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Abstract
Representing the spatial distribution of trees and competition interactions in growth models improves growth prediction

and provides insights into spatially explicit forecasts for precise silvicultural interventions. However, this information is rarely
taken into account over large areas because obtaining the spatial distribution of individual trees and estimating their com-
petition is both expensive and time consuming. Airborne laser scanning enables rapid estimation of tree height and other
attributes over large areas. In this study, we implemented an individual tree detection approach to first extract tree attributes
of Pinus radiata D. Don plantations, and second to use this spatially explicit information on tree location and competition to
forecast potential tree height, defined as a maximum projected tree height at rotation age. To do so, using a chronosequence
of tree heights, we developed a tree height growth model using a Chapman–Richards function, utilizing the effect of inter-
tree competition and stand-level top height (TH) on the tree height growth. The results showed that using chronosequence
of heights, competition, and TH resulted in accurate predictions of potential tree height (root mean square error = 2.9 m;
mean absolute percentage error = 0.154%). We concluded that individual tree height growth is significantly influenced by
competition, with increased competition values associated with reductions in potential height growth by 22.2% at 30 years.

Key words: forest plantations, competition index, Chapman–Richards, chronosequence, airborne laser scanning

Résumé
La représentation de la distribution spatiale des arbres et des interactions de compétition dans les modèles de croissance

améliore la prédiction de la croissance et permet d’obtenir des prévisions spatialement explicites pour des interventions sylvi-
coles précises. Cependant, ces informations sont rarement prises en compte sur de grandes surfaces car l’obtention de la
distribution spatiale des arbres individuels et l’estimation de leur concurrence sont à la fois coûteuses et longues. Le balayage
laser aéroporté (ALS) permet d’estimer rapidement la hauteur des arbres et d’autres attributs sur de grandes superficies. Dans
cette étude, nous mettons en œuvre une approche de détection des arbres individuels pour extraire d’abord les attributs des ar-
bres des plantations de Pinus radiata D. Don. Les plantations de don, et deuxièmement d’utiliser ces informations spatialement
explicites sur l’emplacement des arbres et la concurrence pour prévoir la hauteur potentielle des arbres, définie comme une
hauteur maximale projetée des arbres à l’âge de la rotation. Pour ce faire, en utilisant une chronoséquence de la hauteur des ar-
bres, nous avons développé un modèle de croissance de la hauteur des arbres en utilisant une fonction de Chapman–Richards,
en utilisant l’effet de la compétition inter-arbres et de la hauteur du sommet (HS) au niveau du peuplement sur la croissance
de la hauteur des arbres. Les résultats montrent que l’utilisation de la chronoséquence des hauteurs, de la compétition et de la
hauteur de la cime permet de prédire avec précision la hauteur potentielle des arbres (RMSE = 2,9 m et MAPE = 0,154 %). Nous
concluons que la croissance en hauteur des arbres individuels est significativement influencée par la compétition, avec des
valeurs de compétition accrues associées à des réductions de la croissance en hauteur potentielle de 22,2 % à 30 ans. [Traduit
par la Rédaction]

Mots-clés : plantations forestières, indice de compétition, Chapman–Richards, chronoséquence, balayage laser aéroporté

1. Introduction
Reliable growth and yield forecasting is critical for guid-

ing forest management decision making (García 1994), allow-
ing for both long-term timber resource planning (Coops 2015;

Tompalski et al. 2021) and informing a variety of silvicultural
regimes (García 1990). Improved growth estimations in in-
tensively managed plantation environments provide insights
into the most appropriate thinning and pruning intensities
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to enhance productivity (García 1990), improve cost-efficient
approaches for fertilizer applications (From et al. 2015), and
assist with financial decision making (Picard et al. 2012).

Forest growth models are designed to describe individual
trees and (or) forest stand dynamics, as well as to project tree
or stand attributes into the future (Cao 2014; Tompalski et al.
2021). The type, number of attributes, and level of abstrac-
tion of these models vary with stand-level models typically
requiring less detailed information than single tree models
(Yue et al. 2008; Pretzsch 2009). The site index (SI) concept,
expressed as the height of dominant and co-dominant trees
at a reference age, is a commonly used estimator of poten-
tial stand productivity (Fontes et al. 2003; Skovsgaard and
Vanclay 2008). It has been demonstrated that for dominant
and co-dominant trees, height is a stable predictor of site
productivity over time for most species (Burkhart and Tomé
2012). Nevertheless, SI is a height-based metric that ignores
other stand dynamics, such as tree position, stem density,
and competition, all of which have been shown to be impor-
tant determinants in explaining tree and forest stand growth
patterns (Briseño-Reyes et al. 2020). By definition, SI is de-
signed to describe productivity for larger spatial units be-
cause it is based on the forest stand-level top height (TH). For
instance, tree competition, which mostly impacts intermedi-
ate and suppressed trees, is not explicitly reflected in SI. As a
result, it is less useful for accurately describing productivity
at a finer spatial scale or characterizing forest yield fluctua-
tions caused by changes in micro-environmental conditions
(Bontemps and Bouriaud 2014). Therefore, using SI as a single
representation of forest productivity is challenging, particu-
larly in short rotation stands, necessitating the development
and testing of additional tree height models.

Individual tree growth models, which represent the high-
est level of abstraction and resolution in forest yield predic-
tion, provide detailed information on changes in tree dimen-
sions over time (Burkhart and Tomé 2012). Individual tree
height modelling is an alternate method to SI for predicting
growth that can provide insights into spatially explicit fore-
casts for precise silvicultural interventions (Schröder et al.
2007). The spatial distribution of trees, which, for example,
influences competitive interactions among trees, with sub-
sequent implications for tree growth (Perry et al. 2008), has
been identified as a critical piece of information for improv-
ing thinning management decisions (Wikström et al. 2011;
Vauhkonen and Pukkala 2016). Furthermore, estimating po-
tential individual tree height, defined as the maximum indi-
vidual tree height at a specific time (most commonly the end
of the rotation), provides information for silviculture deci-
sions and harvesting schemes, as well as indicating the poten-
tial economic value per tree (Vauhkonen and Pukkala 2016).

Several studies have incorporated inter-specific spatial and
horizontal distributions of tree locations into individual tree
growth models by incorporating functions based on crown
overlap (Dale and Shugart 1985), tree height (Versace et al.
2019), diameter (Hegyi 1974), and the size of and the dis-
tance to competitors. The majority of this research has
found that competition in growth models improves the ac-
curacy of predicting tree growth (Biging and Dobbertin 1995;
Sandoval and Cancino 2008). For example, Pukkala and Kol-

ström (1987) found strong relationships (R2 = 0.4–0.7) be-
tween competition indices and diameter growth, while De
Luis et al. (1998) found that competition explains 79%–84% of
the variability in tree volume growth in the stand. Alterna-
tively, Vauhkonen and Pukkala (2016) were able to optimize
tree selection under economic objectives based on potential
tree height in a simulated stand utilizing varying levels of
tree competition. Nonetheless, field measurements of indi-
vidual tree attributes, such as tree location, stem height, and
competition, are limited due to the difficulty of identifying
both the top of the tree and its entire crown in dense forest
stands, as well as the time and cost of doing so over large
areas (West 2015).

Airborne LiDAR technology, also known as airborne laser
scanning (ALS), accurately measures the distance between a
sensor and a target providing highly accurate and detailed
three-dimensional point clouds representing objects in space
(Habib et al. 2005). ALS facilitates the estimation of accurate
“wall-to-wall” forest attributes rapidly and efficiently over
broad areas (Akay et al. 2009), making it an important data
source for inventorying and modelling growth in forest plan-
tations (Maltamo et al. 2014). Numerous studies have demon-
strated the utility of ALS in supporting forest inventories, in-
cluding estimation of attributes such as height, stems num-
ber, basal area, and volume (van Leeuwen and Nieuwenhuis
2010; Maltamo et al. 2014; Görgens et al. 2015).

The two main approaches for estimating forest attributes
from ALS are the area-based approach (ABA), which estimates
forest characteristics across a regular grid (e.g., 20 m × 20 m),
and individual tree detection (ITD). ITD approaches typically
necessitate a higher point cloud density (>10 points/m2) than
ABA approaches, are more complex, and are influenced by
stand structure and higher computational demands (Treitz
et al. 2012). Recent advancements in the density of ALS point
clouds have facilitated the development of ITD algorithms,
which provide direct estimation of tree attributes by detect-
ing and measuring individual tree crown area and tree height
(Spriggs et al. 2017). Hence, ITD approaches could offer an
improved understanding of tree dynamics that is directly ap-
plicable to forest management (Jeronimo et al. 2018). ITD
techniques are also more likely to be useful for tree iden-
tification in even-aged plantations where stands are com-
posed of regular-sized trees, single species, and simple devel-
opment patterns, with previous research in pine plantations
using ITD explaining between 63% and 93% of the variation
in individual tree volume (Bortolot and Wynne 2005; Popescu
2007; Huang et al. 2009; Naveed et al. 2019; Corte et al.
2020).

In addition, studies have used ITD approaches to define
competition parameters using individual tree height and dis-
tance to the neighbour tree for biomass prediction, with ac-
curacy (R2) ranging from 90% to 95% and greater than 0.66,
respectively (Lin et al. 2016; Versace et al. 2019). Other stud-
ies, such as Pont et al. (2021), have significantly reduced the
prediction residual for tree height and wood stiffness when
data on tree competition derived from ALS were included. Re-
cent chronosequence studies using remote sensing and ALS
data have estimated both tree and stand growth attributes,
demonstrating the ability to predict growth with a single
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Fig. 1. Map showing in olive green the spatial distribution of P. radiata plantations (Forestal Arauco), with black bold borders
the ALS survey location and in red the field inventory data. Additionally, the upper right image shows the delineation of the
study areas of the Americas. [Colour online]

ALS point cloud when multiple remeasurements of ALS fea-
tures over time are unavailable (Tompalski et al. 2015b). How-
ever, studies linking individual tree competition information
with chronosequences of ALS-derived tree height have re-
ceived less attention, yet have the capacity to inform plan-
tation productivity and management up to the end of stand
rotation.

In this paper, we developed a method for generating po-
tential tree height models in Pinus radiata D. Don even-aged
plantations in central-south Chile. To accomplish this, using
a single survey of ALS data, we

� undertook an ITD-based approach to extract tree locations
and determine its accuracy;

� assessed the effect of tree competition and TH (a stand-level
variable) on the upper asymptote of tree height growth
model separately, and in combination; and

� incorporated those metrics into a height chronosequence
for individual tree height prediction, built using individual
tree height from the ITD at different ages covering the en-
tire plantation rotation.

2. Data

2.1. Study site
The study area is located within P. radiata plantations in

central-south Chile, from Región del Maule (latitude 35◦14′S)
to Región de los Ros (latitude 40◦6′S), on private land owned
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by Forestal Arauco (Fig. 1). This region is distinguished by its
heterogeneous topography, which includes the coastal An-
des ranges, the central valley, and the Andes foothills. The
study area is divided into three sections. The northern area
(6989 ha) has a warm temperate climate, on metamorphic
and granitic soils (Casanova et al. 2013). The annual precipi-
tation totals about 900 mm, with the majority falling in win-
ter. The central area, which covers 27 281 ha, is located on ma-
rine sediment-derived soils along the coast and metamorphic-
derived soils in the valley. The climate is rainy temperate
(1200 mm per year), with dry periods in summer and wetter
periods throughout the remainder of the year. The southern
area (1640 ha) has a temperate rainy climate (over 1500 mm
annually) and is situated on highly productive volcanic ash
soil deposits (Olmedo et al. 2020).

2.2. ALS data
The ALS data were acquired over 35 000 ha (Fig. 1) and cov-

ered all three areas and stand ages from 0 to 24 years (ro-
tation age). The data were collected once between February
and November 2020 using an Optech Galaxy Prime scanning
system at an altitude of 3000 m above ground on a Tecnam
P2006 plane (Table 1). Up to 5 returns were recorded per
pulse. Within the area of interest, the pulse density (i.e., first
return point density) was 20.8 pulses/m2, while the overall
point density was 29.2 points/m2.

2.3. Field inventories
To verify the ITD approach, a total of 167 field inventory

plots were established and measured once, using a random
placement design, over the three regions, between 2018 and
2019 (Fig. 1). The field plots were 20 m × 20 m in size with
plot corners and center located using a Trimble R1 GNSS Re-
ceiver, with an estimated horizontal error of 0.60 m. Total
tree count, diameter at breast height (DBH), and tree height
were measured for all trees within the plot using a tree
caliper and Haga altimeter, respectively. Tree location was not
recorded.

2.4. Site index data
An external stand-level SI map was available for the study

area. The existing map was developed using 64 190 observa-
tions of 20-year-old P. radiata stands (SI age) with environmen-
tal variables (topography, vegetation index, soil properties,
and climate) used as predictors. The map was available at a
90 m × 90 m level of detail (Gavilán-Acuña et al. 2021) and was
used to perform a stratification of the ALS data. The data were
stratified into five productivity classes for P. radiata (<26, 26–
28, 28–30, 30–32, and >32 m) to cover the entire variability
of site and tree height conditions.

3. Methods

3.1. ALS data pre-processing
The raw ALS data were processed using a standard set

of routines, which included tiling, ground classification,

Table 1. Airborne laser scanning (ALS) data acquisition
parameters.

Acquisition parameter Value

Sensor Optech Galaxy Prime

Utilized plane Tecnam P2006

Flying height 3000 m AGL

Average flying speed (knots) 115

Pulse repetition frequency (kHz) 700

Scan angle 26◦

Returns recorded Up to 5

Overlap 60%

Average point density 29.2 points/m2

Average pulse density 20.8 pulses/m2

noise removal, and height normalization. The LAStools soft-
ware package (version 211206) was used for processing
(Isenburg 2021). The lasground algorithm was used to clas-
sify the ground (default parameters). To convert point eleva-
tions to heights above ground, the lasheight algorithm was
used.

3.2. Overview of the approach to model tree
height growth

Our overall objective was to create an individual tree
height growth model using a chronosequence of ALS-based
height and estimates of stand competition to forecast poten-
tial tree height. Chronosequences were developed by com-
bining tree height estimates from stands of varying ages for
which this information was available at the stand level based
on the planting date. We assumed that tree height growth
and potential tree height are a function of four variables: tree
height, tree position, tree competition (three tree-level met-
rics), and TH (stand-level variable). The presented approach
consisted of three key processing steps (Fig. 2). First, an ITD
approach was parametrized and validated using field inven-
tory data. Second, ALS plots were chosen using a stratifica-
tion based on SI (5 classes) and rotation age (17 classes), and
the validated ITD approach was used to detect trees and ex-
tract their attributes. Third, tree competition was computed.
Finally, we generated an individual tree height model us-
ing a Chapman–Richards (CR) model form, using 80% of the
data, with accuracy assessed with the remaining 20%. We
compared the effect of TH and tree competition on the up-
per asymptote of the height growth curve in the CR equa-
tion using the Akaike information criterion (AIC), mean ab-
solute percentage error (MAPE), Bayesian information crite-
rion (BIC), and root mean square error (RMSE), which are ex-
pressed as follows:

AIC = 2K − 2ln
(̂
L
)

(1)

MAPE = 1
n

∑n

i=1

|yi − ŷ|
yi

(2)

BIC = Kln (n) − 2ln
(̂
L
)

(3)
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Fig. 2. A flowchart showing the steps for the individual tree growth model. [Colour online]

RMSE =
√∑n

i=1(̂y − yi )
2

n
(4)

where ŷ is the predicted height value, yi is the observed height
value, n is the number of trees, K is the number of parameters
estimated by the model, and L̂ is the maximized value of the
likelihood function of the model.

3.3. Optimal ITD parameter determination
We used an ITD algorithm developed by Li et al. (2012),

implemented in the lidR package in R (Roussel et al. 2021)
to detect and segment individual tree crowns. The algorithm
consists of two stages——after tree tops are located based on
local maxima filtering, the surrounding points are then allo-
cated to their associated tree clusters by selecting a spacing
threshold (search radius) (Li et al. 2012). Several parameters
of the algorithm can be adjusted by the user and affect the
resulting set of detected trees. The search radius around tree
tops is based on a minimum spacing criterion given a tree
height, which by default is 2 m for trees taller than 15 and
1.5 m for trees shorter than 15 m, with a minimum height of
2 m. These parameters were tuned to find the best search ra-
dius values by running iteratively over all 167 field plots and
modifying the parameter values between 0.2 and 2.8 m for
trees less than 15 m tall and 0.7–3.3 m for trees taller than
15 m tall. The optimum set of ITD parameters was chosen
based on the coefficient of determination (R2) and RMSE cal-
culated using the number of detected trees and the reference
number of trees measured in the field. The results of the ITD
algorithm were a spatial layer of individual tree location, es-
timated crown size, and shape (Li et al. 2012), which were
derived from the convex of all points assigned to that tree.

3.4. Data stratification
For this study, we performed a space-for-time substitution

(Pickett 1989) that resulted in a chronosequence of individ-
ual tree height constructed with trees of different ages and

growing at different sites. We built the chronosequence using
the previously available SI layer as a stratifier to select ALS
plots to extract individual tree height. According to Næsset
(2002), stratification based on site productivity is a good tool
for efficiently representing distinct forest stand conditions
because it allows for coverage of the entire variability of
tree height over the plantation. We extracted three ALS plots
for each age ranging from 7 (tree heights exceeding 2 m,
which is the criterion used in the ITD algorithm) to 24 years
(harvesting time) for a total of 343 ALS plots of 20 m by
20 m.

3.5. Individual tree and stand metrics
Individual metrics, such as ZTOP (tree height, calculated

as the highest return within the returns classified as part of
ITD), tree location, crown area, and crown radius (using the
convex hull), were determined in the selected forest stands
using the calibrated ITD algorithm. The ZTOP attribute was
used to develop the chronosequence of tree heights. TH was
calculated as the average height of the 100 tallest trees per ha
rather than the largest DBH (Pretzsch et al. 2015). As our ALS
plots are 0.04 ha, this definition results in defining TH by the
four tallest trees per plot. According to Gatziolis (2007), there
is no significant difference in TH values when using DBH ver-
sus tree height, which is used and considered for SI estimates
(Tompalski et al. 2015a).

3.6. Competition index
Tree competition can be defined as an interaction be-

tween neighbouring individuals in a shared environment
with limited resource supply that results in a reduction
in growth, survival, and reproduction (Begon et al. 1986).
This can be expressed mathematically as a competition in-
dex (CI). There are numerous CIs described in the litera-
ture, which can be classified into two types: (i) distance-
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independent indices that use only non-spatial information
about aggregate tree size and (ii) distance-dependent in-
dices that require spatially explicit tree coordinate locations
(Radtke et al. 2003; Contreras et al. 2011), providing more reli-
able predictions for single tree growth (Biging and Dobbertin
1995).

For this study, two distance-dependent CIs were consid-
ered: (i) CIH proposed by Hegyi (1974), which is calculated
using the individual spatial coordinates per tree and the dis-
tance to its neighbours modified by Braathe (1980) to account
for tree height instead of DBH and (ii) CI based on inverse dis-
tance weighting (IDW)——CIIDW (Pont et al. 2021), which was
used to quantify the distance to its neighbours only. The CIs
are calculated as follows:

CIH =
n∑

i j=1

Hi/Hj

Di j + 1
(5)

CIIDW =
∑n

j=1Hj × 1
D2

i j∑n
j=1

1
D2

i j

(6)

where Hj is the height of the neighbour tree j, Hi is the
height of subject tree i, and Dij is the distance between the
subject tree i and neighbour tree j. The interaction between
neighbouring individual information per tree was collected
in a fixed radius per ALS plot, based on 3.5 times the av-
erage tree crown radius (obtained during ITD metric ex-
traction), as recommended by Contreras et al. (2011) and
Lorimer (1983). To quantify CI for edge trees, a buffer of
10 m was established around the selected ALS plots, from
which individual metrics were also measured, allowing in-
formation from neighbouring trees around edge trees to be
collected.

3.7. Tree height growth model
Based on Von Bertalanffy’s growth theory (Von Bertalanffy

1957), we fitted a CR function that expresses tree incre-
ment as a combination of anabolic processes (αYβ ) that cause
tree growth and catabolic processes (γ Y) that limit or di-
minish growth. This method has previously been used to
estimate basal area growth (Pienaar and Turnbull 1973),
DBH growth (Zhao-gang and Feng-ri 2003), dominant height
growth (López-Sánchez et al. 2015), and, most recently, the ef-
fect of thinning management intensities on dominant height
growth estimation (Zapata-Cuartas et al. 2021). The CR ap-
proach’s base form is represented by

dY
dt

= αY β − γY(7)

where dY
dt denotes changes in growth rate. When using

chronosequence data, the height growth rate of an individ-
ual tree is not available; therefore, the CR model form de-
scribed above must be transformed, using Bernoulli’s integra-
tion equation (Salas-Eljatib 2020), which allows us to obtain
the parameters α, β, and γ . This equation form is represented
as follows:

Y = � × (
1 − e−�×t)1/(1−β ) + ε(8)

where Y is the variable to be predicted, � is the asymp-
tote value of the response Y, � is related to the proportion
of Y, β is a shape parameter of the height growth curve (or
an allometric constant), and t is age (Clutter et al. 1983; Lei
and Zhang 2004). Note that the relations between eqs. 7 and
8 are � = (α/γ )[1/(1 − β)] and � = γ (1 − β).

We assume that both TH and CI are related to the curve’s
upper asymptote, allowing us to compute the potential tree
height or maximum individual tree height at the end of the
rotation based on the current state of the tree individuals
and knowledge of the variability of growth observed in differ-
ent geographical areas from the tree height chronosequence.
To represent this, we have included these variables in the �

asymptote value:

� = �1 × (
TH�2) × (

CI�3)(9)

where �1, �2, and �3 are parameters, TH is the top height of
the stand, and CI is the competition index (CIH or CIIDW).

A chronosequence of tree height does not provide individ-
ual tree height growth shape information when TH and CI are
included because the measured trees do not share the same
geographic spatial information or competition interactions.
As a result, both � and β were set as constants to ensure that
the model estimates fall within the expected range of height
increment values.

The effect of variance on tree height prediction was mod-
elled using the heteroskedastic trend between height and ex-
planatory variable relationship, which increases with higher
height values (Sandoval et al. 2021). This is critical for pro-
ducing unbiased parameters for the CR equation and avoid-
ing heteroskedastic effects in our prediction residual, which
is calculated using the following equation:

σ = σ1 × Y σ2(10)

where σ 1 and σ 2 are parameters and Y is the predicted tree
height.

Using the abovementioned model formulation 9, we used
TH and CI separately and in combination and developed the
models using 80% of the ALS plots. All of these combinations
were tested for tree height predictions and compared with
the remaining 20% of the data for validation using AIC, BIC,
MAPE, and RMSE.

3.8. Parameter estimation
Each of the models for tree height prediction was adjusted

using the maximum likelihood method to predict goodness-
of-fit and predictive capacity. For this, the iterative maxi-
mum likelihood method was used, as well as a Nelder–Mead
algorithm (Nelder and Mead 1965) to minimize a negative
log-likelihood function. The calculations were carried out in
Python using the minimize method from the SciPy library
(SciPy Community 2013). To examine the significance of each
model parameter using 80% of the data for model calibration,
a bootstrap with 150 iterations was used to obtain the 95%
confidence interval.

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

B
U

N
D

E
SF

O
R

SC
H

U
N

G
 U

 A
U

SB
IL

D
U

N
G

SZ
 o

n 
10

/0
7/

22
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 

http://dx.doi.org/10.1139/cjfr-2022-0121


Canadian Science Publishing

Can. J. For. Res. 52: 1353–1366 (2022) | dx.doi.org/10.1139/cjfr-2022-0121 1359

Fig. 3. Relationship between the number of stems/ha from the field data and the best tuned ITD algorithm. The diagonal red
line has slope 1 and origin zero. [Colour online]

Table 2. Summary information for selected ALS plots using 80% of the data for model cali-
bration.

Stratification class No. of trees No. of ALS plots Height (m) Top height (m)

<26 1214 43 11.2 (2–31.7) 13.5 (6.5–28.3)

26–28 1165 52 16.1 (2.9–32.5) 18.3 (7.4–31.8)

28–30 1227 52 17.0 (2.1–35.9) 19.4 (8.7–35.5)

30–32 1480 63 18.1 (2–37.7) 20.2 (9.3–36.5)

>32 1718 65 20.3 (2.1–41.1) 23.3 (9.8–40.3)

Note: The values shown are the mean, followed by the range in parentheses.

4. Results

4.1. Individual tree detection
The most appropriate parameters for the Li algorithm

(Li et al. 2012) for ITD in the P. radiata plantation were
search radii of 1.39 m (for trees shorter than 15 m) and
1.9 m (for trees taller than 15 m) based on the highest
detection accuracy. The R2 for the agreement between the
number of detected and field-measured trees across all sites
was 0.75, with an RMSE of 105 trees/ha, and is shown in
Fig. 3.

This prediction is more accurate for field plots with a tree
density of 375–750 individuals/ha, with an average residual of
60 trees/ha (68% of total field data), than in denser field plots.
The accuracy of prediction is lowered in field plots with more
than 750 stems/ha, which are underestimated by an average
residual of 120 trees/ha.

A total of 8169 trees were detected across the five SI strati-
fication classes. The average height was 19.2 m, with a range
of 6.4–40.3 m. Of the located trees, 275 ALS plots resulting
in 6804 trees were used for calibration (as summarized in
Table 2) and used to generate the chronosequence (Fig. 4),

with the remaining 68 ALS plots and 1365 trees remaining
for validation.

4.2. Model fitting
Figure 4 shows the generic form of the individual tree

height model fit to the chronosequence of ALS-derived tree
height using eq. 8. When validated against the validation set,
the model fit had an AIC of 57.1, a MAPE of 0.21, a BIC of
84.04, an RMSE of 3.69 m (Table 4), and a standard deviation
that ranges from 1.7 m at 7 years to 7.4 m at 24 years (Fig. 4).

Table 3 shows parameter estimates for the model with var-
ious TH and CI values and their combinations. According to
the bootstrap standard error with the estimated confidence
interval, all of the parameters are significant. This is demon-
strated by the fact that when using iterations to obtain 95%
confidence intervals for the parameter’s estimation, none of
them contain zeros, indicating that the asymptote model can-
not be used to derive a simple model because none of the
parameters are eliminated.

Table 4 displays the model accuracies in the validation
data set between observed and predicted tree height, as well
as the model evaluation. The combination of the CIH and
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Fig. 4. Fitted Chapman–Richards model in a chronosequence of tree height. The middle red line represents the mean predicted
value, while the top and bottom dashed red lines show the standard deviation. [Colour online]

the TH in CR has the highest precision (RMSE = 2.9 m and
MAPE = −0.15%) and a better-fit model for tree height pre-
diction (AIC = −265 and BIC = −238). A comparison of
CIs reveals that CIH has a stronger representation of height
growth than CIIDW, with a significant reduction in the model
prediction (AIC = −68.2, BIC= −46.7, MAPE = 0.168%, and
RMSE = 3.11 m vs. AIC = −63.3, BIC= −41.8, MAPE = 0.172%,
and RMSE = 3.34 m). The predicted vs. observed height of the
trees using the best model (that included both TH and CIH) in
the validation set shows bias >4 m for 70% of the height ob-
servations (Fig. 5A).

4.3. Potential tree height and competition
index

Figure 6 depicts the effect of CI and TH as independent
factors on the potential tree height capacity, which is rep-
resented by the upper asymptote of the height growth curve.
As increased site productivity improves potential tree height
values, TH is positively related to height growth. Competi-
tion, on the other hand, has the opposite effect, as shown by
CIH (optimal CI representation for tree height estimate), with
high CI values lowering potential tree height.

Figure 7A shows the height growth curves over time for
the highest precision model, which incorporates both TH and
CI, with varying CI values. Due to increased competition, po-
tential tree height differences can be reduced by 22.2% at
30 years across a range of CI values (8 m of difference for a CIH

of value 1 to a CIH of 6). Figure 7B depicts how a range of CI
values affects both current annual increment (CAI) and mean
annual increment (MAI), resulting in a 1 year difference in the

age at which the average production per year is maximized
(represented as the intersection point between CAI and MAI)
between CIH of 1 and CIH of 6. The spatial representation of
the mean CIH value for a forest stand is shown in Fig. 8.

5. Discussion
In this paper, we used ALS-derived individual tree heights

and plantation age to develop tree height models and assess
the influence of tree competition and stand-level TH on indi-
vidual tree height growth trajectory. When multiple height
measurements of individual trees are unavailable, the bene-
fit of using a single ALS-derived tree inventory and deriving
a tree height chronosequence for estimating potential tree
height is demonstrated. Similar to Tompalski et al. (2015b),
who used a chronosequence of stand height properties to de-
fine site productivity, the methodology in this paper allowed
us to define individual tree height while avoiding the need
for future data acquisitions. Simultaneously, it provides for-
est managers with information to improve silviculture man-
agement by focusing on trees that will be taller per stand at
the end of the rotation based on their potential tree height.

The presented method relied on ALS-derived individual
tree heights. We did our best to accurately detect individual
trees; however, due to limitations in field measured refer-
ence data (no stem map), the ITD algorithm validation was
based only on the total number of detected trees. Neverthe-
less, when calibrating the ITD algorithm, we visually assessed
the results to minimize omission and commission errors. In
a single-layer pine plantation with majority of trees being
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Table 3. Parameter estimates for eq. 4 (generic form), for which � = (α/γ )[1/(1 − β)], and eq. 5, using various
combinations of competition index (CIH and CIIDW) and TH on the upper asymptote parameter.

Model Asymptote model Parameter Estimate Boot SE Lower limit Upper limit

Generic form (eq.
4)

�×(1 − e−�×(age))1/(1 − β) α 1.155 0.025 1.115 1.196

β 0.593 0.018 0.563 0.623

γ 0.259 0.025 0.217 0.301

σ1 0.289 0.005 0.282 0.297

σ2 − 0.981 0.08 − 1.112 − 0.85

CIIDW � = �1×(CI�2
IDW) �1 22.633 0.503 21.837 23.49

�2 0.176 0.007 0.164 0.188

σ1 0.52 0.006 0.51 0.53

σ2 − 0.742 0.088 − 0.886 − 0.598

TH � = �1×(TH�2) �1 22.804 0.571 21.866 23.743

�2 0.165 0.008 0.152 0.178

σ1 0.53 0.007 0.518 0.542

σ2 − 0.718 0.10 − 0.882 − 0.554

CIH � = �1×(CI�2
H ) �1 44.856 0.578 43.906 45.806

�2 − 0.188 0.013 − 0.21 − 0.167

σ1 0.536 0.007 0.525 0.547

σ2 − 0.805 0.097 − 0.966 − 0.645

TH + CIIDW � = �1×(TH�2)×(CI�3
IDW) �1 37.091 1.113 35.260 38.922

�2 − 0.936 0.047 − 1.013 − 0.858

�3 0.988 0.042 0.919 1.056

σ1 0.486 0.007 0.474 0.498

σ2 − 0.503 0.093 − 0.657 − 0.35

TH + CIH � = �1×(TH�2)×(CI�3
H ) �1 30.914 1.351 28.692 33.136

�2 0.102 0.011 0.085 0.12

�3 − 0.118 0.016 − 0.144 − 0.092

σ1 0.526 0.006 0.516 0.536

σ2 − 0.74 0.101 − 0.905 − 0.574

Note: σ1 and σ2 are model variance parameters. Boot SE = standard error of the bootstrap estimate; lower and upper limit bound for a 95%
confidence interval.

Table 4. Model validation using the Chapman–Richards
methodology for three growth predictions between the
observed and predicted H using 20% of the data for vali-
dation, with different statistical estimators displaying the
Akaike information criterion (AIC), Bayesian information
criterion (BIC), root mean square error (RMSE), and mean
absolute percentage error (MAPE).

Model

Fit/error statistics

AIC BIC RMSE MAPE

Generic form 57.1 84 3.69 0.211

TH 28.1 49.5 3.23 0.175

CIIDW − 63.3 − 41.8 3.34 0.172

TH + CIIDW − 35.7 − 8.8 3.28 0.171

CIH − 68.2 − 46.7 3.11 0.168

TH + CIH − 265.1 − 238.2 2.9 0.154

similar in size and in equal spacing, the lack of stem map
is not as important as in case of natural stands. As a result,
the ITD approach closely matches the measured total num-
ber of trees from field inventories. Nonetheless, there was a
bias in the number of stems predicted in higher density field
plots (above 750 trees per hectare), which may be attributed
to edge effects that occur when tree tops near the plot’s edge
are missing in the ALS data and vice versa. Similar findings
for ITD were made in a high-density point cloud using a Un-
manned Aerial Vehicle (UAV) (Balsi et al. 2018), as well as ALS
(Packalen et al. 2015).

Our results show that the potential tree height is influ-
enced by both stand variables (TH) and tree variables (CI
and individual height). When included in the model, they
produced the most accurate prediction (RMSE = 2.9 m,
MAPE = 0.154%). Other studies have found similar results for
predicting tree survival and diameter growth (Cao 2014), as
well as developing new models for predicting forest growth
(Yue et al. 2008). The second-best model (CIH) was devel-
oped by including competition, clearly demonstrating the ef-
fect of the surrounding trees and implying a close relation-
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Fig. 5. Relationship between (A) observed height and predicted tree height and (B) residual for predicted tree height. [Colour
online]

ship between individual tree height growth and competition
(RMSE = 3.11 m, MAPE = 0.168%), which has been well estab-
lished in previous height prediction research (Versace et al.
2019; Briseño-Reyes et al. 2020). When tested as an individual
parameter, TH ranks fourth in terms of tree height predic-
tion (RMSE = 3.23 m, MAPE = 0.175%), outperformed by CIH,
which could be explained by the fact that this variable rep-
resents productivity for forest stand, rather than individual
tree. Although the statistical results for the different combi-
nations of variables for individual height prediction shown in
Table 4 may appear similar, small gains in accuracy may still
contribute to improved forest management interventions in
intensively managed plantations and result in significant eco-
nomic benefit.

In this study, both CIs were able to account for tree com-
petition, which has a negative impact on the potential tree
height. The CIIDW (accounts for location of surrounding trees

only) was slightly less accurate in tree height growth estima-
tions (RMSE = 3.34 m, MAPE = 0.172%) than the CIH (includes
location and heights of surrounding trees), indicating that in
an even-aged plantation, even a low level of height hetero-
geneity plays an important role in the development of indi-
vidual height growth, most likely related to light availability.
Several studies in plantation forests have found similar re-
sults in terms of the importance of CI in growth, particularly
when CIs that take tree dimensions into account are used (De
Luis et al. 1998; Sandoval and Cancino 2008; Lin et al. 2016).
The ability of ALS to easily extract height metrics and the spa-
tial coordinates of tree individuals, as found in previous stud-
ies (Lin et al. 2016; Versace et al. 2019; Pont et al. 2021), en-
ables an important benefit to account for tree competition in
individual tree height growth predictions.

One of the most significant advantages of the proposed
methodology is its ability to quantify the effect of CI and re-
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Fig. 6. (A) Top height and (B) individual tree competition
index (CIH) relationship with the upper asymptote of the
growth curve (potential tree height).

lating those values to potential tree height. Individual tree-
based analysis, as noted by Uhl et al. (2015), is essential for un-
derstanding the complex spatial interactions driving height
growth variation within the stand, allowing a potential strat-
egy to achieve maximum individual tree height values at a

Fig. 7. Tree growth under different competition values (CIH)
in (A) height and (B) mean annual growth and current annual
growth. [Colour online]

desirable time based on an optimum plantation density, al-
though additional analysis regarding economic return and
optimum stand density is required. Similarly to a previous
research on the distance-dependent model and forest growth
(Fransson et al. 2019), direct selection of trees for thinning
prescriptions based on spacing and competition may provide
an important tool for efficiently selecting trees for thinning
prescriptions. This could directly improve forest yield by us-
ing potential tree height as a criterion to identify the most
commercially valuable trees per stand.

As stated in the literature, collecting multiple ALS data for
an entire area of interest is not always possible due to lim-
ited resources or restrictions associated with covering remote
or large areas (Luther et al. 2019). As a result, the primary
advantage of using a chronosequence to predict tree height
growth is that it enables a low-cost method of forecasting
maximum tree height by the end of the rotation using a sin-
gle ALS data set. As a result of using a chronosequence to es-
timate potential tree height, an anamorphic height growth
outcome model based on the integration of TH and CI in
the asymptote parameter is produced, which is comparable
to previous forest stand SI prediction research (Fontes et al.
2003; Burkhart and Tomé 2012). This refers to a single height
growth shape for all prediction attributes that is scaled up
and down, with different asymptotes for different conditions.
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Fig. 8. Spatial representation for the CIH mean value per stand, followed by the range in brackets, for (A) CI = 1 (0.8–2.1); (B)
CI = 2.1 (1.4–3.5); and (C) CI = 3.2 (2.4–5.1). [Colour online]

Chronosequence studies, on the other hand, make the as-
sumption that all ALS plots and measured trees differ only in
age and that all trees have the same abiotic, biotic component
histories, and geographical position (Williamson and Likens
1990), which is unlikely in most cases. This presents a chal-
lenge and a disadvantage for the CR growth equation used
in this way, limiting a more flexible dynamic approach due
to a lack of individual height growth rates or current annual
height growth data, and resulting in an inability to predict
the height growth constant parameter from the CR equation.
As a result, using this formulation to depict the competition
factor changing over time is not feasible because it requires
both � and β to be estimated in the CR equation regarding
the effect of TH and CI. When using a single ALS data set, how-
ever, a chronosequence of tree height accurately predicts the
asymptote value of the height growth curve per tree, which
can be used to forecast future thinning plans and indirectly
deduce growth survival patterns (Zhao et al. 2010).

The value of using height chronosequences to forecast po-
tential tree height from a single ALS data set was demon-
strated in this study. This method is likely to be applicable to
other species and regions where a relatively simplistic forest
pattern allows for accurate ITD. It is critical to examine two
ALS measurements to estimate height growth pattern over
time to develop polymorphic models with variable asymp-
totes and height growth trajectories, as well as including the
model variance to develop probabilistic outcomes regarding
potential tree height. Although competition was spatially reg-
istered successfully using a single ALS from tree-based analy-
sis, a true forest height growth situation comprises dynamic
CI values along the age rotation, which was kept constant for
this study. More advancements from multiple ALS measure-
ments may also improve the CI dynamics on forest height
growth over time.

6. Conclusion
In conjunction with the stand TH attribute, CI reduces the

prediction error and improves tree height growth prediction,
providing additional insights into forest productivity for thin-
ning management decisions. ALS is a useful tool for quantify-

ing CI in large areas for forest management and stand produc-
tivity estimations, strengthening the SI concept, and allow-
ing spatial explicit forecasting within the forest stand. Our
findings support the use of a chronosequence to predict in-
dividual tree height growth in a time–cost efficient manner,
particularly to predict potential tree height as an indicator of
the most commercially valuable tree within the forest stand.
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