70%. The maximum mAP from 0.5
to 0.95 IOU is 30%. The maximum precision achieved is 82%, which means that the true
positives detected in the images are much higher than the false positives detected. The
maximum achieved recall is 64%, which means there are more true positives than false
negatives. The training losses, box loss, classification loss, and objectness loss tend to be
zero, as intended.
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Figure 8. YOLOv5 model training performance metrics mean Average Precision (mAP) at 0.5
Intersection Over Union (IOU) (left) and from 0.5 to 0.95 IOU (right) during the 1000 epochs.

Figure 9. YOLOv5 model training performance metrics precision (left) and recall (right) during the
1000 epochs.

Figure 10. YOLOv5 model training box loss (left) and the classification loss (right) during the
1000 epochs.

Figure 11. YOLOv5 model objectness loss evolution during the 1000 epochs training.

The box loss represents how well the algorithm can locate the center of an object and
how well the predicted bounding box covers an object. Objectness is essentially a measure
of the probability that an object exists in a proposed region of interest. If the objectivity is
high, this means that the image window is likely to contain an object. Classification loss
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indicates how well the algorithm can predict the correct class of an object [49]. The box loss,
objectness loss, and classification loss are indicators of how well an algorithm predicts an
object [58].

The model improved significantly in terms of precision, recall, and mAP after 500 epochs
and became stable after 600 epochs, which means that stopping the model early would
give almost the same results in 40% to 50% less training time.

Also, it is possible to achieve even better precision, mAP, and recall in detecting forest
vegetation for YOLOv5 using other pre-trained models (pre-trained on the MS COCO
dataset [8]) such as YOLOv5m, YOLOv5l or YOLOv5x models (YOLOv5 Ultralytics website
(last seen 10 October 2022): https://github.com/ultralytics/yolov5) instead of YOLOv5s.

After the model was trained, for model inference, it was fed with unseen images, not
belonging to the dataset, with a confidence threshold of 0.4. Figure 12 shows the RGB
source images (at left), the resulting object detection using the trained YOLOv5 model (at
right), and the GT annotated images in the center. The color code for the GT Bounding
Boxes (BBs) are as follows: red for the class “Live Vegetation”, cyan for the class “Grass”,
blue for the class “Tree Trunk”, purple for the class “Dead Vegetation” and orange for the
class “Cut Vegetation”.

The objects intended to be detected in the source images are detected with YOLOv5
inference from the trained model (e.g., grass, cut vegetation, tree trunks, dead vegeta-
tion, and live vegetation), as the resulting inference follows the labeled data for YOLOv5
network training.

Figure 12. Object detection using the trained YOLOv5 model. Source RGB images at left, inference
results at right and in the center the Ground Truth (GT).

https://github.com/ultralytics/yolov5
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5.3. Vegetation Detection with the YOLOR Trained Model

Next, the obtained results of the vegetation detection using the YOLOR trained model
are presented.

Figures 13–16 present the mAP at 0.5 and from 0.5 to 0.95 IOU, precision, recall, box
loss, classification loss, and objectness loss that resulted from the YOLOR training for five
hundred epochs. These metrics are obtained over the training and validation sets from the
training dataset.

Figure 13. YOLOR model training performance metrics mAP at 0.5 IOU (left) and from 0.5 to 0.95
IOU (right) during the 500 epochs.

Figure 14. YOLOR model training performance metrics precision (left) and recall (right) during the
500 epochs.

Figure 15. YOLOR model training box loss (left) and the classification loss (right) during the
500 epochs.
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Figure 16. YOLOR model objectness loss evolution during the 500 epochs training.

The model improved significantly in terms of precision, recall, and mAP after 300 epochs
and reached a plateau after 350 epochs, which means that the model training could be
stopped after 350 epochs. The model would give almost the same results with 70% of the
500 training epochs (with less training time).

From the resulting training performance metrics, it is possible to conclude that the
maximum mAP at 0.5 IOU achieved is 73%. The maximum mAP from 0.5 to 0.95 IOU is
48%. The maximum precision achieved is 72%. The maximum achieved recall is 74%. The
training losses, box loss, classification loss, and objectness loss tend to be zero, as intended.

After the model was trained, for the model inference, it has been fed unseen images,
not belonging to the dataset, with a confidence threshold of 0.4. Figure 17 shows the unseen
(for YOLOR model) RGB images (at left), the resulting object detection using the trained
YOLOR model (at right), and the GT annotated images in the center. The color codes for
the GT BBs are as follows: red for the class “Live Vegetation”, cyan for the class “Grass”,
blue for the class “Tree Trunk”, purple for the class “Dead Vegetation” and orange for the
class “Cut Vegetation”. The inference BB’s color is random.

When compared with YOLOv5 resulting inference images (from the third row the
right image from Figure 12) it is possible to conclude from the right image from the third
row from Figure 17 that the dead vegetation is not detected for YOLOR inference and it is
detected for YOLOv5 inference. When comparing YOLOR and YOLOv5 inference results it
is possible to conclude that YOLOv5 makes inference for more true positives than YOLOR,
as mentioned in the last example, even when trained with the same dataset. From the
training performance metrics obtained from YOLOv5 and YOLOR, the precision achieved
by YOLOR is lower than with YOLOv5, concluding that fewer true positives are predicted
for YOLOR. In the next subsection, a quantitative study assessing and comparing YOLOv5
and YOLOR results is presented.

5.4. Inference Assessment with the GT

Table 3 presents the mean IOU of the inference BBs (shown in Figures 12 and 17 at the
right column) with the GT BBs (seen in Figures 12 and 17 at the center column), number
of False Negatives (FN), False Positives (FP), True Positives (TP), precision, recall and
F1 score for each one of the source images for YOLOv5 and YOLOR. The F1 score is a
single value that takes into account both precision and recall, making it a useful metric
for tasks with imbalanced classes, such as object detection. A high F1 score indicates that
the object detector performs well in both detecting relevant objects and minimizing false
positives [59]. As can be concluded from Table 3, the mean IOU is higher for YOLOV5, the
number of FP predicted is the same for YOLOv5 and YOLOR, the number of FN predicted
is higher for YOLOR, and the number of TP is higher for YOLOv5.
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Figure 17. Object detection using the trained YOLOR model. Source RGB images at left, inference
results at right and in the center the GT.

Table 3. Inference assessment with the Ground Truth (GT) for the four images shown in
Figures 12 and 17.

Image 1 Image 2 Image 3 Image 4

YOLOv5 inference mean IOU 0.607 0.625 0.676 0.682

YOLOR inference mean IOU 0.551 0.628 0.532 0.681

YOLOv5 inference FP 0 1 0 1

YOLOR inference FP 0 2 0 0

YOLOv5 inference FN 1 4 1 3

YOLOR inference FN 4 12 3 3

YOLOv5 inference TP 13 20 9 13

YOLOR inference TP 10 14 10 12

YOLOv5 inference precision 1 0.952 1 0.929

YOLOR inference precision 1 0.875 1 1

YOLOv5 inference recall 0.929 0.833 0.9 0.813

YOLOR inference recall 0.714 0.539 0.769 0.8

YOLOv5 inference F1 score 0.963 0.889 0.947 0.867

YOLOR inference F1 score 0.833 0.667 0.869 0.889
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5.5. Inference Assessment with a Test Set

To evaluate the results achieved with the trained model in the inference of unseen
images (in the training), it was made inference in a different dataset, with the test set
composed of 946 labeled images. This dataset is composed of images with the same types
of forest vegetation, labeled as defined in Section 5.1. These images were acquired in
distinct regions from the training images, with different illumination conditions. This
test set contains images with motion and lighting noise, and also, images acquired in
wildland-urban interface areas. Table 4 presents, for the 946 images of the used test set, the
precision, recall, F1 score, and the mean Average Precision at 0.5 IOU (mAP@0.5) and the
mean Average Precision from 0.5 to 0.95 IOU (mAP@0.5:0.95) for YOLOv5 and YOLOR.

Table 4. Inference assessment for a 946 images test set.

Model Precision Recall F1 Score mAP@0.5 mAP@0.5:0.95

YOLOv5 0.466 0.116 0.186 0.485 0.299

YOLOR 0.406 0.101 0.162 0.236 0.119

As can be concluded from Table 4, the precision, recall, F1 score, and mAP are higher
for YOLOV5. The test performance metrics presented in Table 4 show good results in
precision, recall, F1 score, mAP at 0.5 IOU, and mAP at 0.5 to 0.95 IOU in a test set composed
of 946 images, when using the trained YOLOv5 model trained in a 300 images only dataset.
The higher results in the precision, recall, and F1 score for YOLOv5 means fewer False
Positives (FP), fewer False Negatives (FN), and a higher number of True Positives (TP) in
the model inference. The higher mAP achieved means that the YOLOv5 object detection
model is effectively finding and accurately localizing a higher number of objects in the
dataset when compared with YOLOR.

5.6. Inference Computation Times

Table 5 presents the computation times of the YOLOv5 and YOLOR models for vegeta-
tion detection. The four source images shown in Figures 12 and 17 have a 1440× 1080 pixels
size. The computation times were obtained with an NVIDIA Tesla T4 GPU with 16 GB of
memory. The processing was made using the GPU only.

Table 5. Inference computation times of YOLOv5 and YOLOR models for images with 1440× 1080 pixels.

Image 1 Image 2 Image 3 Image 4

YOLOv5 (s) 0.0536 0.0160 0.0150 0.0154

YOLOR (s) 0.228 0.197 0.231 0.223

From Table 5, it is possible to conclude that YOLOv5 inference is 88.6% faster than
YOLOR inference (on average). On average, YOLOv5 inference speed takes 11.4% of
YOLOR inference speed using a NVIDIA Tesla T4 GPU. YOLOv5 inference computation
time, on average, takes 25 milliseconds per image. YOLOv5 inference can run at more than
40 frames per second (in real time). YOLOR, at maximum, can run at 5 frames per second
(using an NVIDIA Tesla T4 GPU).

In embedded systems using YOLOv5, the system needs lower specifications than
using YOLOR because of the size of the weight file and speed of inference (using the GPU).
YOLOv5 makes it possible to make inferences using the CPU, which can be used in systems
without a GPU. YOLOR can only be used in systems with a GPU.

5.7. Integration in the UGV Platform

The used UGV platform, from SafeForest (SafeForest project website (last seen
7 December 2022): https://safeforest.ingeniarius.pt/) and SEMFIRE (SEMFIRE project

https://safeforest.ingeniarius.pt/
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website (last seen 7 December 2022): http://semfire.ingeniarius.pt/) projects, navigates
in wildland (forests) and wildland-urban interfaces areas [60–68]. Presently, the main
challenge to be addressed is the reliable discrimination between obstacles (mainly trees)
and forest vegetation to be cleaned by the UGV cleaning tool. YOLOv5 detects, classifies,
and localizes in 2D images various types of forest vegetation (such as live vegetation, grass,
cut vegetation, tree trunks, and dead vegetation). The UGV has a vegetation cleaning
tool and depth cameras attached in the front of the vehicle (as shown in Figure 1). The
trained YOLOv5 object detection model will be used, with the UGV frontal depth camera,
to make inferences in the RGB images retrieved by the depth camera. The retrieved depth
information is obtained as a 2D image with the depth information per pixel, and a 2D
depth image with the same characteristics as the RGB image from the same camera. Since
YOLOv5 object detection has the output of all BB characteristics (x, y, width, and height)
this information is used to calculate the same BB in the depth image. These BBs define the
regions of interest where the object is detected in the image. After obtaining the BB in the
depth image, it is possible to calculate the 3D coordinates in the real world of the object
detected that results from the 2D bounding box.

6. Discussion

Object detection using YOLOv5 and YOLOR was developed and evaluated for the
purpose of forest vegetation detection, classification, and localization for an autonomous
UGV to clean forest fuel and to prevent forest fires. A specialized dataset comprising forest
images near Coimbra University was created specifically for training DL object detector
models for forest vegetation detection.

As shown in Table 1, the YOLOv5 training time is 17.5% of the YOLOR training time
when training for 500 epochs. Additionally, YOLOv5 takes 25.1% of the YOLOR training
time when it is trained for 1000 epochs. YOLOv5 is faster to train, which results in faster
deployment of models for object detection. As shown in Table 2, the YOLOv5 best epoch
trained weight file is 95% smaller than YOLOR’s best epoch-trained weight file which
results in an easier deployment of projects for object detection in embedded devices with
low memory. Also, YOLOv5 allows exporting of the trained weight file in a wider variety
of formats such as TorchScript, ONNX, TensorFlow Lite, or TensorRT. When comparing
YOLOv5 and YOLOR for inference in images it is concluded that YOLOv5 achieves the
detection of more true positives than YOLOR. In Table 5, on average, YOLOv5 inference
speed is 11.4% of the YOLOR inference speed using a NVIDIA Tesla T4 GPU. YOLOv5
inference can run in real time with more than 40 frames per second, while YOLOR can only
run at 4 frames per second.

From the resulting training performance metrics, YOLOR achieves maximum mAP
at 0.5 and from 0.5 to 0.95 IOU (73% and 48%, respectively, higher mAP when compared
with 70% and 30% from YOLOv5). YOLOv5 achieves the maximum precision of 83%
and YOLOR achieves 72%. YOLOR achieves a higher recall of 74% when compared with
the 64% of YOLOv5. The training losses, box loss, classification loss, and objectness loss
tend to be zero, for YOLOv5 and YOLOR, as intended. It is also possible to achieve better
performance (e.g., precision, mAP, and recall) from YOLOv5 using other pre-trained models
such as YOLOv5m, YOLOv5l or YOLOv5x instead of YOLOv5s.

The quantitative metrics of Table 3 show that the mean IOU is higher for YOLOV5,
the number of false positives predicted is the same for YOLOv5 and YOLOR, the number
of false negatives predicted is higher for YOLOR and the number of true positives is higher
for YOLOv5. The precision, recall, and F1 score shown in Tables 3 and 4 lead us to conclude
that in the source images used, the YOLOv5 object detector usually performs better in
detecting positive instances (true positives), the detection of false instances (false positives)
is reduced, and also, the false negatives detection is reduced. In Table 4, the achieved
inference mAP in the used test set (for evaluation of the models) is higher for YOLOv5,
which means that YOLOv5 object detection model is effectively finding and localizing a
higher number of objects in the dataset.

http://semfire.ingeniarius.pt/
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The main finding of this work is the identification of a real-time object detector
(YOLOv5) capable of accurately detecting various types of vegetation in forest ground
vehicle images. Also, it can be used by a UGV to identify where to clean forest fires fuel,
in real time. The main error sources that lead to negative outcomes are the few training
images, and both lighting and motion noise in the test dataset.

Some of the drawbacks of DL object detectors are the rectangular BB detection (dif-
ferent from instance or semantic segmentation), time-consuming and expensive dataset
labeling, the need for medium/high-resolution images (for higher inference accuracy), and
the need for the dataset to have thousands of images in order to let the trained model be
used in distinct types of forests, different weather and lightening conditions, and time of
the year. On the other hand, one of the advantages is the accuracy of the DL object detector
(YOLOv5) with the real-time capability to detect forest ground vegetation to be cut, using
ground vehicle RGB images. Also, the work presented can be used for the UGV local
navigation and path planning. The hardware required to attain the demonstrated outcomes
is readily accessible and cost-effective. Moreover, to obtain better inference results, the
training dataset should be iteratively improved with different types of vegetation and
lighting conditions.

In future work, the result of this research will be integrated into the SafeForest UGV
ROS software through vegetation 3D localization using the UGV depth camera outputs.

7. Conclusions

The work addressed was a study of forest vegetation detection and classification
using ground vehicles’ RGB images to support autonomous forest cleaning operations to
prevent fires, using an UGV. The presented work compared two recent high-performance
DL methodologies, YOLOv5 and YOLOR, to detect and classify forest vegetation in five
classes: grass, live vegetation, cut vegetation, dead vegetation, and tree trunks.

From the presented work, it is concluded that forest vegetation detection in ground
vehicles forest images can be achieved with recent DL object detectors. Advancements in
technology and data processing techniques continue to improve the accuracy and reliability
of these methods, surpassing problems such as dense vegetation, lighting conditions,
occlusion, and complex backgrounds.

For the task of forest vegetation detection, YOLOv5 stands out as the superior DL
object detection model due to its exceptional inference speed, precision, low training time,
higher number of TP, lower number of FP, lower number of FN, and smaller size of the
trained weight file when compared to YOLOR. YOLOv5 is better to use in low-specification
embedded systems when compared with YOLOR object detection because of its inference
speed and size of the trained weight file. YOLOv5 makes it possible to make inferences
using the CPU, which can be used in embedded systems without GPU. YOLOR can only
be used in systems with a GPU. Additionally, the resulting inference computation times
show real-time processing capabilities for YOLOv5 object detection, as YOLOv5 can run at
more than 40 frames per second in a NVIDIA Tesla T4 GPU, which is a step forward to the
task of forest fuel cleansing for cluttered forest environments using autonomous robots.

In future work, the 3D localization and mapping of the detected vegetation using
YOLOv5 and a depth camera will be developed. Also, more advanced DL object detectors
will be trained in our custom dataset and compared with YOLOv5. Also, instance segmen-
tation for one class detection (forest fire fuel) detection, classification, and localization in
forest images will be developed.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
BB Bounding Box
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DL Deep Learning
DPM Deformable Parts Models
FN False Negative
FP False Positive
Fast R-CNN Fast Region-based Convolutional Neural Network
FCN Fully Convolutional Network
FPN Feature Pyramid Network
GPU Graphics Processing Unit
GT Ground Truth
HOG Histogram of Oriented Gradients
IOU Intersection Over Union
mAP mean Average Precision
MS COCO Microsoft Common Objects in Context
PANet Path Aggregation Network
R-CNN Region-based Convolutional Neural Network
R-FCN Region-based Fully Convolutional Network
RPN Region Proposal Network
SOTA State-Of-The-Art
SPP-Net Spatial Pyramid Pooling Networks
SSD Single Shot MultiBox Detector
SVM Support Vector Machine
TP True Positive
UGV Unmanned Ground Vehicle
YOLO You Only Look Once
YOLOR You Only Learn One Representation
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