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Abstract

Airborne laser scanning data are increasingly used to predict forest biomass over large areas. Biomass information cannot be derived
directly from airborne laser scanning data; therefore, field measurements of forest plots are required to build regression models. We
tested whether simulated laser scanning data of virtual forest plots could be used to train biomass models and thereby reduce the
amount of field measurements required. We compared the performance of models that were trained with (i) simulated data only, (ii) a
combination of simulated and real data, (iii) real data collected from different study sites, and (iv) real data collected from the same study
site the model was applied to. We additionally investigated whether using a subset of the simulated data instead of using all simulated
data improved model performance. The best matching subset of the simulated data was sampled by selecting the simulated forest
plot with the highest correlation of the return height distribution profile for each real forest plot. For comparison, a randomly selected
subset was evaluated. Models were tested on four forest sites located in Poland, the Czech Republic, and Canada. Model performance was
assessed by root mean squared error (RMSE), squared Pearson correlation coefficient (r2), and mean error (ME) of observed and predicted
biomass. We found that models trained solely with simulated data did not achieve the accuracy of models trained with real data (RMSE
increase of 52–122 %, r2 decrease of 4–18 %). However, model performance improved when only a subset of the simulated data was used
(RMSE increase of 21–118 %, r2 decrease of 5–14 % compared to the real data model), albeit differences in model performance when
using the best matching subset compared to using a randomly selected subset were small. Using simulated data for model training
always resulted in a strong underprediction of biomass. Extending sparse real training datasets with simulated data decreased RMSE
and increased r2, as long as no more than 12–346 real training samples were available, depending on the study site. For three of the four
study sites, models trained with real data collected from other sites outperformed models trained with simulated data and RMSE and
r2 were similar to models trained with data from the respective sites. Our results indicate that simulated data cannot yet replace real
data but they can be helpful in some sites to extend training datasets when only a limited amount of real data is available.

Introduction
The accurate estimation of forest biomass is essential for quan-
tifying carbon stocks and fluxes at local to global scales (Dixon
et al., 1994). One data source for predicting aboveground biomass
across larger areas is airborne laser scanning (ALS) (McRoberts
et al., 2015). ALS is increasingly used for forest inventories (Achim
et al., 2022), including biomass inventories, because it allows the
collection of forest structure information in large areas (Moudrý
et al., 2023). ALS cannot measure biomass directly, but metrics
derived from ALS point clouds can be used as predictors in
empirical models with biomass as response. Accordingly, addi-
tional biomass reference data are required to train often applied
supervised machine-learning models (Hawbaker et al., 2009).

In the area-based approach (ABA), plot-based field measurements
of biomass are linked to metrics derived from ALS point clouds
extracted from the same plots to build a model that can then be
used to predict biomass of the entire area covered by ALS data,
resulting in a wall-to-wall map of biomass predictions (White
et al., 2013). The number, size, shape, and geolocation accuracy
of the field plots affect the accuracy of the biomass predictions.
According to earlier studies, the accuracy increases with a greater
number of field plots, larger plot sizes, plot shapes with a smaller
perimeter-to-area ratio, and smaller geolocation errors (Gobakken
& Næsset, 2008, Frazer et al., 2011, Lisańczuk et al., 2020, Packalen
et al., 2023). However, field measurements are time consuming
and costly, especially when field plots are remote or difficult
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to access (Hawbaker et al., 2009, Rana et al., 2016), and dense
canopy and complex topography can reduce Global Navigation
Satellite System positioning accuracy (Næsset & Gjevestad, 2008,
Dalponte et al., 2011). For cost reasons, it is hence of interest to
keep the number of field plots small (Gobakken & Næsset, 2009,
Dalponte et al., 2011, Stereńczak et al., 2018). At the same time, it is
important to ensure that the field plots represent the full range of
biomass values and corresponding ALS metrics of the study area
to minimise extrapolation (Dalponte et al., 2011, Maltamo et al.,
2011, Fekety et al., 2015).

There are several approaches to optimising the number of field
plots and the associated workload of field measurements. One
option is the re-use of field and ALS data that have been collected
at an earlier (or later) time or in a different location. If both field
and ALS data from one time are available for the study area, these
can be used to build a model that can be applied to the ALS
data acquired at another time, provided the distribution of the
extracted metrics is the same. Alternatively, if field and ALS data
are available from different times, growth models can be used to
project the field data to the year of the ALS data (Domingo et al.,
2019, Lera Garrido et al., 2020). Temporal transferability of ALS-
based biomass models has been demonstrated in several studies
(Fekety et al., 2015, Zhao et al., 2018, Domingo et al., 2019, de Lera
Garrido et al., 2020). However, the temporally transferred models
often performed worse than models trained with field and ALS
data acquired at the same time (Domingo et al., 2019, de Lera
Garrido et al., 2020).

Spatial model transfer requires similar forest conditions in the
region where the model was trained and in the region where it
is to be applied, as the relationship between ALS-derived metrics
and biomass may differ between regions (Næsset & Gobakken,
2008, Tompalski et al., 2019). Studies evaluating the performance
of models trained with data collected over a larger area (e.g.
national models) to predict local forest parameters have found
that additional model calibration with a small set of local data
improves model performance for local predictions (Breidenbach
et al., 2008, Kotivuori et al., 2016, van Ewijk et al., 2020) and that
even models trained with only 50 local training sample plots can
perform better than models trained with many more training data
collected from other areas (Suvanto & Maltamo, 2010).

A major drawback of the spatial and the temporal model
transfers is that, although they reduce the number of new field
observations, they still require data of a forest with a similar
structure, or of the same area at different times. Such data may
not always be available. Another promising approach to minimise
field work is to reduce the number of field plots by using a strati-
fied sampling method to select plots (Goodbody et al., 2023). When
comparing stratified sampling with random sampling, several
studies have shown that stratified sampling based on ALS-derived
metrics gives more stable results and higher model accuracy than
random sampling of field plot locations (Hawbaker et al., 2009,
Dalponte et al., 2011, Maltamo et al., 2011). Stratified sampling can
be used to find the minimum number of field plots that still cover
the full range of forest structural variability that can be inferred
from ALS data. For example, Dalponte et al. (2011) obtained almost
the same accuracy for the prediction of stem volume when using
53 field plots that had been selected based on the mean height of
the ALS returns, compared to a model using all available 534 field
plots.

The easiest way around the need for field measurements would
be to generate training data simply by computer simulation.
For simulating ALS data of forests, a laser scanning simulation
approach can be applied to a 3D model of a virtual forest. Existing

methods differ in terms of the complexity of both the forest
representation and the laser scanning simulation approach. Trees
can either be represented by simple geometric objects, such as
cones, spheres, and cylinders (e.g. Nelson, 1997, Frazer et al.,
2011, Palace et al., 2015, Knapp et al., 2018), by more detailed,
realistically rendered tree models as created by the OnyxTREE
software (https://www.onyxtree.com, e.g. Disney et al., 2010), or
by tree models extracted from high-resolution real laser scan-
ning data (e.g. Fassnacht et al., 2018, Schäfer et al., 2023). Laser
scanning can be simulated using simplified statistical models
(e.g. Nelson, 1997, Wang et al., 2013, Palace et al., 2015, Spriggs
et al., 2015, Knapp et al., 2018), or using computationally more
intensive approaches (e.g. Holmgren et al., 2003, Disney et al.,
2010, Roberts et al., 2020, Zhu et al., 2020, Schäfer et al., 2023)
that allow the simulation of the scanning process itself and
thus the effects of different laser scanning acquisition settings.
The latter include for example the Discrete Anisotropic Radiative
Transfer (DART) model (Gastellu-Etchegorry et al., 2016, Yin et al.,
2016) and the Heidelberg LiDAR Operations Simulator [HELIOS++,
Winiwarter et al., 2022). Computer simulations are a time- and
cost-efficient way to generate large amounts of laser scanning
data and associated field data. They allow control of both the
laser scanning acquisition settings and the forest composition
(Frazer et al., 2011). In addition, the location and properties of
each tree in the virtual forest are known. These data offer there-
fore plenty of opportunities for sensitivity analyses as well as
method development that are much more difficult to perform
with real data (Disney et al., 2010). Accordingly, simulated ALS
data of forests have been used for a variety of applications, e.g.
to assess the influence of laser scanning acquisition settings on
ALS-derived structural parameters, such as canopy height and
canopy closure (Holmgren et al., 2003, Disney et al., 2010, Roberts
et al., 2020), or to analyse the influence of field plot size and co-
registration error on ALS-based biomass predictions (Frazer et al.,
2011, Fassnacht et al., 2018). Simulated ALS data have also been
used to validate methods for tree delineation (Wang et al., 2013)
and effective leaf area index estimation (Zhu et al., 2020), and to
find the best ALS-derived metrics for biomass predictions (Knapp
et al., 2018). Some studies also explored the potential of simulated
data to derive predictive equations or look-up tables for relating
forest structural parameters to ALS data (Nelson et al., 1997, Palace
et al., 2015, Spriggs et al., 2015).

Schäfer et al. (2023) demonstrated that HELIOS++ laser scan-
ning simulations of virtual stands composed of real laser scanning
tree point clouds can produce data that are sufficiently realistic
for training biomass models, even if the prediction accuracy was
lower than for models trained with real data. They used real forest
inventory data to generate the virtual stands, which strongly
limits the number of the synthetic forest plots. In this study, we
overcome this limitation by creating the virtual stands based on
simulated forest compositions. Our main aim was to explore the
potential of such synthetic ALS and forest inventory datasets
to reduce the amount of field reference data required for the
laser scanning-based prediction of forest aboveground biomass.
We conducted three experiments. In the first two experiments,
we trained biomass models with (i) simulated data only, and (ii)
mixed sets of simulated and real data. In the third experiment,
we tested a spatial model transfer and trained biomass models
with real ex situ data, i.e. real ALS and field data collected from
other sites. Model performance was always evaluated on real
data, and compared with models trained with real in situ data
that were excluded from the evaluation. Our objective was to
answer the following research questions using datasets obtained
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from study sites located in Poland, the Czech Republic, and
Canada:

1. How accurately can random forest models that have been
trained with simulated forest inventory and virtual laser
scanning data predict biomass of real forest sites compared
to models that have been trained with real data collected at
the same site (Experiment 1) or at different sites (Experiment
3)?

2. When there are little real training data available, can model
accuracy be improved by extending real training datasets
with synthetic data? If so, up to what number of real training
samples does a model trained with additional synthetic data
outperform a model trained with real data only (Experiment
2)?

Materials and methods
Study sites
We tested our approach using a total of four real datasets obtained
from the Milicz forest district in Poland, the Silesian Beskids
(Těšínské Beskydy) forest in the Czech Republic, the DendroNET
sites in the Czech Republic, and the Petawawa Research Forest in
Canada.

The Milicz forest district is located in the south-west of Poland.
The dominant tree species is Scots pine (Pinus sylvestris L.), accom-
panied by European beech (Fagus sylvatica L.) and oaks (Quercus
spp. L.). Approximately 70 % of the forest stands are pure pine
stands (Stereńczak et al., 2018). Field reference data were collected
in summer 2015 for 500 circular plots (Stereńczak et al., 2018). ALS
data were acquired at the same time under leaf-on conditions.

The Silesian Beskids are a mountain range in southern Poland
and eastern Czech Republic. Data were collected in the Czech part.
The forest there is dominated by Norway spruce (Picea abies (L.) H.
Karst) and European beech. ALS data and field data were collected
in July 2019 for 130 plots. Study site and data have been described
in more detail by Brovkina et al. (2022).

The DendroNET (http://dendronet.cz) is a network of small
forest sites located across the Czech Republic. 47 plots were used
in this study, 22 of them are located in spruce forest, 10 in pine
forest, 12 in beech forest, and 3 in mixed forest. Field data were
collected for each tree within a 30 m × 30 m square. ALS data
were acquired in October 2021.

The Petawawa Research Forest is located in the Great Lakes–
St. Lawrence Forest region in southern Ontario, Canada. The
most frequent tree species are white pine (Pinus strobus L.), trem-
bling aspen (Populus tremuloides Michx.), red oak (Quercus rubra
L.), red pine (Pinus resinosa Ait.), white birch (Betula papyrifera
Marsh), maple (Acer spp.), and white spruce (Picea glauca (Moench)
Voss) (Wetzel et al., 2011). Several remotely sensed and ancillary
datasets are available for this remote sensing supersite (https://
opendata.nfis.org/mapserver/PRF.html). A summary of the open-
access datasets can be found in White et al. (2019). Here, we used
the ALS data of 2012. Field measurements were conducted in 2014
in 223 circular plots (White et al., 2019). The field data collection
is described in the Field Procedures Manual which is provided
with the data. Table 1 gives an overview of the laser scanning
acquisition settings and resulting mean pulse densities and mean
planar point densities of all study sites.

Simulated data
Simulated data were generated by applying the HELIOS++ laser
scanning simulator to simulated forest stands. For simulating

forest compositions, we used Forest Factory 2.0, a forest generator
based on the forest gap model FORMIND (Bohn & Huth, 2017, Hen-
niger et al., 2023). Forest Factory generates virtual forest stands
with different species composition and structure, without taking
into account the forest development over time. This reduces the
computational time compared to forest growth simulators such
as FORMIND (Fischer et al., 2016) or SILVA (Pretzsch et al., 2002).
Forest Factory is initialised with a region-specific parameteri-
sation, i.e. species pool and productivity. Additionally, an initial
minimum and maximum tree height and an initial maximum
stand density is set. Each forest stand is created tree by tree.
First, a stand-specific height range and species pool is randomly
selected from the initial height range and species pool. Then, for
each tree that is to be placed in the forest stand, tree species and
height are randomly sampled from the stand-specific species pool
and height range. Trees are added until no tree with a positive
annual productivity (photosynthetic production is higher than
respiration) can be placed, or until there is no canopy space for
the tree that is to be placed. Stands are limited to a size of 20 m ×
20 m (Henniger et al., 2023). In our study, we used Forest Factory to
simulate 2500 plots of 400 m2 each with different compositions
of pine, spruce, beech, and oaks. Forest Factory has also been
calibrated for more tree species and plant functional types (Bohn
& Huth, 2017, Bruening et al., 2021, Henniger et al., 2023), but we
excluded these from forest simulations because there were only
few or no tree point clouds of these species available (see next
paragraph). The maximum tree height of each species was set to
be 5 m higher than the maximum height of the available tree point
clouds of this species.

Virtual 3D representations of the Forest Factory stands were
created by making use of individual tree point clouds that had
been extracted from laser scanning data acquired by an uncrewed
aerial vehicle (UAV) under leaf-on conditions in temperate forests
in southwestern Germany. These individual tree point clouds have
been published by Weiser et al. (2022b), they can be downloaded
from https://pytreedb.geog.uni-heidelberg.de/. A description of
the tree point cloud dataset can be found in Weiser et al. (2022a).
Here, we only used tree point clouds having a high to medium
segmentation quality (q1–q3). The segmentation quality score
ranges from high (q1) to low (q6). It is a subjective measure
of the probability of segmentation and extraction errors that
was assigned by the person who manually extracted the tree
point cloud. After applying the filtering criteria, there were 102
tree point clouds for pine, 191 tree point clouds for spruce, 345
tree point clouds for beech, and 154 tree point clouds for oaks
available.

For each tree in the Forest Factory stands, a point cloud of
a tree was selected randomly from all tree point clouds of that
species with a height ± 4 m the height specified by Forest Factory.
If there was no point cloud of a tree of matching height available,
the point cloud of the tree with the smallest height difference
was selected. This filtering procedure is similar to the one applied
in Schäfer et al. (2023) except that we omit the crown diameter
filter here. The tree point cloud was scaled along the Z-axis so
that the height of the point cloud matched the height of the
Forest Factory tree. It was randomly rotated around the Z-axis and
placed at the location of the tree in the Forest Factory stand. For
simulating laser scanning, the 20 m × 20 m Forest Factory stands
were arranged to larger scenes of 100 m × 100 m (1 ha). To prevent
border effects of tree crowns reaching into neighbouring stands,
the composite of the tree point clouds of a stand was clipped
to the stand boundaries. The resulting forest point clouds were
converted into opaque voxels with 3 cm side length to create 3D
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Table 1. Laser scanning acquisition settings and resulting mean pulse density and mean planar point density

Milicz Forest Silesian Beskids DendroNET Petawawa Research Forest

Sensor RIEGL LMS-Q680i RIEGL LMS-Q780 RIEGL LMS-Q780 RIEGL LMS-Q680i
Laser beam divergencea 0.5 mrad 0.25 mrad 0.25 mrad 0.5 mrad
Pulse repetition frequency 360 kHzb [300 kHz] 400 kHz 400 kHz 150 kHz
Scan frequency ? [140 lines/s] 125 lines/s 160 lines/s 76.67 lines/s
Scan angle off nadir ±30◦ ±30◦ ±30◦ ±20◦

Altitude above ground 480–620 m [480 m] 819 m 515 m 750 m
Flight speed 54 m/s 56 m/s 56 m/s ? [54 m/s]
Flight line distance ? [≈ 296 m] 440 m – 250 m [≈ 242 m]
Flight pattern Parallelc Parallelc Perpendicularc Parallelc

Mean pulse density 9.4 pulses/m2 7.0 pulses/m2 13.2 pulses/m2 5.4 pulses/m2

[12.4 pulses/m2] [9.7 pulses/m2] [18.0 pulses/m2] [4.3 pulses/m2]
Mean planar point density 19.9 points/m2 12.8 points/m2 23.9 points/m2 11.7 points/m2

[24.4 points/m2] [17.8 points/m2] [31.7 points/m2] [8.3 points/m2]

Numbers in square brackets indicate values of the simulations differing from reported values of the real acquisitions.aMeasured at the 1/e2 points.bThe
reported pulse repetition frequency was 360 kHz, but simulations with a pulse repetition frequency of 300 kHz matched better to the real point clouds.cThe
simulations were performed with flight strips that were not perfectly parallel/perpendicular to reflect deviations from the flight pattern in the real data.

voxel scenes as input for the simulations. A horizontal plane was
added as ground layer.

HELIOS++ has been validated with DART (Winiwarter et al.,
2022) and was already successfully applied to simulate ALS data
of synthetic forest stands composed of real ULS tree point clouds
(Schäfer et al., 2023), which is why we used HELIOS++ for the laser
scanning simulations. HELIOS++ allows simulating full waveform
and discrete return laser scanning. Beam divergence is modelled
by subrays of different base power. The returned waveforms of
all subrays are binned and summed up to generate the full
waveform. On this waveform, a local maximum filter is employed
to detect return points. The simulations are configured by the
scene to be scanned, the scanner parameters and the position
and movement of the platform on which the virtual scanner is
mounted. Additional parameters such as the temporal window
size for echo detection, and the number of generated subrays can
be defined (Winiwarter et al., 2022). We conducted laser scanning
simulations with the same acquisition settings as in the real
acquisitions (Table 1), resulting in four different simulated laser
scanning datasets. In case of unknown acquisition settings, differ-
ent values were tested, and the best approximation was selected
based on comparisons of the resulting point patterns of simulated
and real point clouds. The simulations were performed with a
temporal window size of 1 ns in the local maximum filter, for
the number of subrays the default value was used (beamSample-
Quality = 3). As full waveform data from the real study sites were
not available, we simulated only discrete, albeit multiple return
point clouds and not full waveform data for the virtual forest
stands.

Extraction of biomass reference data and
predictor variables
Biomass reference data and ALS metrics were extracted from the
real-world datasets and the Forest Factory datasets. The available
data from the four study sites and the simulated data differed
in plot shape and size, sampling strategy (measurement of all
trees or sampling based on the diameter at breast height, D1.3),
and whether individual tree positions were included in the data.
Therefore, data were extracted in ways specific to the study sites
(Fig. 1).

Individual tree biomass values of the Forest Factory stands
were calculated based on D1.3 and height using species-specific
allometric equations that were developed for the German

National Forest Inventory, available in the R package “rBDAT”
(Vonderach et al., 2021).

The Milicz Forest field data included information on species,
D1.3, height, and location of every tree within a radius of 12.62
m from the plot centre. Biomass values of the individual trees
were also calculated using the allometric equations of the Ger-
man National Forest Inventory, assuming that the allometry of
trees in Poland and Germany does not differ significantly. As the
Forest Factory plots are squares of 20 m side length, the Milicz
Forest field plots and the Forest Factory plots do not overlap
perfectly. Therefore, simulated and real data were extracted from
the largest square area that fits into both plot shapes (17.8 m ×
17.8 m). The biomass of all trees located within this subplot was
summed and divided by the area to derive estimates in t/ha.

In the Silesian Beskids, field data had been collected in nested
plots with a maximum radius of 12.62 m. Due to the D1.3-
dependent sampling design, data had not been recorded for all
trees within the plots. Accordingly, only plot-based estimates of
biomass were available. Because of the smaller plot size of the
simulated data, these could not be cropped to the plot shape of
the real data. For simplicity, it was assumed that the provided
biomass estimates (in t/ha) of the 500 m2 circular Silesian Beskids
plots were also representative for 20 m × 20 m square plots.
For these plots, ALS metrics were extracted from the real and
simulated data, and biomass reference values were derived from
the Forest Factory stand information.

The DendroNET dataset included individual tree locations and
biomass values derived from species-specific allometric equa-
tions. The data were cropped to 20 m × 20 m square plots. This
allowed biomass reference values and ALS metrics to be derived
from plots of the same shape and size for both the real and
simulated data.

For the Petawawa Research Forest, individual tree biomass pre-
dictions were available, but not tree locations, so biomass could
only be calculated for the entire 625 m2 plots. As for the Silesian
Beskids dataset, we assumed these area-based biomass estimates
to be representative for the forest stands at the plot locations and
extracted ALS metrics and the Forest Factory biomass reference
values from 20 m × 20 m square plots.

ALS metrics were calculated for each plot using the R package
“lidR” (Roussel et al., 2020, Roussel & Auty, 2021). The point clouds
were cropped to the plot extents and the height values were
normalised using the normalize_height() function included in the
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Figure 1. Schematic overview of field plot sizes and shapes of the four study sites in comparison to the Forest Factory plots (left). Areas from which
biomass reference data were collected and areas from which ALS metrics were extracted are highlighted by colour and stripe pattern, respectively, for
the real-world data (centre) and the Forest Factory data (right).

“lidR” package. For both all returns and first returns, the follow-
ing metrics were calculated from the return heights: the maxi-
mum height, the mean height, the standard deviation, the skew-
ness, the kurtosis, and the entropy of the height distribution, the

percentage of returns above the mean height, the percentage
of returns above 2 m, the 5th–95th (in steps of 5) height per-
centiles, and the cumulative percentage of returns in the 1st–
9th layer. In addition, the number of returns, the percentage
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of the first to fifth returns, the percentage of ground returns,
the sum of intensities of the returns, the maximum intensity,
the standard deviation of intensity, the skewness and kurto-
sis of the intensity distribution, the percentage of intensity of
ground returns, and the percentage of intensity returned below
the 10th–90th (in steps of 10) percentile of height were com-
puted. Because the number of returns and the intensity-related
metrics differed significantly between simulated and real data,
these metrics were excluded from models trained with simulated
data. To ensure comparability of the models, we did not perform
any feature selection (e.g. based on feature importance) during
modelling.

Subsampling of simulated training data
The Forest Factory stands covered a wide range of forest struc-
tures, with stem numbers ranging from 1 to 585 trees per 20 m
× 20 m plot and biomass values ranging from 0.26 to 1323.81
t/ha, including plots with low tree numbers and low biomass,
low tree numbers and high biomass, high tree numbers and low
biomass, and high tree numbers and high biomass. The use of
all 2500 Forest Factory plots as training data may hence result
in less appropriate biomass models for study sites with less
structural diversity. In addition, using all data leads to increased
computing times. Therefore, we tested a sampling approach to
reduce the amount of simulated training data while maintain-
ing or even improving model performance when applied to real
data.

For this, in each study site, the simulated data were filtered for
the Forest Factory plots that were best matching the real data,
assuming that only ALS-derived information were available. For
both the real plots and the simulated plots, the relative number
of ALS returns per 1 m height bin for the height of 0–50 m above
ground was calculated to derive height distribution profiles of
the returns. Adapting a waveform matching approach that was
developed to compare simulated and real full-waveform light
detection and ranging (LiDAR) data (Blair & Hofton, 1999, Hancock
et al., 2019, Lang et al., 2022), the Pearson correlation coefficients
between all simulated and all real height distribution profiles
were calculated. For each real plot, the Forest Factory plot with the
highest Pearson correlation coefficient was selected. This resulted
in a subset of simulated data equal in size to the number of
real plots, or smaller if a simulated plot was the best match for
several real plots. Figure 2 shows two examples of the return
height distributions of real forest plots and the corresponding
Forest Factory plots.

Biomass prediction models
The random forest algorithm (Breiman, 2001) as implemented in
the R package “randomForest” (Liaw & Wiener, 2002) was used to
build regression models for the prediction of biomass from ALS
metrics. We conducted three experiments in which we compared
how different training datasets affect the model performance.
In all experiments, the performance of the models was assessed
by comparing the predicted and observed biomass values of the
real forest plots. For this, 30 % of the real data were randomly
sampled for model testing. The experiments were performed
separately for each study site. Each experiment was repeated 500
times, i.e. the model performance was assessed for 500 (partially
overlapping) test datasets per study site. The RMSE, the squared
Pearson correlation coefficient (r2), and – as a measure of bias
– the ME between observed and predicted biomass values were
calculated.

The first experiment tested whether simulated data alone
could be used to train biomass models. For this purpose, models

were trained using (i) all simulated data, (ii) a randomly selected
subset of the simulated data, and (iii) the best matching subset of
the simulated data filtered by the waveform matching approach.
As a benchmark, models were also trained with the remaining 70
% of the real data that were not used for model testing. The size
of the randomly selected subset (ii) was chosen to be equal to the
size of the real training dataset.

In the second experiment, we tested whether simulated data
can be used to extend the training dataset if only limited real
training data are available. Again, the real dataset was randomly
divided into 30 % test data and 70 % training data in each of the
500 runs. We trained models with mixed sets of simulated and
real data, gradually increasing the number of real samples from
two plots to the maximum number of training data available,
to investigate whether and up to which number of real training
data the model benefits from supplementary simulated data. To
reduce computation time, only the randomly selected subset (b)
and the best matching subset of the simulated data (c) were used
in this experiment. In case of the random selection, the number of
randomly selected data was adjusted such that the total number
of training data (simulated plus real data) was always equal to
the maximum number of real training data. In contrast, the best
matching subset was always used in its entirety, i.e. in this case,
the total number of training data was equal to the number of best-
matching simulated data plus the number of real data used in
each increment.

In the first two experiments, we investigated the potential
of simulated training data in comparison to real data collected
from the same study site that the biomass models were being
applied to. In the third experiment, we tested a spatial model
transfer. We assumed that only real data from the other real
sites were available and evaluated how biomass models perform
when trained with these data. For each study site, we trained
biomass models using all available data from the three other sites,
irrespective of the fact that plot sizes and ALS acquisition settings
differed between the datasets.

The data were processed, analysed, and visualised in R
version 4.0.4 (R Core Team, 2021) within the RStudio interface
(RStudio Team, 2016) making use of the packages “data.table”
(Dowle & Srinivasan, 2021), “rgdal” (Bivand et al., 2022), “Desc-
Tools” (Signorell, 2021), “ggplot2” (Wickham, 2016), “viridis”
(Garnier et al., 2021), “ggpubr” (Kassambara, 2020), and their
dependencies.

Results
Comparison of real and simulated data
The biomass values of the real plots ranged from 0.98 t/ha to
583.20 t/ha. This range was completely covered and exceeded
by the Forest Factory plots (0.26–1323.81 t/ha for 20 m × 20 m
plots, 0.00–1488.57 t/ha for 17.8 m × 17.8 m plots). The mean
biomass was highest for the DendroNET sites (268.38 t/ha) and
lowest for the Petawawa Research Forest (157.70 t/ha). The mean
biomass of the simulated forest plots was significantly lower
(136.16 t/ha for 20 m × 20 m plots, 137.67 t/ha for 17.8 m ×
17.8 m plots). The stand density ranged from 0 trees/ha to 14897
trees/ha in the Forest Factory plots, with a mean value of 499
trees/ha. The Petawawa Research Forest plots had a similar range
of stand density (32–13 024 trees/ha), but the mean was sig-
nificantly higher (2500 trees/ha). The DendroNet sites had the
smallest mean stand density (846 trees/ha) and also the smallest
range (89–1600 trees/ha). The stand density of the Milicz Forest
plots ranged from 32 trees/ha to 4261 trees/ha, with a mean of 951
trees/ha. Information on the stand density of the Silesian Beskids
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Figure 2. Two examples of the applied waveform matching approach for selecting the best matching Forest Factory plot for each real plot. The left
images show vertical sections of real ALS point clouds of plots located in the Milicz Forest, the right images show the simulated ALS point clouds of
the best matching Forest Factory plots, and the centre images show the derived return height distribution (“waveform”) profiles of both. While the
Pearson correlation coefficient of the height distribution profiles is very high (r = 0.998) for both examples, the biomass of the real and the selected
simulated plot are very similar for the upper example (123.44 and 123.83 t/ha), but have a higher difference for the lower example (237.98 and 273.59
t/ha). Points are coloured according to their position in Y-direction.

plots was not available. Figure 3 shows histograms of biomass,
stand density, and the maximum and mean height of the real
and simulated forest plots. The maximum and mean height were
calculated from the ALS point clouds, because information on
individual tree heights was only available for the Milicz Forest
and the Petawawa Research Forest. The simulated data contained

proportionally more plots with a maximum height ≥ 30 m than
the real-world data, especially when compared to the Milicz Forest
and the DendroNET sites. The mean height of returns was on
average higher for the real plots than for the simulated plots
(except for the Petawawa Research Forest). The best matching
subsets of the simulated data fit slightly better to the real data
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Figure 3. Relative distribution of biomass, stand density, maximum height of returns (Hmax), and mean height of returns (Hmean) for the real forest
plots and the simulated Forest Factory plots. Information on stand density was not available for the Silesian Beskids.

than all simulated data, but there are still large differences in the
distribution of biomass, stand density and maximum and mean
height of returns.

The mean height of returns (Hmean) was highly correlated
with plot biomass (Pearson correlation coefficient > 0.86 for the
real data and > 0.73 for the simulated data). Scatter plots of
biomass and Hmean show that the simulated data covered a
wider range of structural diversity as expressed by these two

metrics (Fig. 4). Compared to the real data, the simulated data
show lower biomass values in relation to Hmean (Fig. 4, left
column). This trend is less pronounced but still visible in the best
matching subset of the simulated data (Fig. 4, centre column).
Especially for the DendroNET sites, there are large deviations in
the ratio of biomass and Hmean between simulated and real
data. In contrast, the real data from the different sites have more
similar ranges (Fig. 4, right column).
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Figure 4. Biomass and mean height of returns (Hmean) of real and simulated forest plots. The real data collected from a site are compared to all
simulated data (left), the best matching subset of the simulated data (centre), and the real data collected from the other sites (right).

Biomass models
Experiment 1 (using only simulated data for model
training)
In the first experiment, we tested how biomass models perform
when trained with simulated data compared to models trained

with real data from the same study site the model was applied
to. Figure 5 shows scatter plots of the predicted and observed
biomass values of all field plots. The predicted values were cal-
culated as the mean of all predictions for one field plot. Since
the data were randomly divided into training and test data in the
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500 model iterations, the number of predictions varied slightly
per field plot, depending on how often this plot was sampled for
the test dataset. Model performance metrics (RMSE, ME, r2) were
calculated based on the mean predicted and the observed values.
The “all real” models that were trained with all data from the
respective study site (excluding the test data) served as bench-
mark for evaluating the performance of models trained with other
data. The first experiment revealed that for all study sites, models
trained with real in situ data outperformed models trained with
simulated data. The difference in model performance was most
clearly expressed by the ME, which was negligible for models
trained with real data and significantly higher (6.22–118.90 t/ha)
for models trained with all simulated data (Fig. 5, second column).
Accordingly, the models trained with simulated data underpre-
dicted the biomass values of the real plots. With regard to RMSE,
differences in model performance were most pronounced for the
DendroNET sites (DN) and the Petawawa Research Forest (PRF).
Here, the RMSE of the models trained with all simulated data was
about twice as high as for models trained with real data (136.15
t/ha vs. 61.36 t/ha for DN, 73.65 t/ha vs. 37.16 t/ha for PRF). For the
Milicz Forest (MF) and the Silesian Beskids (SB), the relative differ-
ence in RMSE was slightly smaller (40.86 t/ha vs. 26.94 t/ha for MF,
101.08 t/ha vs. 63.88 t/ha for SB). The difference in r2 was highest
for the Petawawa Research Forest (simulated data: 0.68, real data:
0.83), and smallest for the DendroNET sites (simulated data: 0.69,
real data: 0.72).

Using a randomly selected subset of the simulated data
instead of using all simulated data for model training increased
the model performance in most cases (Fig. 5, third column).
An exception were the predictions for the Silesian Beskids,
where the models trained with all simulated data strongly
overpredicted the biomass of three plots (cf. outliers in Fig. 5,
second row, second column). This led to a very low ME between
observed and predicted biomass values compared to the models
trained with a randomly selected subset of the simulated
data (all simulated: 6.22 t/ha, randomly selected simulated:
32.37 t/ha), while the RMSE was much higher (all simulated:
101.08 t/ha, randomly selected simulated: 77.17 t/ha) and the
r2 was much lower (all simulated: 0.67, randomly selected
simulated: 0.74).

The performance of models trained with the best matching
subset of the simulated data was similar to the performance of
models trained with a randomly selected subset (Fig. 5, fourth
column), but differed between study sites. While the difference in
RMSE for the Milicz Forest and the Silesian Beskids was < 1 t/ha,
for the DendroNET sites and the Petawawa Research Forest, the
RMSE was lower for the models trained with randomly selected
simulated data than for models trained with the best matching
data (127.15 t/ha vs. 133.58 t/ha for DN, 67.83 t/ha vs. 72.92
t/ha for PRF). The difference in the ME was negligible for the
Milicz Forest (16.48 t/ha vs. 17.38 t/ha). For the Silesian Beskids,
the absolute ME was higher when the models were trained with
a randomly selected subset than when they were trained with
the best matching subset (32.37 t/ha vs. 18.01 t/ha). In con-
trast, for the DendroNET sites and the Petawawa Research Forest,
using a randomly selected subset for model training resulted
in a slightly lower absolute ME than using the best matching
subset (103.63 t/ha vs. 114.85 t/ha for DN, 49.19 t/ha vs. 53.74
t/ha for PRF). The absolute difference in r2 was 0.2 for all study
sites, with a higher r2 for the randomly selected subset for the
Silesian Beskids and the Petawawa Research Forest, and a higher
r2 for the best matching subset for the Milicz Forest and the
DendroNET sites.

Figure 6 shows the mean performance metrics calculated from
each of the 500 model iterations for each study site and training
data type, including the results for models that were trained
with different numbers of real training samples. Because of the
random sampling of field plots for the test datasets, the model
performance metrics differ slightly from the values presented
in Fig. 5. Models that were trained with simulated data resulted,
in most cases, in higher prediction accuracies, as expressed by
RMSE and r2, than models that were trained with real data when
the number of real training samples was very low. Table 2 and
the dashed vertical lines in Fig. 6 show up to which number
of real training samples models that were trained with sim-
ulated data only, or with real data collected from other sites
(Experiment 3), performed better than models that were trained
with real data collected from the same site the models were
applied to.

Experiment 2 (extending the real training dataset with
simulated data)
In the second experiment, we tested whether the accuracy of
biomass models could be increased by extending a small real
dataset with additional simulated data for model training. For all
study sites, model accuracy in terms of RMSE and r2 improved
by adding simulated training data to a small number of real
training data (Fig. 6). However, as the amount of real training
data increased, the positive effect of additional training data
decreased and eventually disappeared. In contrast to RMSE and r2,
the absolute ME of the models was always lowest when only real
data were used for model training. As the number of real training
samples increased, the accuracies of models trained with real
data only and those trained with additional randomly selected
simulated data converged because the number of additional sim-
ulated samples decreased when more real samples were used.
The numbers of real training samples up to which the addition
of simulated data resulted in higher model accuracies in terms of
RMSE and r2 are given in Table 2.

Experiment 3 (using real data from other study sites
for model training)
Using data collected from other sites (ex situ data) for training
biomass models resulted in high model accuracies for all sites
but Milicz Forest (Fig. 5, last column). Compared to models that
were trained with real data collected from the Silesian Beskids and
the Petawawa Research Forest, respectively, the RMSE increased
by only 0.54 t/ha and 2.70 t/ha when models were trained with
data from the other sites. The increase in RMSE was slightly higher
for the DendroNET sites (17.79 t/ha), but still much lower than
when models were trained with simulated data (increase in RMSE:
≥ 65.79 t/ha). The ME indicated an overprediction of biomass
for the Silesian Beskids (-17.95 t/ha), and an underprediction of
biomass for the DendroNET sites (54.61 t/ha) and the Petawawa
Research Forest (5.20 t/ha). The r2 value of models trained with
real data collected from other sites decreased by 0.03 for the
Petawawa Research Forest, and even increased by 0.02 and 0.04
for the Silesian Beskids and the DendroNET sites, compared to
models trained with real data collected from the respective sites.
For three of the study sites, the Silesian Beskids, the DendroNET
sites, and the Petawawa Research Forest, using real data col-
lected from other sites for model training resulted in significantly
higher model accuracies than using simulated data, regardless of
whether all simulated data or a subset were used. In contrast,
for the Milicz Forest, the accuracy was much higher for models
trained with simulated data, especially when only a subset of the
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Figure 5. Mean predicted biomass and observed biomass of all field plots by study site and training data type. Model building and predictions were
repeated 500 times for each training data type. In each of the 500 iterations, the real data were randomly split into 30 % test data and 70 % training
data, i.e. each plot was included in the test and training data several times. The mean predicted biomass was calculated as the mean of all predictions
for one field plot. The squared Pearson correlation coefficient (r2), the ME, and the RMSE are given.
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Figure 6. Mean RMSE, mean squared Pearson correlation coefficient (r2), and ME of the biomass predictions for different training data types. Model
building and predictions were repeated 500 times for each training data type and each number of real training samples. Dashed vertical lines show at
which number of real training samples the “only real” model performed better than the other models, as indicated by colour.
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Table 2. Number of training samples up to which models trained with real in situ data performed worse than models trained with other
data (as specified in column Training data type).

Study Site Training data type Number of real

training samples measured by

RMSE r2

Milicz Forest All simulated ≤ 14 ≤ 32
Randomly selected simulated ≤ 20 ≤ 10
Best matching simulated ≤ 22 ≤ 40
Real data from other sites ≤ 4 ≤ 22
Real + randomly selected simulated ≤ 56 ≤ 70
Real + best matching simulated ≤ 134 ≤ 346

Silesian Beskids All simulated ≤ 6 ≤ 10
Randomly selected simulated ≤ 10 ≤ 16
Best matching simulated ≤ 14 ≤ 16
Real data from other sites > 90 > 90
Real + randomly selected simulated > 90 > 90
Real + best matching simulated > 90 > 90

DendroNET sites All simulated ≤ 2 ≤ 24
Randomly selected simulated ≤ 2 ≤ 6
Best matching simulated ≤ 2 ≤ 6
Real data from other sites ≤ 12 >32
Real + randomly selected simulated ≤ 24 ≤ 12
Real + best matching simulated ≤ 8 ≤ 14

Petawawa Research Forest All simulated ≤ 6 ≤ 10
Randomly selected simulated ≤ 6 ≤ 14
Best matching simulated ≤ 6 ≤ 14
Real data from other sites ≤ 80 ≤ 68
Real + randomly selected simulated ≤ 36 ≤ 36
Real + best matching simulated ≤ 50 ≤ 60

simulated data was used. Compared to the models trained with
the best matching subset, the RMSE of models trained with real
data from other sites increased by 21.26 t/ha, and r2 decreased
by 0.05. Training models with real data collected from other sites
resulted in a significant overprediction of biomass for the Milicz
Forest, with an ME of -44.51 t/ha.

Discussion
Experiment 1
The results of the first experiment suggest that models trained
only with simulated data do not reach the performance of models
trained with real data, as long as a sufficient amount of real
data is available. The gap in model accuracy when simulated
data were used for model training instead of real data differed
between study sites. Regardless of the study site, all models
trained exclusively or additionally (see Experiment 2) with sim-
ulated data significantly underpredicted the biomass of the real
plots, whereas models trained with real data (collected from the
same site the model was applied to) did not show any bias (Fig. 6).
The underprediction was highest for the DendroNET sites (ME
103.63–118.90 t/ha) and the Petawawa Research Forest (ME 49.19–
53.74 t/ha). We suppose that there are several reasons why the
difference in model performance between models trained with
simulated data and models trained with real data was highest
for these two study sites (also with regard to RMSE and r2). Most
of the DendroNET sites are located in single species forest with
only one layer. The plots there have high biomass values but low
maximum and mean heights of return compared to the Forest
Factory plots, but also compared to the other real forest plots
(Figs 3 and 4). As the stand density at the DendroNET sites is

also rather low, the high plot biomass is probably the result
of a specific silvicultural strategy which is not captured by the
other real datasets and by the growth simulator. In contrast to
the DendroNET sites, the Petawawa Research Forest has a high
structural diversity resulting from diverse species compositions
and complex management histories (White et al., 2021), and the
stand density is comparatively high. Multiple forest layers and
the occurrence of undergrowth shift the relative return height
metrics toward the lower heights, resulting in an underprediction
of biomass when models are trained with less complex data. In
addition, forest plots with a high stand density may have a similar
return height distribution as plots with a lower stand density but
similar tree sizes, resulting in a much higher plot biomass. It is
therefore also possible that the high stand density is a reason for
the underprediction of biomass by models trained with simulated
data. An in-depth analysis of why the models trained with the
simulated data performed differently for the four study sites was
not possible, as this would have required detailed information on
individual trees (e.g. tree height and location), which was only
available for the Milicz Forest.

Differences in the feature space can cause problems in model
transferability (Meyer & Pebesma, 2021). If simulated data are to
replace real data in model training, it needs to be ensured that
they cover all the features of real-world data. Even if the simulated
data covered the whole range of biomass values of the real forest
plots, they did not cover the complete range of all predictors and
the relation between LiDAR metrics and biomass was not the
same. For example, the extremely high overprediction of biomass
for three of the Silesian Beskids plots when using all simulated
data for model training (Fig. 5, second row, second column) can
be explained by the fact that the Silesian Beskids plots with
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higher mean return heights have much lower biomass values than
the Forest Factory plots (Fig. 4, second row, first column). The
observed differences between the simulated and the real data can
be caused by several factors, that are related to either (i) the simu-
lation of the forest stand composition or (ii) the simulation of the
laser scanning. First of all, the forest composition differs between
simulated and real forests. Forest Factory uses the region-specific
parameterisations implemented in the FORMIND model, which
do not yet include all tree species that occur at our study sites
(Henniger et al., 2023). In addition, the availability of tree point
clouds that are needed to create the 3D representations of the
Forest Factory stands further limits the number and size range of
tree species included in the Forest Factory simulations. Therefore,
the simulated forest stands only include four tree species. They
also lack understorey elements such as shrubs and small trees,
resulting in a lower structural complexity than real forests (Bru-
ening et al., 2021). The goal of Forest Factory is to generate as many
potential forest states as possible. The resulting large variability of
the generated stands, as reflected by the wide range of biomass
values in relation to the mean height of returns, indicates that
the underlying stem size distributions of the simulations include
extremes that do not occur in our study sites. However, there
will also be real forest compositions that are not captured by the
Forest Factory simulations. A drawback of using Forest Factory
to simulate forest stand composition is that tree positions are
randomly assigned within the plot area. As a result, trees may be
placed unrealistically close together. Compared to Forest Factory
2.0, other forest simulators such as SILVA (Pretzsch et al., 2002)
have the disadvantage that parameterisation and simulations
take much longer, which means that significantly fewer stands
can be generated in a reasonable time. On the other hand, SILVA
has the ability to apply different management strategies and takes
into account competition from neighbouring trees. It is therefore
likely that the stands that are generated will be more similar to
real forest stands. Further research should investigate how the
use of different forest simulators affects the quality (in terms of
usability) of the simulated data.

Another factor that can lead to differences between the simu-
lated and real data is the simulation of laser scanning. Both the
pulse densities and the resulting planar point densities differed
between simulated and real datasets (Table 1). Because some of
the acquisition settings of the real laser scanning campaigns were
unknown, it was not possible to exactly reproduce the acquisi-
tions. Furthermore, the laser scanning simulation process imple-
mented in HELIOS++ is sensitive to other parameters, such as the
size of the voxels that are used to convert the forest point clouds
into scannable objects, the point density of the tree point clouds,
and the temporal window size for echo detection (Winiwarter
et al., 2022). Consequently, the parameterisation of HELIOS++ and
the implemented laser scanning simulation approach should be
further optimised, also with regard to more realistic intensity val-
ues and numbers of returns, so that metrics related to these point
cloud characteristics could also be derived from the simulated
data. However, when models were trained with the real in situ data,
we did not observe significant differences when these metrics
were included or excluded from model training.

Including understorey elements in the simulated forest stands
and choosing a different voxel size and temporal window size
could contribute to shifting the distribution of simulated returns
to lower heights, and thus better fit the relation between biomass
and mean return height of the simulated data to the real data.
Furthermore, this relation could also be affected by the method
for calculating the individual tree biomass values. Allometric

equations are commonly applied for predicting biomass from
stem diameters and in some cases tree height, and different
equations can result in different biomass predictions for the same
tree (Zianis et al., 2005, Ameztegui et al., 2022). In cases where
no allometries are available for a specific location and its site
conditions, existing equations developed for a similar site are
used. However, these equations were not necessarily developed
with trees that fully match the range of diameters present in the
studied site or in few cases even several matching equations may
available that, however, differ in their predictions. The resulting
uncertainty in the biomass reference values additionally affects
the model performance. To exclude potential effects of allometric
equations, it would be best to use the same equations for predict-
ing biomass for all study sites. Here, we only used the same set
of equations for calculating biomass of the Forest Factory trees
and the trees in the Milicz Forest, for the other sites, the provided
biomass estimates were used.

One disadvantage of the Forest Factory simulations is that the
forest stands are limited to a fixed size of 20 m × 20 m. In case
of larger field plots in the real data acquisitions, it was therefore
not possible to extract data from plots of the same size and shape
in the Forest Factory stands. We decided to keep the plot size and
shape the same for the extraction of laser scanning data from the
simulated and from the real forest stands. For the Silesian Beskids
and the Petawawa Research Forest, no information on individual
tree positions was available, and thus the biomass could not be
calculated for the same plot that was used for the laser scanning
data extraction and the extraction of both biomass information
and simulated laser scanning data from the Forest Factory stands.
Hayashi et al. (2015) analysed how the plot radius for the LiDAR
metrics extraction affects biomass prediction in the Acadian For-
est using biomass reference data obtained from nested circular
and variable radius plots, and found little influence on model
performance. Zhao et al. (2009) found no differences in parametric
regression performance between models trained with squared or
circular plots, but notable differences when comparing models
trained with plot sizes from 0.01 to 1 ha (for the extraction of both
LiDAR metrics and biomass reference data). However, their results
also indicate that model performances are very comparable if
differences between plot sizes are as small as in our study. We
therefore expect that the differences in plot size had only a minor
impact on our results. Especially since in the simulated data
models that performed worst, i.e. those for the DendroNET sites,
biomass values and ALS metrics were collected and extracted
from the same sized plots for both the simulated training data
and the real test data. Nevertheless, we acknowledge that with the
experimental setup presented, it is not possible to fully disentan-
gle the effects of the simulated data from the effects of different
plot shapes and sizes, especially since random forest has also been
found to decrease its performance when applied to datasets that
are not fully comparable to the training data (Hayashi et al., 2015).

One explanation for the slight increase in model performance
when a randomly selected subset of the simulated data was
used for model training instead of all data could be that the
random sample is less likely to include the extreme values in
the simulated data that are out of the range of the real data,
resulting in better fitting models. Surprisingly, the best matching
samples did not provide the expected additional benefit compared
to random samples. This is probably because the shift in the
relation between biomass and return heights that was observed
between simulated and real datasets is still present in the best
matching samples (Fig. 4). Unlike stratified sampling approaches
relying on one or more ALS-derived metrics, our sampling was

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/97/4/512/7458502 by Federal R

esearch and Training C
entre user on 28 August 2024



526 | Schäfer et. al.

based on the overall height distribution. Bruening et al. (2021)
applied a similar approach based on the relative overlap of the
height distribution profiles to match simulated GEDI waveforms
of Forest Factory stands and real forest stands. In contrast to our
results, they found a good fit in the biomass distribution of the
selected simulated data and the real data. Since they eliminated
potential effects of different allometry models, differences in
real and simulated LiDAR data, and influences of understorey
elements in their study, this may be an indicator that the observed
shift in our simulated datasets compared to the real datasets
might be related to one or more of these factors. Apart from
that, the study by Bruening et al. (2021) provides another possible
explanation why the best matching approach for the training data
selection did not significantly improve our model accuracies. They
explored the non-uniqueness of LiDAR signals, which was also
described by Zolkos et al. (2013), and showed that forest stands of
different composition can produce similar LiDAR waveforms but
have a different biomass, and vice versa. Accordingly, one LiDAR
waveform should be associated with a range of biomass values.
These findings can be transferred to discrete return laser scan-
ning data. This might explain why Forest Factory plots with the
same mean height of returns have a wide range of biomass values
and also why the best matching simulated data did not greatly
improve the model accuracy compared to randomly selected sim-
ulated data. A high correlation of the height distribution profiles
of two plots is not necessarily related to similar biomass values
of these plots (see Fig. 2) and it is imaginable that the biomass
value of the second best matching plot would fit much better. It
should be investigated whether a sampling approach based on
other ALS metrics would result in a better match between the
biomass values of the selected simulated and real forest plots.
Auxiliary data, such as information on the forest structure (e.g.
tree density), could also be helpful for solving this issue.

Experiment 2
The second experiment showed that simulated data can be used
to extend sparse real training datasets. However, the positive
effect of additional training data on model accuracy decreased as
the number of real training samples increased, and even with rel-
atively low quantities of real training data, the increase in model
accuracy was small. Our findings with respect to up to which
number of real training samples the model accuracy increased
when additional simulated data were used differed between the
study sites, making a generalised statement difficult. The models
for the DendroNET sites benefited the least from the additional
training data, which is probably because the simulated data did
not fit well to the real data of these sites. Future works could
expand the presented analysis with more datasets to better under-
stand which combination of plots of different forest structures
benefits in which way from the additional simulated data.

Models that were trained with mixed datasets composed of real
and the best matching simulated data performed slightly better
in most cases than models that were trained with mixed datasets
composed of real and randomly selected simulated data, but this
could also be an effect of the different compositions and sizes of
the training datasets (fixed number of simulated data in case of
the best matching subset, varying number of simulated data in
case of the randomly selected subset).

Stereńczak et al. (2018) analysed how many field samples are
required for the accurate prediction of growing stock volume in
the Milicz Forest using an ordinary least square multiple regres-
sion and found that model performance did not change much
when at least 200 samples were used for model training, except

for relative bias, which was lowest when at least 500 samples were
used. Using synthetic forest data, Fassnacht et al. (2018) observed
an increase in the accuracy of random forest models for biomass
prediction with increasing sample size, particularly for small
sample sizes, using 50–500 samples. Nevertheless, according to
a review by Fassnacht et al. (2014), 73 % of the reviewed studies
on remote sensing-based forest biomass predictions had sample
sizes smaller than 100, and 53 % had sample sizes smaller than
50. Synthetic data could therefore be of great value if they could
improve model performance when limited real-world training
data are available. While RMSE and r2 did indeed improve by
training models on mixed datasets of real and simulated data
(up to 12–346 real training samples depending on the study site),
the increase in bias whenever simulated data were included in
the training dataset is a major concern. In this study, we used
the random forest algorithm as prediction method because it has
been shown to outperform other commonly used methods for
ALS-based forest biomass prediction (Fassnacht et al. (2014). How-
ever, Yang et al. (2019) found that compared to other prediction
methods, random forest models resulted in a high overpredic-
tion of forest volume when combined with variable probability
selection methods. Hayashi et al. (2015) tested a spatial transfer of
biomass models and found that the performance of random forest
models decreased when applied to an ex situ dataset, while the
performance of non-linear mixed effects models did not change
when applied to in situ or ex situ data. Accordingly, the random
forest algorithm might not be the best choice for our study. In
addition, random forests are not designed to handle multiple
training datasets and treat them differently, e.g. by giving them
different weights. Instead of simply merging simulated and real
data into one training dataset, as we did for the random forest
models, one could also use the simulated data to pre-train a model
and then use the real data to fine-tune it. This transfer learning
approach is often used in deep learning, where large amounts
of labelled training data are required (Hamedianfar et al., 2022).
Transfer learning has also been implemented for linear regression
under covariate shift, reducing the amount of required target
data (Wu et al., 2022). Future work should explore whether model
accuracies could further be improved by using transfer learning
methods.

Experiment 3
Training biomass models with data that were collected from
other study sites (ex situ) resulted in surprisingly high prediction
accuracies for the Silesian Beskids, the DendroNET sites and the
Petawawa Research Forest. Although the study sites had different
species compositions (and in case of the Petawawa Research
Forest even completely different tree species), different allometric
equations were used for calculating the biomass, the ALS point
clouds characteristics such as point density differed, and the
data were extracted from differently shaped and sized plots,
the merged datasets were well suited for model training, and
the spatially transferred models resulted in RMSE values and
squared Pearson correlation coefficients similar to models that
were trained with real data collected from the same site the
model was applied to. These results indicate that the aforemen-
tioned factors are less likely the reason for the decrease in model
accuracies when simulated data were used for model training.
Suvanto & Maltamo (2010) compared models for predicting forest
characteristics that were trained with local data only to models
that were trained with a mixed dataset of local and additional
ex situ data, and found that the local model outperformed the
mixed model already at sample sizes below 50. In our study, we
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could only partially confirm these observations. Even if we did
not use mixed datasets but only data collected from other sites,
for the Silesian Beskids, model training with data from other
sites resulted in higher prediction accuracies in terms of RMSE
and r2 than the model training with local data, even when the
maximum of 90 training samples was used. Our observations that
the absolute ME of models trained with other simulated or real
data was always higher than of models trained with real data from
the site the model is applied to are in line with the observations
made by Suvanto & Maltamo (2010).

Regarding RMSE and r2, using training data collected from
other sites worked best for the Silesian Beskids and the Petawawa
Research Forest. For these sites, the ranges in biomass and mean
height of returns of the on-site data and of the other data fit very
well, apart from the higher ranges of the mean height of returns in
the Silesian Beskids and the lower ranges of the maximum height
of returns in the Petawawa Research Forest that were not covered
by the data from the other sites. Compared to the DendroNET
sites, the other real field plots had lower biomass values at the
same mean return heights, which probably led to the strong
underprediction when these data were used to predict biomass
of the DendroNET sites.

The Milicz Forest was the only study site for which models
that were trained with real data collected from the other sites
performed worse than models trained with simulated data. From
the information that was available for the study sites, we are
unable to explain why the results for the Milicz Forest differ
from the results for the other study sites. We assume that the
low performance of the spatial model transfer is related to the
fact that the range of associated biomass values in relation to
the mean height of returns (and other ALS metrics) is much
wider for the other sites (1.0–583.2 t/ha biomass at mean return
heights of 0.0–32.7 m) than for the Milicz Forest (8.9–454.3 t/ha
biomass at mean return heights of 1.0–23.0 m) but we do not
know which characteristics of the study sites lead to these
differences.

As the second experiment showed that prediction accuracies
can be improved when sparse training datasets are extended by
additional simulated data, it should be tested if similar results
can be observed when real data collected from other sites are
used to extend the training datasets. Taking into account that
for three of the four study sites, models trained with with real
data collected from other sites performed better than models
trained with simulated data, we would expect even better results
from mixing the real local and non-local datasets than from
mixing simulated and real data. This would also be in line with
findings of Breidenbach et al. (2008), Kotivuori et al. (2016), and
van Ewijk et al. (2020) who demonstrated that calibrating models
with a small local dataset in combination with a larger dataset
collected from other sites improves prediction accuracies com-
pared to models that were only calibrated based on the larger
dataset.

Conclusions
This study investigated the potential of simulated data for train-
ing biomass models for real forest plots. Our experiments revealed
that simulated data generated by applying the HELIOS++ laser
scanning simulator to Forest Factory 2.0 forest plots cannot yet
compete with real data. Models can be trained using simulated
data only, but we observed a strong underprediction of biomass

for three of the four study sites, and the model performance
generally improves when real data are included in the training
dataset. However, when only a limited number of real training
samples is available, simulated data can be used to extend the
training dataset. It depends on the study site and the measure of
model performance up to which number of real training samples
the model accuracy can be increased by the additional simulated
data. While the prediction accuracy of models trained with simu-
lated data may be satisfactory for various applications, the signif-
icant underprediction of biomass presents a challenge. Therefore,
the workflow for generating simulated data needs improvement
in order to achieve a better match between the simulated data and
the real data in terms of the relation of biomass to ALS metrics.
In addition, future research should explore alternative methods
for selecting the samples of the simulated data that best match
the real data (using only ALS-derived information) and investigate
transfer learning methods.

Our experiments also demonstrate that real data collected
from different locations can be very suitable for training biomass
models, even if the laser scanning acquisition settings, the plot
design, the forest composition, and the method to calculate
biomass values differ from the site the model is applied to. It
would therefore be beneficial for the research community, but
also for forest practitioners, if reference data were made more
widely available to others. These data may still be useful even if
they do not include ALS data, as laser scanning point clouds could
be generated with our simulation approach, at least if information
on all trees in the field plots is provided, and not only summarised
information on a plot level.
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