FBVA - BERICHTE

Nr. 24 Schriftenreihe der Forstlichen Bundesversuchsanstalt 1987

WALDZUSTANDSINVENTUR:

Untersuchung der Kronenverlichtungsgrade an Wald- und Bestandesrändern

ODC 416.11--05:228.9:(436)

von

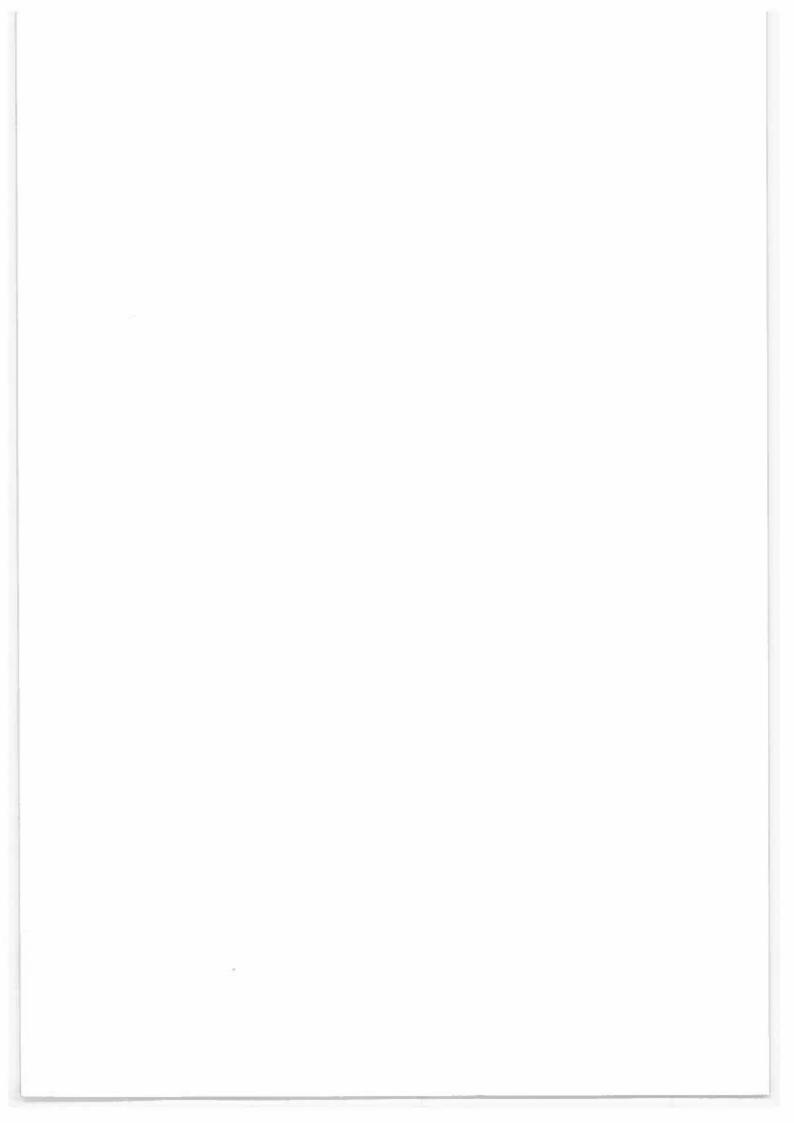
Dipl.-Ing. KLAUSHOFER Franz,

Dipl.-Ing. LITSCHAUER Rudolf,

Dipl.-Ing. WIESINGER Rudolf.

Herausgegeben
von der
Forstlichen Bundesversuchsanstalt in Wien
Kommissionsverlag: Österreichischer Agrarverlag,
A-1141 WIEN.

Copyright by
Forstliche Bundesversuchsanstalt
A-1131 WIEN


Nachdruck mit Quellenangabe gestattet
Printed in Austria

Herstellung und Druck

Forstliche Bundesversuchsanstalt
A-1131 WIEN

INHALTSVERZEICHNIS

		Seite
1.	EINLEITUNG	1
2.	ZIELSETZUNG	1
3.	METHODIK	2
	3.1 Einteilung der Untersuchungsräume 3.2 Aufnahmemethodik	2 4 4 5 7
	flächen	9 10 10 11 11 12
4.	ERGEBNISSE	15
	4.1 Waldränder. 4.1.1 Fi-Waldränder. 4.1.2 Ki-Waldränder. 4.2 Schlagränder. 4.2.1 Fi-Schlagränder. 4.2.2 Ki-Schlagränder. 4.3 Forststraßenränder. 4.4 Verkehrs- u. Freileitungstrassen. 4.4.1 Fi-Trassenränder. 4.4.2 Ki-Trassenränder. 4.5 Schitrassenränder.	15 15 22 28 28 37 40 52 52 59
5.	ZUSAMMENFASSUNG plus Übersichtsabbildungen	73
6.	ANHANG	
	6.1 Detaillierte Übersicht über die erhobenen Probeflächen6.2 Übersichtstabellen	77 83
7.	LITERATURHINWEISE	91

1. Einleitung

Die Waldränder bilden schon seit langer Zeit den Gegenstand von Untersuchungen, so beschäftigte sich z.B. bereits 1896 Professor Hartig in "Wachstumsuntersuchungen an Fichten" mit den Zuwachsverhältnissen von Randbäumen. Mit wechselnden Zielen und Voraussetzungen war das andersartige Verhalten der Wald- und Bestandesränder – im Hinblick auf den zu schützenden Bestand – seit damals Objekt wissenschaftlicher Forschung.

Während die bisher veröffentlichte Literatur vor allem auf Zuwachsuntersuchungen basiert, dient die vorliegende Untersuchung der Erhebung, ob und in welchem Ausmaß die Wald- und Bestandesränder sich gegenüber dem Bestandesinneren hinsichtlich ihres Kronenverlichtungsgrades unterscheiden.

Nach umfangreichen Vorarbeiten durch das Personal der Waldzustandsinventur im Winter 1985/86 (Literaturerhebung, Erarbeitung der Aufnahmemodalitäten usw.), erfolgte 1986 die Aufnahme der Probeflächen. Die Auswertung des umfangreichen Datenmaterials wurde während des Winters 1986/87 mit Unterstützung der EDV-Abteilung der Forstlichen Bundesversuchsanstalt durchgeführt.

Im Zuge der Außenaufnahmen zur Untersuchung des Kronenzustandes an Wald- und Bestandesrändern wurden an den Probebäumen einiger Probeflächen Messungen mit einem "Conditiometer" (Digitalimpulsstromgerät) vorgenommen und an ausgewählten Probebäumen Bohrkernproben für zuwachskundliche Untersuchungen gewonnen. Die Darstellung der Durchführung dieser separaten Untersuchungen und der dabei gewonnenen Ergebnisse ist nachfolgenden Publikationen vorbehalten.

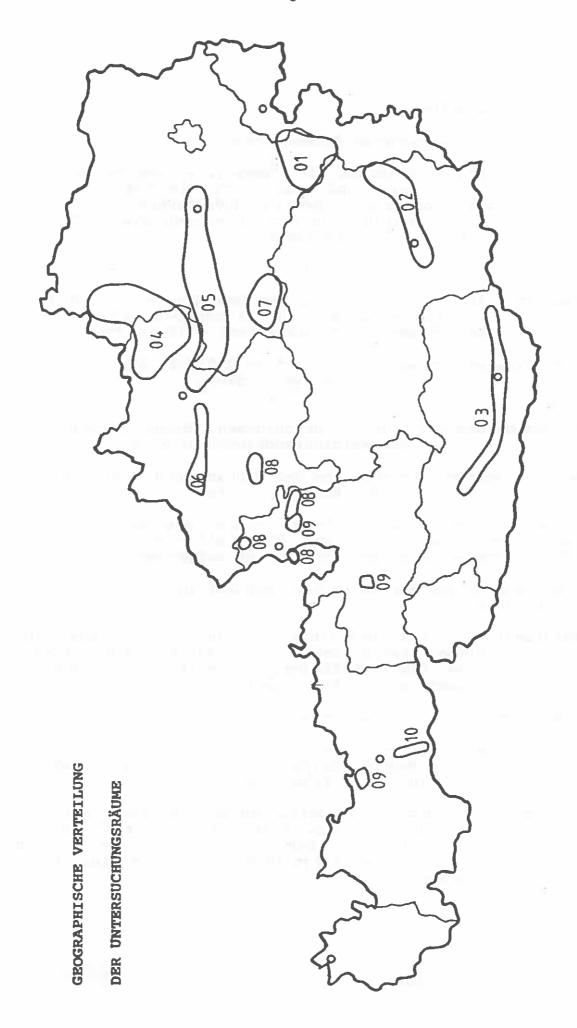
2. Zielsetzung

Das Hauptziel der 1986 durchgeführten Sonderuntersuchung ist die Erfassung von Zustandsunterschieden der Baumkronen in Abhängigkeit ihrer Entfernung vom unmittelbaren Wald- oder Bestandesrand, oder -anders ausgedrückt- es sollten die Fragen geklärt werden, ob Wald- und Bestandesränder hinsichtlich des Kronenzustandes besser, gleich oder schlechter als das Bestandesinnere sind, von welchen Faktoren dies abhängig ist, ob sich lokale oder regionale Unterschiede ergeben?

Die Untersuchung des Kronenverlichtungsgrades an Wald- und Bestandesrändern (Arbeitstitel: "Randschadensuntersuchung 1986")ist als einmaliges Zusatzprogramm zu den jährlichen Erhebungen der Waldzustandsinventur durchgeführt worden.

3. Methodik

3.1 Einteilung in Untersuchungsräume


Im Bundesgebiet wurden Untersuchungsräume festgelegt, die schwerpunktmäßig untersucht wurden. Die Untersuchungsräume wurden nach Rücksprache mit den Landesforstbehörden auf ihre Untersuchungswürdigkeit überprüft und vorausgewählt.

Innerhalb der Untersuchungsräume wurden Untersuchungseinheiten nach Maßgabe der nachstehenden Auswahlkriterien angelegt. Die Anordnung der Untersuchungseinheiten erfolgte nach keinem systematischen Raster.

Die 10 Untersuchungsräume sind:

- 01 Feistritzsattel Bucklige Welt Wechsel
- 02 Südautobahn, A2: Hartberg Mooskirchen (vor Pack)
- 03 Kärnten: Petzen, Schnellstraße Völkermarkt Klagenfurt, Wörtherseeautobahn, Weissensee -Kreuzberg.
- 04 Östliches Mühlviertel Westliches Waldviertel: Gmünd - Freistadt - Forst Weinsberg - Ostrong.
- 05 Westautobahn, Al: St.Pölten Linz (Alpenvorland).
- 06 Innkreisautobahn: Welser Heide Ried.
- 07 Nordöstlicher Alpenrand: Lunz.
- 08 Hongar (OÖ) Irrsberg Postalm Grossgmain.
- 09 Schitrassen: Hintersee Zell/See Seefeld.
- 10 Brennerautobahn.

Über die Lage der Untersuchungsräume gibt die nachstehende Karte Auskunft.

3.2 Aufnahmemethodik

3.2.1 Auswahl geeigneter Probeflächen

Grundsätzlich entscheidet die Homogenität des Bestandes in der benötigten Breite und Länge über die Möglichkeit der Anlage einer Probefläche. Das Bestandesinnere soll mit dem Bestandesrand hinsichtlich der erhobenen Standorts- und Bestandesmerkmalen übereinstimmen.

Weitere Auswahlkriterien sind:

Baumart: Alle Rein- und Mischbestände der heimischen Wirtschaftsbaumarten. In Mischbeständen muß eine Hauptbaumart mit mindestens 5/10 vertreten sein.

Wuchsklassen: Ab Baumholz I (205 mm BHD) bis Starkholz (größer als 505 mm BHD). Siehe Instruktionen zur Forstinventur S.22.

Kronenschlußgrad: licht - geschlossen. Siehe Instruktionen zur Waldzustandsinventur S.35.

Bestandesgröße: abhängig von der Bestandeshöhe, aber mindesten 80m Bestandestiefe.

Es werden sowohl natürliche Waldränder als auch Schlagränder, Forststraßen, Trassen (Freileitungen, Seilbahnen, öffentliche Straßen) und Schitrassen aufgenommen.

Die Probeflächen werden je nach Randart in unterschiedlicher Anzahl angelegt:

Waldrand: 2 - 3 Probeflächen aneinandergereiht mit einem Mindestabstand entsprechend der Bestandesmittelhöhe. Die Probeflächen sollen in Baumartenzusammensetzung und Alter möglichst ähnlich sein.

Schlagrand: 2 - 3 Probeflächen wie Waldrand.

Forststraße: 2 Probeflächen gegenüberliegend; diese sollen in Bestandesaufbau und Alter möglichst ähnlich sein. 2 - 3 Flächenpaare.

Trassen: Anordnung der Probeflächen wenn möglich paarweise, ansonsten in Reihe. Alle Arten von Aufhieben für Freileitungen, öffentliche Straßen, Seilbahnen. Die Breite übersteigt in der Regel die einer Forststraßentrasse. Schitrassen: Anordnung der Probeflächen paarweise gegenüberliegend.

Die zusammengehörigen Probeflächen (2 - 4) werden zu Untersuchungseinheiten zusammengefaßt.

3.2.2 Gliederung der Probefläche (Siehe Abbildung 1)

Eine Probefläche wird in drei Zonen unterteilt:

- ZONE I Es werden 10 geeignete Probestämme ausgewählt.

 Diese müssen mit mindestens 1/4 ihrer Lichtkrone an die Freifläche angrenzen. Die äuBersten Punkte der Kronenprojektion der Probestämme 1 und 10 bilden die Eckpunkte der
 Probefläche. Die Breite der Zone I ergibt sich
 aus dem mittleren Durchmesser der Kronenprojektion der Randbäume, senkrecht zum Randverlauf. Sowohl Länge als auch Breite werden
 auf ganze Meter gerundet.
- ZONE II Es werden 20 Probebäume ausgewählt. Die Breite der Zone II ist abhängig von der Bestandesmittelhöhe:

Bei einer Höhe bis 30m: 25 m von den Eckpunkten minus Breite der Zone I.

Bei einer Höhe über 30m: 35 m von den Eckpunkten minus Breite der Zone I.

ZONE III Es werden 20 Probebäume ausgewählt. Die Breite ist variabel; es muß die erforderliche Anzahl von Probebäumen vorhanden sein.

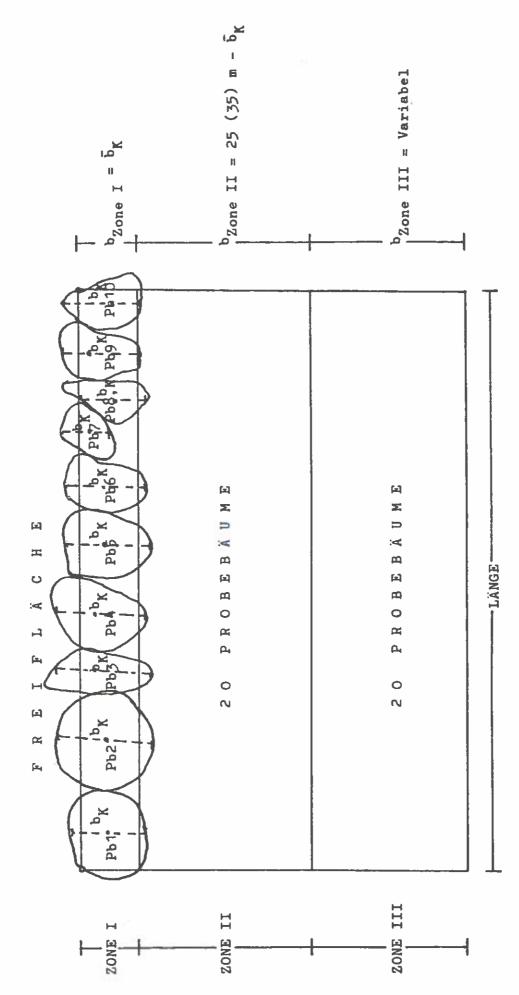


Abbildung 1: SCHEMATISCHER AUFBAU EINER PROBEFLÄCHE

3.2.3 Erhebungsmerkmale

Die Lagebeschreibung (Formblatt 1) umfaßt:

Kennzahl Untereinheit Probefläche

Bundesland Bezirksforstinspektion Gemeinde Waldeigentümer Untersuchungsraum

Wuchsraum Wuchsgebiet

ÖMK u. ÖK Hochwert Rechtswert Randkategorie

Die Beschreibung erfolgt laut Instruktionen zur Waldzustandsinventur bzw. Forstinventur S. 55 - 89.

Die Standortsbeschreibung (Formblatt 1) umfaßt:

Seehöhe Exposition Hangneigung Relief Wasserhaushalt Gründigkeit Bodengruppe Humusmächtigkeit Vegetationstyp Humoser Mineralboden

Die Beschreibung erfolgt gemäß Instruktionen zur Waldzustandsinventur bzw. Forstinventur S. 55 - 89.

Die Bestandesbeschreibung (Formblatt 1) umfaßt:

Flache
Anzahl Bäume je Hektar
Bestandesgrundfläche
Alter
Oberhöhe
Baumartenanteile
Ertragsklasse
Ertragstafelnummer

Altersklasse
Wuchsklasse
Kronenschlußgrad
Bestandesaufbau
Baumartenmischung
Pflegezustand
Bestandesschäden

Aufnahmegruppe, Aufnahmedatum

Zur Ermittlung der Oberhöhe werden die 10 stärksten Probebäume der Hauptbaumart herangezogen. Sonstige Beschreibung laut Instruktion zur Waldzustandsinventur S. 31 - 38. Die Beschreibung des Randes (Formblatt 2) umfaßt:

Randart:

Schlagrand: Kennzahl l - geradlinig (z.B. Kahlhieb) Kennzahl 2 - inhomogen (z.B. Femelschlag)

Waldrand: keine Differenzierung

Forststraße: Kennzahl 1 - ohne Bauschäden am Bestand Kennzahl 2 - sichtbare Bauschäden am Bestand

Kennzahl 3 - Sprengarbeit

Trasse: Kennzahl l - ohne Erdbewegung Kennzahl 2 - mit Erdbewegung

Schitrasse: Kennzahl 1 - naturbelassene Schitrasse

Kennzahl 2 - planierte Schitrasse(Erdbewegung)

Randalter: Zeitraum der Freistellung ("stumme Zeugen", Auskunft beim Waldbesitzer).

Randlage: Lage des Randes im Verhältnis zur Trasse, definiert nach den Abflußverhältnissen.

Randexposition: Gemessen senkrecht zum Rand in Richtung der

Freifläche.

Geschlossenheit des Randes:

Kennzahl 1 - ungeschützte Stämme ohne Ummantelung

Kennzahl 4 - die Stämme sind nach außen hin gänzlich ummantelt, der Rand erscheint undurchdringlich.

Form des Randes: Kennzahl 1 - gerader Verlauf des Randes. Kennzahl 2 - wellenförmiger Verlauf des Randes.

Vorgelageter Bestand: Beschreibt die Entfernung und die Höhe des gegenüberliegenden Bestandes.

Skizze

Die Einzelbaumbeschreibung (Formblatt 3) umfaßt:

Probebaumnummer Baumart Fichten-Verzweigungsform Baumklasse (soziale Stellung) Kronenklasse Schäden (Stamm/Krone) Mistelbefall Harzfluß

BHD Höhe (nur für Oberhöhenbäume)

Jahrestrieb Wipfelregion

Kronenzustandsform Entnadelungstyp Wasserreiserbildung

> Zone besondere Schäden Conditiometermessung

Bohrkern

Von den 50 Probebäumen werden pro Zone von jeweils 3 Stämmen mit gleichseitiger Krone Bohrkerne gewonnen. Die Bohrkerne werden in H 1,3 entnommen und die 9 Stämme werden auf Formblatt 3 durch ein X gekennzeichnet. Als besondere Schäden qelten:

- 1 kein besonderer Schaden
- 2 Rindenbrand
- 3 Frostriß
- 4 Insektenschäden, Specht
- 5 Blitzschlag
- 6 Schadenssymptome nicht näher zuzuordnen

Die sonstige Beschreibung erfolgt laut Instruktion zur Waldzustandsinventur.

Die Vollaufnahme (Formblatt 4) umfaßt:

Baumart Baumklasse (soziale Stellung) Schaden (Stamm, Krone) BHD Zone

Die Vollaufnahme umfaßt alle Stämme der Probefläche, die keine Probebaume sind und einen BHD größer als 105 mm aufweisen.

3.3 Übersicht über die erhobenen Probeflächen

Untersuchungsraum 01 (Feistritzsattel, Bucklige Welt, Wechsel) 80 Flächen

Untersuchungsraum 02 (A2: Hartberg - Mooskirchen)

14 Flächen

Untersuchungsraum 03 (Kärnten: Petzen - Schnellstraße Völkermarkt Klagenfurt - Wörtherseeautobahn - Weissensee- Kreuzberg)	15	Flächen
Untersuchungsraum 04 (Östliches Mühlviertel - Westliches Waldvier- tel: Gmünd - Freistadt - Weinsberger Forst - Ostrong)	31	Flächen
Untersuchungsraum 05 (Al: St.Pölten - Linz: Alpenvorland)	55	Flächen
Untersuchungsraum 06 (Innkreisautobahn: Welser Heide - Ried)	8	Flächen
Untersuchungsraum 07 (Nordöstliches Alpenvorland - Lunz)	44	Flächen
Untersuchungsraum 08 (Hongar - Irrsberg - Postalm - Gross- gmain)	32	Flächen
Untersuchungsraum 09 (Schitrassen: Hintersee - Zell am See- Seefeld)	35	Flächen
Untersuchungsraum 10 (Brennerautobahn)	5	Flächen
SUMME	319	Flächen

Eine detaillierte Übersicht über die erhobenen Probeflächen ist im Anhang wiedergegeben. Die Übersichtstabelle 1 gibt eine Gliederung nach Untersuchungsräumen, Randarten und Baumarten.

3.4 Auswertungsmethodik

3.4.1 Vorarbeiten

Bevor mit der eigentlichen Auswertung begonnen werden konnte, mußten

 die Aufnahmemanuale durchgesehen, korrigiert und ergänzt werden,

- die 10 Untersuchungsräume definitiv zugeteilt werden,
- die Inventur des vorhandenen Datenmaterials vorgenommen werden.

3.4.2 Rechnerische Auswertung

Die eigentliche Fragestellung lautet: Gibt es Unterschiede hinsichtlich der Kronenverlichtung von Waldbäumen in Abhängigkeit vom Abstand zum Wald- bzw. Bestandesrand?

Im vorliegenden Projekt bedeutet dies folgendes: Unterscheiden sich die Mittelwerte der Kronenzustandsindizes der drei einzelnen Zonen signifikant voneinander?

Wenn die Zonenmittelwerte auf den Probeflächenmittelwert bezogen werden, lautet die Frage: Weichen die Mittelwerte der Kronenzustandsindizes der Zonen erheblich vom Probeflächenmittelwert ab?

3.4.3 Problematik der Auswertung

Aufgrund der nicht systematischen Stichprobenverteilung konnten streng genommen nur die Probestämme einer Probefläche zueinander in Beziehung gesetzt werden, weil in jeder Probefläche unterschiedliche Standorts-, Bestandes- und Randmerkmale auftreten.

Daher durften nicht die Indizes mehrerer Probeflächen einer Zone zusammengefaßt und verglichen werden, da jede Probefläche ihren eigenen Probeflächenindexmittelwert besitzt. Es sollte nicht der Unterschied der Kronenindizes verschiedener Probeflächen, sondern der Unterschied zwischen den Zonen geprüft werden.

Es galt nun, die Streuung des Probeflächenindexmittelwertes zwischen den einzelnen Probeflächen auszuschalten. Dies geschah dadurch, daß die absoluten mittleren Indizes der Zonen durch Relativwerte ersetzt wurden. D.h. für jede Probefläche wurden aus dem mittleren Zonenindex und dem Probeflächenindex Quotienten errechnet, die sogenannten "Zone - Profil - Quotienten".

So konnte für jede Probefläche das Verhältnis der Zonenindizes zum Probeflächenindex durch drei Quotienten charakterisiert werden. Diese Quotienten ermöglichten nun eine beliebige Zusammenfassung mehrerer Probeflächen zum Zwecke des Zonenvergleichs.

Die Quotienten wurden folgendermaßen errechnet:

 $Q_{I} = Ind._{ZI} / Ind._{ges.} \times 100$

 $Q_{II} = Ind._{ZII}/Ind._{ges.} \times 100$

Q_{III} = Ind._{ZIII}/Ind._{ges.} x 100

Q_I, Q_{II}, O_{III}: Zone - Profil - Quotienten

Ind. ges.: Mittlerer Kronenzustandsindex der Probefläche.

Die Zone - Profil - Quotienten geben Aufschluß darüber, um wieviel Prozent der Verlichtungsgrad der Zonen im Verhältnis zur gesamten Probefläche höher bzw. niedriger ist, d.h. ob der "Rand", die "Übergangszone" oder das "Bestandesinnere" sich negativ oder positiv vom "Gesamtbestand" unterscheiden.

3.4.4 Gruppenbildung

In weiterer Folge wurden anhand der im Aufnahmemanual festgelegten Parameter sogenannte "Thematische Gruppen" gebildet, d.h. Probeflächen mit bestimmten gemeinsamen Merkmalen zusammengefaßt.

Die erste Hauptgruppe wurde nach den Untersuchungsräumen, eine zweite nach den Randkategorien (Wald-, Schlag-, Forststraßen-, Trassen- und Schitrassenrand) erstellt.

Mit sukzessiver Differenzierung der thematischen Gruppen konnten systematische Zusammenhänge oder Gegensätze verschiedener Randstellungs-, Standorts- und Bestandesverhältnisse untersucht und nachgewiesen werden.

Mit Hilfe einer "einfachen Varianzanalyse" mit drei Gruppen (Zonen) wurde untersucht, ob die Streuung zwischen den Gruppen (Zonen) größer oder kleiner ist als innerhalb der Gruppen (Zonen).

Wenn mit Hilfe des F-Tests eine "Signifikanz" festgestellt werden kann, so bestehen mit der üblichen statistischen Wahrscheinlichkeit (95%) gesicherte Unterschiede zwischen den Zonen hinsichtlich der Kronenverlichtungsindizes.

Ein daran anschließender "Tukey - Test" klärt anhand der sogenannten "linearen Kontraste der Mittelwertsvergleiche" die Frage, zwischen welchen Zonen und in welcher Größenordnung eventuelle Unterschiede auftreten.

3.5 Hinweise zur Ergebnisdarstellung und Interpretation

Die Darstellung der Hauptergebnisse erfolgt in Form der tabellarischen Auflistung der Mittelwerte sowie der entsprechenden statistischen Kennwerte. Im Anschluß daran stehen einige graphische Darstellungen zur Verdeutlichung der numerischen Tabellen.

In den Tabellen I - V werden, aufgegliedert nach den thematischen Gruppen, die mittleren Zone-Profil-Quotienten und die dazugehörigen statistischen Kennwerte aus dem "TUKEY-Test" dargestellt.

Die Quotienten geben Aufschluß über die prozentuellen Verteilungsverhältnisse der durchschnittlichen Verlichtungsgrade zwischen den drei Zonen. Anhand der angeführten Zahlenwerte läßt sich auf die Homogenität innerhalb der Gruppen und gewisse Tendenzen, sowie auf die Größenordnung vorhandener Unterschiede schließen.

Die "Kontraste" des "TUKEY-Tests" verdeutlichen die Größenordnung der statistischen Absicherung.

Anhand der vorliegenden Zahlenwerte läßt sich erkennen, welche Parameter einen deutlichen Einfluß auf den zonenweisen Unterschied der Verlichtungsgrade ausüben. Durch die Gegenüberstellung der Parameter innerhalb eines Gruppenkriteriums läßt sich klären, ob gewisse Parameter die Verteilung in der Größenordnung der Quotienten beeinflussen.

Die Übersichtstabellen 2-7 zeigen, aufgegliedert nach Baumart und Randkategorie die mittleren Zone-Profil-Quotienten sowie den prozentuellen Anteil jener Probeflächen, in welchen Q kleiner bzw. größer als 100 ist. D.h. jener Anteil, in welchen der Verlichtungsgrad der Zone I im Verhältnis zur Probefläche niedriger bzw. höher ist.

Außerdem wird der Anteil jener Probeflächen gezeigt, in welchen die Zone-Profil-Quotienten zwischen 95 und 105 liegen, d.h. jener Probeflächen, in welchen der durchschnittliche Verlichtungsgrad der Zone I, II, III um weniger als 5% größer bzw. kleiner als das Probeflächenmittel ist.

Anmerkung: Bei der Aufnahme der Probeflächen wurden Haupt- und Mischbaumarten in gleicher Weise berücksichtigt. In diesen Mischflächen gelangte die Mischbaumart allerdings nur dann zur Auswertung, wenn sie in jeder Zone vertreten war und mindestens 10 Stämme pro Probefläche aufwies. Aufgrund der baumartenweisen Aufgliederung erscheinen daher in der Endsumme höhere Werte, als die tatsächliche Probeflächenanzahl.

Die Tanne war in den meisten Probeflächen ungenügend besetzt. Daher wurde bei der Gruppenbildung auf eine seperate Interpretation verzichtet; der Vollständigkeit halber wurden jedoch die entsprechenden Tabellen mit allen maßgeblichen Kennwerten angeführt.

Die den einzelnen Randkategorien zugeordneten Abbildungen in Form der Balkendiagramme zeigen die Größenverhältnisse, in welchen die durchschnittlichen Verlichtungsgrade der einzelnen Zonen voneinander abweichen; hierbei wurden die Zone I und II der Zone III gebenübergestellt.

Den Abbildungen liegt die Tatsache zugrunde, daß die Zone III jene Bestandesteile repräsentiert, welche den Aufnahmeriterien der WZI hinsichtlich Randabstand und Bestandesgröße entsprechen.

Die Darstellungen zeigen deutlich, daß die Unterschiede zwischen Zone II und III wesentlich geringer sind als zwischen I und II. Außerdem scheinen die sehr unterschiedlichen Verhältnisse zwischen den einzelnen Randarten auf.

Zusammenfassende Darstellungen vermitteln die Abbildungen 2 und 3 (Kapitel 5. Zusammenfassung) in denen die Zonen I, II, III in Prozent des mittleren Probeflächenindex und die Zonen I und II in Prozent der Zone III (= 100%) auf die fünf Randkategorien und die Baumarten Fichte, Kiefer und Tanne dargestellt sind.

4. Ergebnisse

4.1 Waldränder

4.1.1 Fi-Waldränder

Im Durchschnitt aller Probeflächen zeigen sich deutliche Verlichtungsunterschiede der Randzonen (Zone I) zu den Übergangs- und Bestandesinnenzonen (Zone II, III). Der durchschnittliche Verlichtungsgrad der Zone I liegt ca. 10% über dem der gesamten Probeflächen.

In 72% aller Probeflächen weist die Randzone einen höheren durchschnittlichen Verlichtungsgrad auf als die übrigen Zonen. In 22% unterscheidet sich der Verlichtungsgrad der Randzone weniger als 5% von Bestandesmittel. (Übersichtstab.2)

Waldränder auf Südhängen weisen die deutlichsten Unterschiede der einzelnen Zonen auf; am geringsten unterscheiden sich die Verlichtungsgrade der Zonen auf ebenen Flächen. Südexponierte Ränder unterscheiden sich stärker vom Bestandesinneren, als Ränder anderen Expositionen. Die geringsten Unterschiede treten an Nordrändern auf, wobei sich hier Übergangs- und Innenzone überhaupt nicht mehr unterscheiden. Fi-Waldränder wurden in den Untersuchungsräumen (UR) 01 bis 08 analysiert.

Tab. 1/1

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, Q111

RAND	UR	BA	ANZAHL	o' I	QUOTIENTEN	SN QIII	TU 22 : LZ	TUKEY - TEST, 1 Z1 : Z3 Z2	, KONTRASTE.	E. 21,2 : 23
	10	F.	10	110,3	98,8	0,96	+ 7,89	+ 10,69	- 0,81	+ 9,88
	02	:г Еч	5	166,2	9 06	76,2	+ 65,30	+ 79,70	+ 3,10	+ 83,70
(03	Fi	4	122,5	0,96	92,5	+ 19,01	+ 22,51	- 3,99	+ 18,52
I N	40	F.	15	109,9	0,66	95,9	+	+	ı	
A	05	면	745	105,9	8,66	97,1	+ 2,30	+ 7,86	+ 2,38	+ 10,23
B R	90	Fi	7	2,06	102,4	101,7	+ 6,41	+ 5,69	- 4,59	- 0,32
T	20	i i	00	106,2	97,3	99,5	+ 6,29	+ 4, 17	94,0 -	- 0,55
AI	90	Fi	M	99,3	9,96	104,0	- 4,33	- 2,33	44,0 +	- 1,99
4										
GESAMT:			46	109,6	98,8	2,96				
	-	Control of the Contro								

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, QII, QIII.

E: Z1,2 : Z3	+ 8.59 + 6.84 + 14.69	
KONTRASTE	+ 4.29 - 0.28 - 1.77	
TUKEY - TEST,	+ 4.29 + 7.12 + 16.47	
TU ZZ : ZZ	+ 4.29 + 4.95 + 14.19	
SN Quit	98 97 95	97
QUOTIENTEN	99 99 97	86
o H	104	109
ANZAHL	17 41 29	87
ВА	i F F i i i i i i i i i i i i i i i i i	
HANG- EXP.	eben S	
RAND HANG- KATEGORIE EXP.	явийяни в ж	GESAMT:

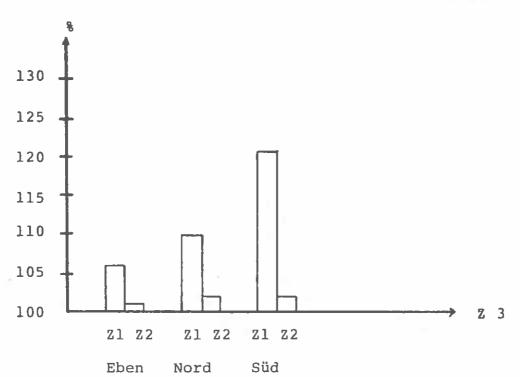
Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

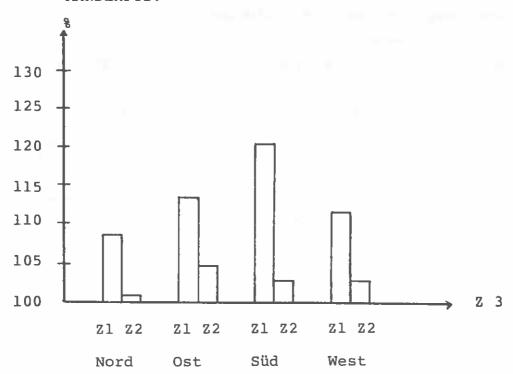
RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN $\mathbf{Q}_{\mathbf{I}}$, $\mathbf{Q}_{\mathbf{II}}$, $\mathbf{Q}_{\mathbf{III}}$

RAND	RAND-EXP.	ВА	ANZAHL PROFILE	O. I.	QUOTIENTEN	en Q _{III}	Z1 : Z2	TUKEY - TEST	TEST, KONTRASTE	21,2 : 23
	Z	Fi	33	106	66	86	+ 4.99	+ 5.53	- 2.12	+ 3.40
	0		23	109	100	95	+ 4.61	+ 9.61	+ 0.91	+ 10.53
Я	S	Fi	26	115	86	95	+ 12.51	+ 15.62	- 1.71	+ 13.90
3	3	Fi	12	108	66	96	+ 1.14	+ 4.68	- 4.31	+ 0.37
a										
N										
Ä										
Я						:		_		
a										
T						. — .				
Ā		<u> </u>								
M										
GESAMT:			94	109	66	96				


Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied


WALDRAND

Darstellung der Zonen I,II in Prozent der Zone III

RANDEXPOS.

Erläuterungen zur Gegenüberstellung "extremer" Fi-Waldränder (siehe nachstehende Übersicht)

Da die Fi-Waldränder im Laufe der Untersuchung nur wenig erkennbare expositionsbedingte (Hang und/oder Rand)-Abhängigkeiten aufzeigten, mußte der Rahmen der zu berücksichtigenden Faktoren innerhalb dieser Randkategorie erheblich erweitert werden. In der nachstehenden Übersicht werden überdurchschnittlich gute (Ql kleiner 95) mit überdurchschnittlich schlechten (Ql größer 120) Fi-Waldrändern verglichen.

Keinerlei oder nur geringe Unterschiede zeigten Untersuchungskriterien wie: Seehöhe, Hangneigung, Baumartenmischung und Form der Ränder (diese Faktoren wurden daher in der Gegenüberstellung nicht angeführt). Auch der Vergleich von Sturm-, Rücke-, Schäl- und Insektenschäden brachte keine signifikanten Unterschiede. Bereits sichtbare, wenn auch nicht sehr deutliche Differenzen ergab der Vergleich von Hangexposition, Kronenschlußgrad des Bestandes und Frostrißanfälligkeit.

Einen bedeutenden Einfluß auf die Güte der Fi-Waldränder weisen hingegen die Untersuchungsfaktoren:
Wasserhaushalt, Bestandesalter, Ertragsklasse, Lage
des Randes zum Bestand, Randschluß (Traufbildung)
sowie Schneebruchanfälligkeit, Fäule und Rindenbrand
auf. Die Ursache für das Auftreten von Rindenbrand
liegt aber stets in einer mangelhaften bis fehlenden
Traufbildung bei südlichen (SO-SW) Randexpositionen.

Gegenüberstellung "extremer" Fi-Waldränder

Unt. Faktor	Ql	kleiner 95	Ql	größer 120
Wasserhaushalt	94%	frisch m.frisch		frisch m.frisch s.frisch feucht trocken

Bestandesalter	6% über 100 94% unter 100 Mittel: 77	44% über 100 56% unter 100 Mittel: 97
Ertragsklasse	19% 610. 81% 1115.	63% 610. 37% 1115.
Kronenschlußgrad (Bestand)	69% locker 31% geschlossen	38% locker 56% geschlossen 6% licht
Lage des Randes zum Bestand	31% unterhalb 63% seitlich 6% oberhalb	69% unterhalb 25% seitlich 6% oberhalb
Geschlossenheit des Randes (Trauf)	13% locker 81% geschlossen 6% dicht	6% licht 38% locker 44% geschlossen 12% dicht
Bestandesschäden: a) Sturm	31% keine 69% einzelne	44% keine 44% einzelne 12% gruppenweise
b) Schneebrüche	44% keine 56% einzeln- gruppenw.	6% keine 94% einzeln- gruppenw.
c) Frostrisse	88% keine 12% einzelne	69% keine 31% einzelne
d) Fäule	75% keine 18% einzelne 6% gruppenw.	38% keine 44% einzelne 12% gruppenw. 6% flächig
e) Rindenbrand	81% kein 19% mit	44% kein 56% mit

4.1.2 Ki-Waldränder

In drei Untersuchungsräumen wurden neben Fi-Waldrändern auch 17 Ki-Waldrandprofile aufgenommen. Innerhalb dieser Randkategorie scheint zwischen dem Waldrand selbst und der Übergangszone kein signifikanter Unterschied auf (Tab.I/7). Das Bestandesinnere hingegen differiert um bis zu 15% von den beiden anderen Zonen.

Die Abhängigkeit von Hang- und Randexposition zeigen die Tabellen I/4 und I/5, wobei sich besonders auf Westhängen ein großer und signifikanter Unterschied zwischen den drei Zonen zeigt. Südhänge und ebene Lagen weisen sogar etwas günstigere Ränder aber kaum eine Unterschiedlichkeit zwischen Rand- und Übergangszone auf.

Beim Vergleich der randexpositionsgleichen Gruppierung zeigen Westränder eine besonders große Signifikanz zwischen den einzelnen Zonen (Tab. I/5). Bei Südrändern scheinen ähnliche Tendenzen wie bei den meisten Südhangrändern auf: zwischen Randbäumen und 2. Zone nur schwache, aber zum Bestandesinneren deutlichere Kontraste.

Anhand der Tabelle I/6 wurde der Versuch unternommen die Abhängigkeit einzelner Zonen von besseren und schlechteren Ki-Bonitäten darzustellen: schlechtere Ertragsklassen (2. und 3.) zeigen gravierendere Unterschiede zwischen den drei Zonen.

Zusammenfassend kann daher festgestellt werden, daß bei dieser Randkategorie die Kontraste zwischen den einzelnen Zonen sehr von Hangexposition, Ertragsklasse und nicht unwesentlich von der Ausbildung und Art des Traufes abhängig ist.

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII, PIII

RAND KATEGORIE	HANG- EXP.	BA	ANZAHL PROFILE	O' I	QUOTIENTEN	EN QIII	TU Z1 : Z2	TUKEY - TEST	TEST, KONTRASTE*	E* Z1,2 : Z3
Я	Z	Ki	2	1.04	1.06	93	- 3.67	+ 6.57	+ 1.57	+ 8.14
а	0	Ki	ı	124	95	93				
a ı	S	Ki	7	10.2	106	94	- 8.23	+ 2.89	+ 2.64	+ 5.53
и й	3	Ki	4	1.22	100	89	- 2,35	+ 10.27	+ 3.52	+ 13.79
<u>ਬ</u>	eben	Ki	m	103	107	92	- 18.55	- 12.22	- 7.55	- 19.78
а				ı			U			
Г					ı					
Ą										
M								1		
Kİ-						-#· -				
							Ц			
GESAMT:			17	108	104	9.2				

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

Tab. I/5

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII, QIII

RAND	RAND-EXP.	ВА	ANZAHL	o I	QUOTIENTEN QII	QIII	21 : 22	TUKEY - TEST Z1: Z3	TEST, KONTRASTE	E• Z1,2 : Z3
кі- м в г р в й и р в в	O 8 3	Ki Ki Ki	L 8 8	87 101 119	103 107 102	103 94 91	- 2.84 + 10.74	- 0.72	+ 4.90	+ 4.17
GESAMT:			17	109	104	92				

Anmerkung: " + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI. QII!

Tab. 1/6

RAND	ERTRAG-		ANZAHL	O	QUOTIENTEN	N	U.T.	TUKEY - TEST	TEST. KONTRASTE.	
KATEGORIE	KL.		PROFILE	o' I	QII	Q _{III}	21 : 25		22 : 23	21,2 : 23
Я	1**	Ki	2	127	103	85				
В	2	Ki	9	107	102	95				
D	3	Ki	6	106	106	92				
N										
Ä			7							
Я										
а										
Г										
Ą										
M										
Ki-										
GESAMT:			17	109	104	92				

Anmerkung: * + = signifikanter Unterschied - = kein signifikanter Unterschied

** 1 = Ertragsklasse kleiner als 4 2 = Ertragsklasse 4 3 = Ertragsklasse größer als 4

Tab. 1/7

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN $\mathbf{Q}_{\mathbf{I}}$, $\mathbf{Q}_{\mathbf{II}}$.

RAND	UR	BA	ANZAHL PROFILE	O _I	QUOTIENTEN	en Q _{III}	TU 21 : Z2	TUKEY - TEST Z1 : Z3	TEST, KONTRASTE	E. Z1, Z : Z3
GNARGIAW	02 05	Ki Ki	4 - 0	108,6 123,0 101,0	103,9 101,0 108,5	92,6 87,0 91,0	1,07	+ 10,07	+ 5,29	+ 15,37
GESAMT:			17	108,6 104,2	104,2	92,1				

Anmerkung: * + = signifikanter Unterschied

- = kein signifikanter Unterschied

Tab. 1/8

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, Q111

RAND	UR	ВА	ANZAHL PROFILE	o, I	QUOTIENTEN	en Qiii	TU Z1 : Z2	TUKEY - TEST Z1: Z3	TEST, KONTRASTE*	E* Z1,2 : Z3
MALDRAND	9	8	~	124,0	107,0	87,0	ı	1	1	1
GESAMT:			-	124,0	102,0	87,0				

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

4.2 Schlagränder

4.2.1 Fi-Schlagränder

Die Randbäume dieser Untersuchungseinheit zeigen besonders deutliche Unterschiede im Verlichtungsgrad beim Vergleich mit den anschließenden Zonen. Im Durchschnitt liegt der Verlichtungsindex der Randzone um 19% höher als der des Profilmittels (Übersichtstab.5). Bei nur 3% der Probeflächen erscheint der Verlichtungsgrad der Randbäume kleiner als der des Flächenmittels.

Alle drei Zonen unterscheiden sich signifikant von einander und auch die Zonen 1 und 2 zusammen sind in ihrem Kronenzustand vom Bestandesinnenraum gesichert zu unterscheiden. Der Unterschied zwischen der Übergangszone und dem Bestandesinneren ist nicht sehr deutlich ausgeprägt.

Auf nord- und südexponierten Hängen (Tab II/1) treten ähnliche Tendenzen auf: der Verlichtungsgrad der Randzone liegt wesentlich über dem des Profilmittels. Auf Nordhängen unterscheiden sich alle drei Zonen signifikant von einander, auf Südhängen hingegen konnte zwischen der Übergangszone und dem Bestandesinneren kein gesicherter Unterschied nachgewiesen werden.

Bei den Gruppierungen nach der Randexposition (Tab II/2) scheinen nur geringe Differenzen zwischen den Expositionen auf Ostränder zeigen etwas schwächere Kontraste zwischen den Zonen, wenngleich die Randzone eine Signifikanz zu den beiden anderen, die sich nicht unterscheiden, aufweist.

Die Untersuchung nach unterschiedlichen Randabständen (Schlagbreite) zeigt nicht sehr deutliche Abhängigkeiten. Die Randbäume liegen auch hier (Tab II/3) im Verlichtungsgrad über dem Mittelwert des Restbestandes. Bei Schlägen mit einer Hiebsbreite von 15 - 30 m (Randabstand 2) erscheinen die Differenzen etwas geringer, bei größeren Schlagbreiten (mehr als 30 m) werden die Kontraste zwischen den einzelnen Zonen schärfer.

Bei Aufgliederung der Schlagrandflächen nach dem unterschiedlichen Randalter (Tab II/4) zeigen jüngere Ränder geringere Unterschiede zwischen den Zonen sowie eine schwächere Verlichtung der Randbäume. Besonders starke Kontraste weisen Schlagränder mit einem Randalter von 11 - 15 Jahren auf. Bei älteren Rändern (über 15 Jahren) wirkt sich der Freistellungseingriff in zunehmendem Maße auch schon auf die Übergangszone aus, wodurch der Unterschied im Auflichtungsgrad zwischen der Rand- und Übergangszone geringer

wird.

Zusammenfassend kann festgestellt werden, daß sich Einflußgrößen wie Hang- oder Randexposition und der Randabstand (Schlagbreite) mit zunehmender Dauer der Freistellung sehr wohl in ihrer negativen Wirkung auf die Randbäume und Übergangszonen eindrucksvoll bestätigen. So weisen im Extremfall Randbäume mit einem Randalter von 11 - 15 Jahren und einer Schlagbreite von mehr als 30 m einen bis zu 50% höheren Verlichtungsgrad auf als das entsprechende Bestandesinnere.

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIRNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN $Q_{\rm I}$, $Q_{\rm II}$, $Q_{\rm III}$

Tab II/1

RAND	HANG- EXP.	BA	ANZAHL	no Io	QUOTIENTEN	en Qiii	TU 23: LZ	TUKEY - TEST Z1 : Z3	TEST, KONTRASTE	E. 21,2 : 23
D	N	Fi	20	120	98	92	+ 17,92	+ 24,52	+ 3,17	+ 27,69
N	ഗ	근된	6	116	26	46	+ 15,07	+ 18,18	- 1,15	+ 17,02
A A	*	in E	_	129	95	96	ı	ı	1	ı
5	eben	E	2	101	66	101	1	1	1	1
A			7						25	
Т									1-	
Н										
2										
S										
									- 14	
GESAMT:			32	119	98	93				

Anmerkung: * + = signifikanter Unterschied

- = kein signifikanter Unterschied

Tab II/2

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, QII, QIII.

TEST, KONTRASTE* 23 Z2 : Z3 Z1,2 : Z3	5,77 + 11,20 3,07 + 16,70 2,87 + 12,76 5,79 + 30,37	
T, KON	1 t 1 +	
TUKEY - TES	+ 16,97 + 19,77 + 15,63 + 24,59	ı
21 : 22	+ 11,47 + 16,60 + 15,38 + 12,79	
EN CILI	92 94 96 89	93
QUOTIENTEN	97 96 101	98
Q _I	120 120 115 120	119
ANZAHL	12 6	32
BA	는 14 14 14 14 14 14	
RAND-	z v o >=	
RAND KATEGORIE	зснгьевьир	GESAMT:

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

Tab II/3

STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII, QIII. MITTELWERTE DER QUOTIENTEN UND BERECHNUNG

RAND KATEGORIE	RAND- ABSTAND	BA	ANZAHL PROFILE	ō, I,	QUOTIENTEN	EN QIII	21 : 22	TUKEY - TEST Z1 : Z3	TEST, KONTRASTE	E. Z1,2 : Z3
сивевир	+ N W	다 도 도 다 다 다	20 20	118	96 96 96	93	+ 14,12 + 9,03 + 17,20	+ 18,69 + 7,63 + 24,05	- 1,87 - 6,76 + 3,65	+ 16,82 - 1,93 + 27,70
GESAMT:			32	119	98	93				

- = kein signifikanter Unterschied Anmerkung: * + = signifikanter Unterschied

*

^{1 =} Randabstadd kleiner als 15 m 3 = Randabstand größer als 30 m 2 = Randabstand 15 - 30 m

RANDSCHADENSUNTERSUCHUNG 1986

Tab II/4

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII, QIII

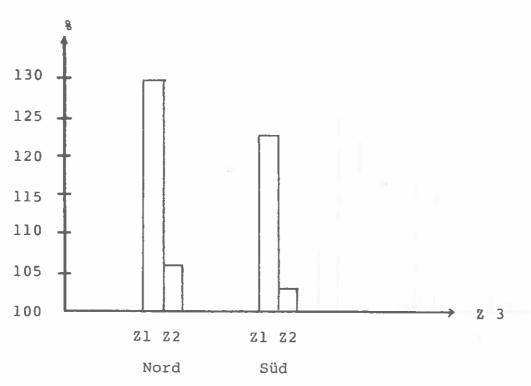
RAND KATEGORIE	RAND- ALTER	ВА	ANZAHL PROFILE	o, I	QUOTIENTEN	en Q _{III}	TU 22 : 12	TUKEY - TEST, KONTRASTE-	, KONTRAST Z2: Z3	E• Z1,2: Z3
SCHLAGRAND	+ n n +	1년 1년 1년 1년 토네 토네 토네	0 K C K	110 119 127 114	98 98 101	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	+ 7,95 + 18,88 + 20,36 + 8,67	+ 9,50 + 22,88 + 30,50 + 17,00	- 2,61 + 0,65 + 1,93 + 3,67	+ 6,89 + 23,53 + 32,43 + 20,68
GESAMT:		:5	32	119	98	93				

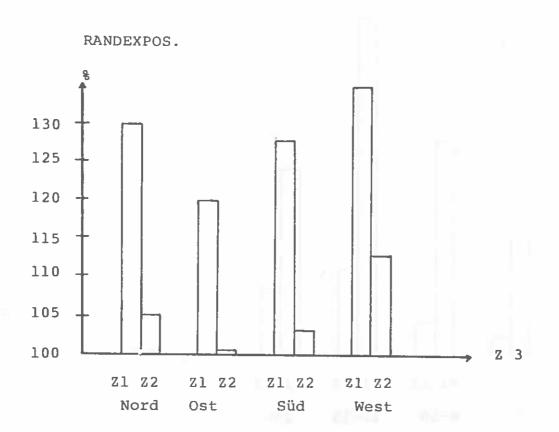
Anmerkung: * + = signifikanter Unterschied

- = kein signifikanter Unterschied

^{** 1 =} Randalter 0 - 5 Jahre 2 = Randalter 6 - 10 Jahre 3 = Randalter 11 - 15 Jahre 4 = Randalter über 15 Jahre

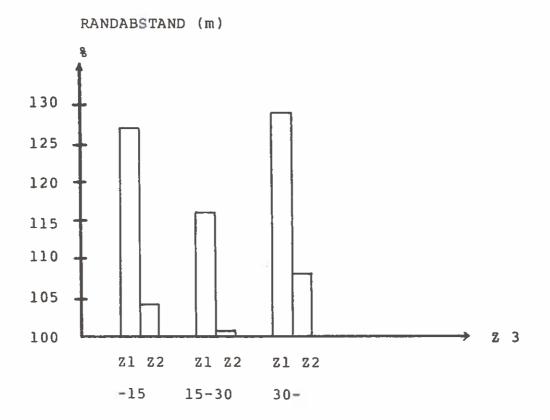
MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q_I, Q_{II}, Q_{III}.

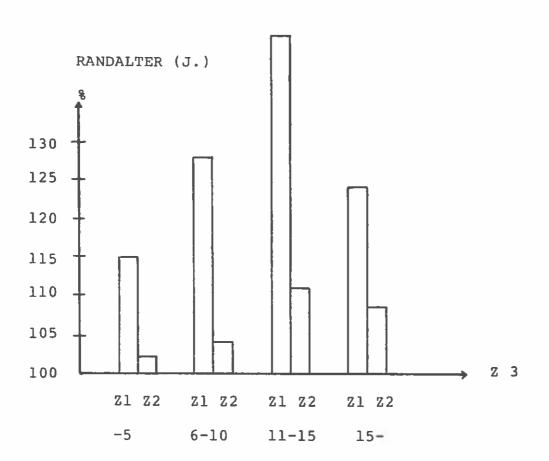

UR BA PROFILE	01 Fi 2 03 Fi 4	04 Fi 2 05 Fi 6	07 Fi 12 08 Fi 6	32
E O I	113,5	114,0	119,0	118,8
QUOTIENTEN QIII	99,5 89,5	102,0 91,0 97,6 94,0	95,7 94,7 97,3 96,5	98,1 92,8
21 : 22	- 1,69	+ +	+ 18,96	
TUKEY - TEST Z1 : Z3	+ 8,31	+ 16,24	+ 19,96	
- TEST, KONTRASTE: Z3 Z	- 5,69	+ - 3,10	- 3,37	
21,2 : 23	+ 2,62	+ 13,13	+ 16,59	


Anmerkung: * + = signifikanter Unterschied - = kein signifikanter Unterschied

SCHLAGRAND

Darstellung der Zonen I,II
in Prozent der Zone III


HANGEXPOS.



SCHLAGRAND

Darstellung der Zonen I,II in Prozent der Zone III

4.2.2 Ki-Schlagränder

Durch die beschränkte Anzahl der aufgenommenen Ki-Schlagränder bedingt, konnte bei dieser Randkategorie keine detaillierte Untersuchung durchgeführt werden. Die Kiefer als Lichtbaumart reagiert kurzfristig sehr gering auf Freistellungsmaßnahmen und ein Umsetzen (positiv od. negativ) ist vor allem vom Bestandesalter bei der Freistellung sowie von den wesentlichen Standortsfaktoren abhängig.

Tab II/6

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q_I, Q_{II}, Q_{III}.

RAND KATEGORIE	UR	ВА	ANZAHL PROFILE	o To	QUOTIENTEN QUI	en Qiii	TU Z1 : Z2	IKEY 21	- TEST, KONTRASTE: Z3 Z	E* 21,2 : 23
SCHIKGRAND	0 2 2	Ki Ki	N N	106,5	97,5		- 8,42	- 12,92 + 10,95	- 12,92	- 34,84
GESAMT:			4	111,8	95,8	8,66				

Anmerkung: * + = signifikanter Unterschied - = kein signifikanter Unterschied

Tab II/7

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII, QIII.

RAND KATEGORIE	UR	BA	ANZAHL	I O	QUOTIENTEN QII G	SN QIII	21 : 22	TUKEY - TEST, 1 Z1 : Z3 Z2	, KONTRASTE.	E* Z1,2 : Z3
зснгувнул	80	೮ ⊟	N	88,0	2,11	96,5	+ 7,70	- 7,30	08.0	- 25,10
GESAMT:			2	88,0	88,0 111,5	96,5				

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

4.3 Forststraßenränder

Im Durchschnitt aller Probeflächen konnten zwar unterschiedliche Verlichtungsgrade der einzelnen Zonen nachgewiesen werden, doch sind diese sehr gering. Der Verlichtungsgrad der Randzone liegt im Durchschnitt 8% über dem Profilmittel. (Übersichtstabelle 5)

In 32% der Probeflächen liegt der Verlichtungsgrad der Randzone unter dem Profilmittel, in 39% beträgt der Unterschied weniger als 5%. (Übersichtstabelle 2)

Zwischen den einzelnen Hang- und Randexpositionen zeigen sich sehr verschiedene Verhältnisse.

Auf Südhängen ist der Verlichtungsgrad der Randzone sehr viel deutlich höher, auf Nord- und Westhängen sind die Unterschiede sehr gering, auf Osthängen konnten überhaupt keine Unterschiede zwischen den Zonen nachgewiesen werden. Eine ähnliche Situation ergibt sich hinsichtlich der Randexposition: Sehr hohe Verlichtungsunterschiede der Randzone an Süd- und Nordrändern stehen im Gegensatz zu einer relativen Gleichförmigkeit an Ost- und Westrändern. Diese Tendenz zeigt sich noch verstärkt bei gemeinsamer Betrachtung von Hang- und Randexposition: Die höchsten Verlichtungsunterschiede ergeben sich an Nord- und Südrändern auf Südhängen. (Tab. III/1-3)

An Forststraßenrändern mit Trassenbreiten zwischen 15 - 30 Meter liegt der Verlichtungsgrad der Randzone vergleichsweise höher, als auf schmäleren Trassen. Besonders hoch ist der Verlichtungsunterschied auf Südhängen mit Süd-exponiertem Rand und einer Trassenbreite zwischen 15-30 Meter. (Tab. III/5,6)

An Rändern mit einem Freistellungszeitraum über 15 Jahre ergeben sich etwas höhere Verlichtungsunterschiede als bei jüngeren Rändern. (Tab. III/4)

Zwischen Probeflächen oberhalb und unterhalb von Forststraßen konnten keine Unterschiede festgestellt werden.

Tab. III/1

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, Q111

RAND	HANG- EXP.	ВА	ANZAHL	o, I	QUOTIENTEN	EN QIII	21 : 22	TUKEY - TEST Z1 : Z3	- TEST, KONTRASTE:	21,2 : 23
N										
E	MN) M	Fi	2 5	105	100	86	+ 2.18	+ 4.22	- 0.55	+ 3.66
S	0 (80	Fi	20	105	66	86	- 2.89	- 2.18	- 4.89	- 7.07
S	S (SW	Fi	20	117	86	94	+ 12.05	+ 15.14	- 0.28	+ 14.85
Ą	ON) N	Fi	23	901	66	86	+ 4.60	+ 5.01	- 1.88	+ 3.12
ят	Eben	Fi	2	102	103	96	1	1	1	1
S										
T										
S										
Я										_
0										
ď										
GESAMT:			06	108	66	16				

Anmerkung: * + = signifikanter Unterschied

⁻ m kein signifikanter Unterschied

Tab. 111/2

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q_I, Q_{II}, Q_{III}.

RAND	RAND- EXP.	ВА	ANZAHL	ið I	QUOTIENTEN	EN QIII	Z1 : Z2	XEY -	TEST, KONTRASTE	E+ Z1,2 : Z3
N									ş.	
а	Ŋ	·ři	34	110	66	96	+ 8.10	+ 10.28	- 1.27	+ 9.01
S S	z	Fi	27	113	86	95	+ 11.48	+ 14.37	00.00 -	+ 14.36
	0	Fi	15	102	100	66	- 2.05	- 1.45	- 3.05	- 4.50
Я	3	Fi	14	101	100	100	- 1.19	- 1.19	- 2.33	- 3,53
Т				L 500				ofest T		
S										
Т		913								
s										
Я								70		2 2
0										
A						7-1				
GESAMT:			06	108	66	97				

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

RANDSCHADENSUNTERSUCHUNG 1986

Tab. III/3

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, QII, QIII.

RAND KATEGORIE	H/R	BA	ANZAHL PROFILE	O I	QUOTIENTEN	EN PILI	21	TU]	TUKEY -	TEST,		KONTRASTE*	(-	,2 : 23
N	0/M		7	3.02	00	000	- -	7		CO		5		3
2	2	4		707	0	00 T	i	# C .	n I	20.0	l . 1	0 * ° C	1	TO.74
1 5	M/M	i E	∞	101	102	86	- 2	.40	0 -	0.40	+	0.22	1_	0.17
SS	M/0	Fi	5	101	95	103	+	.12	- 2	2.67	+	2.92	+	0.24
A	0/0	Fi	9	66	102	66	٦.	.41	- 7	.41	1	4.91	= 1	12.32
Я	S/N	면	14	115	97	95	+ 13	13.78	+ 15	15.71	1	2.14	+	13.57
l :	8/8	Fi	15	115	98	94	+ 10	10.40	+ 14	-20	1	2.59	+	11.61
5 L	N/S	Rì	18	106	66	66	+	.14	+ 3	60.		3.79	1	0.81
S	N/N	Fi	13	110	66	95	+	.17	+ 10	10.10	0 -	0.51	+	9.58
Я	1													
0														
Ą					:									
GESAMT:			86	108	66	6								

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

Tab. III/4

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q_I, Q_{II}, Q_{III}.

RAND	RAND-	ВА	ANZAHL PROFILE	O _I	QUOTIENTEN	en Qiii	Z1 : Z2	TUKEY - TEST	TEST, KONTRASTE° Z3 Z2 : Z3 Z	E. 21,2 : 23
RORSTRASSEN	1**	F .	53	105	86	99	+ 2.69	+ 14.50	- 2.85 + 2.70	- 2.84
GESAMT:			96	109	66	96				

Anmerkung: * + = signifikanter Unterschied - = kein signifikanter Unterschied

** 1 = Randalter unter 15 Jahre 2 = Randalter über 15 Jahre

Tab. III/5

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII, QIII-

RAND KATEGORIE	RAND- ABSTAND BA	D BA	ANZAHL PROFILE	o, I	QUOTIENTEN	EN QIII	TU Z1 : Z2	TUKEY - TEST Z1: Z3	TEST, KONTRASTE	21,2 : 23
N	1 **	FJ:	52	104	66	66	+ 3.42	+ 3.21	- 1.67	+ 1.11
а s	2	Fi	36	113	66	94	+ 11.07	+ 16.32	+ 2.07	+ 18.40
5 S	т	Fi	2	110	94	102	+	+	1	1
Ą										
Я										
T										
S										
T										
S										
Я										
0						 :				
ď						T				
GESAMT:			06	108	66	97				

Anmerkung: * + = signifikanter Unterschied - = kein signifikanter Unterschied

^{** 1 =} Randabstand kleiner als 15 m

^{2 =} Randabstand 15 - 30 m

^{3 =} Randabstand größer als 30 m

Tab. III/6

STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII, QIII-MITTELWERTE DER QUOTIRNTEN UND BERECHNUNG

RAND KATEGORIE	KOM.	BA	ANZAHL PROFILE	0 t	QUOTIENTEN	NS TTTO	21 : 22	TUKEY - TEST Z1 : Z3	TEST, KONTRASTE*	E* Z1,2 : Z3
				1						
N	1	Fi	Ŋ	104	86	100	- 0.46	- 2.06	- 4.86	- 10.12
3	2	Fi	7	114	101	91	+ 5.12	+ 15.26	+ 3.12	+ 18.38
S S	m	Fi	7	103	66	86	- 4.76	- 3.19	- 7.05	- 10.25
A	4	Fi	7	129	96	89	+ 23.54	+ 30.83	- 1.74	+ 29.09
Я										
T						-				
S										
T										
S		_								
Я										
0						-				
न्						2				
GESAMT:										

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

⁼ N-Hang mit N-Rand u. Randabstand kleiner als 15m = N-Hang mit N-Rand u. Randabstand 15 - 30 m = S-Hang mit S-Rand u. Randabstand kleiner als 15m = S-Hang mit S-Rand u. Randabstand 15 - 30 m H 2 M 4

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIRNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q_I, Q_{II}, Q_{III}

RAND	UR	ВА	ANZAHL PROFILE	o, I	QUOTIENTEN	N. OLLI	TU Z1 : Z2	TUKEY - TEST Z1 : Z3	TEST, KONTRASTE	E* Z1,2 : Z3
ASZANTZTZNOT	01 04 07 08	ન ન ન ન મ મિ મિ મિ મિ	38 12 4 21 21 75	110,7 104,0 102,7 119,0 101,4	97,8	96,4 98,9 94,7 99,6	+ 9,83	+ 11,22 + 19.96 - 2,24	- 1,67 - 3,37 - 5,57	+ 8,56 + 16,59 - 5,82
GESAMT:			90	108,0	98,86	97,0				

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

Tab. III/8

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, Q111

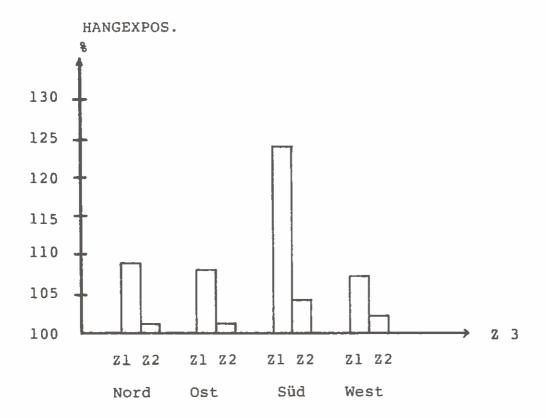
RAND KATEGORIE	UR	BA	ANZAHL	T O	QUOTIENTEN QUOTIENTEN	SN QIII	TL 22	TUKEY - TEST, Z1 : Z3 Z	, KONTRASTE*	21,2 : 23
ESSARTZTZROT	0	X		2,66	104,7	95.7	23,00	- 4,09	t 0,91	1 23
GESAMT:			4	99,7	104,7	95,7				

Anmerkung: * + = signifikanter Unterschied

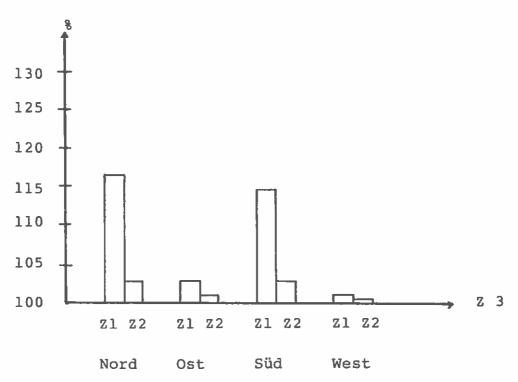
^{- =} kein signifikanter Unterschied

Tab. III/9

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q111

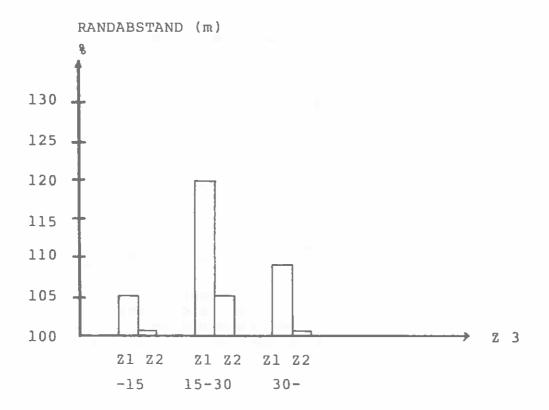

RAND KATEGORIE	UR	ВА	ANZAHI PROFILE	no I	QUOTIENTEN	SN PILI	TU 22 : 12	TUKEY - TEST 21 : 23	TEST, KONTRASTE	E* Z1,2 : Z3
TSZARTZTZROT	& O	¤	2	93,0	102,0	101,0	- 24,58	- 26,08	- 32,58	- 61,67
GESAMT:			2	93,0	102,0	101,0				

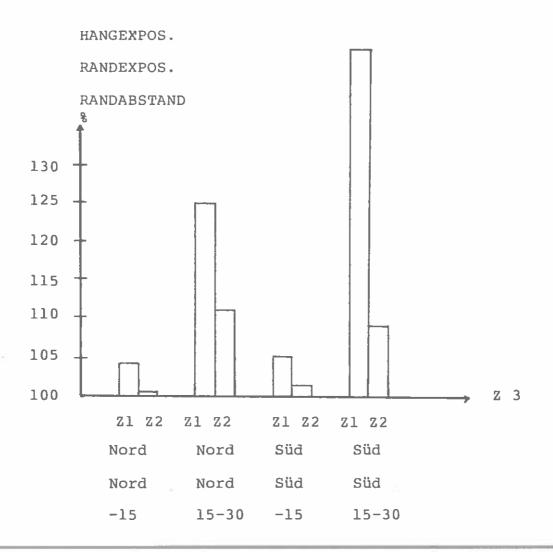
Anmarkung: * + = signifikanter Unterschied


^{- =} kein signifikanter Unterschiod

FORSTSTRASSE

Darstellung der Zonen I,II in Prozent der Zone III





FORSTSTRASSE

Darstellung der Zonen I,II in Prozent der Zone III

4.4 Verkehrs- und Freileitungstrassen (kurz Trassen)

4.4.1 Fi-Trassenränder

Trassenränder zeigen sehr deutliche Unterschiede der Verlichtungsgrade zwischen den Zonen.

Im Durchschnitt ist der Verlichtungsgrad der Randzone um 16% höher als der Bestandesdurchschnitt. Zwischen Zone 2 und Zone 3 ergeben sich keine Unterschiede. (Übersichtstabelle 5)

In 27% der Probeflächen ist der Verlichtungsgrad der Randzone niedriger als der Flächendurchschnitt. In 20% sind die Unterschiede geringer als 5%. (Übersichtstabelle 2)

Die Verlichtungsunterschiede auf Südrändern sind relativ am höchsten, auf Westrändern ergeben sich sehr geringe Unterschiede. An schmalen Trassen unterscheidet sich die Randzone am deutlichsten vom Gesamtbestand. (Tab.IV/1-4)

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII, QIII

DAND			A N.7 A U.T	3	TOM T TOWAR	200			E ACTE NO S	
KATEGORIE	KAND- EXP.	BA	PROFILE	o' I	CII CII	QIII	Z1 : Z2	TUREI - TEST 21 : 25	Z5 Z2 : Z5 Z	21,2 : 23
	z	Fi	m	119	101	89	+ 0.76	+ 12.43	- 6.23	+ 6.20
	0	Fi	m	116	95	97	+ 5.07	+ 2.40	- 13.59	- 16.52
1	S	Fi	Ŋ	119	100	06	+ 5.21	+ 15.01	- 3.38	+ 11.63
E N	3	Fi	4	109	100	94	+ 1.59	+ 7.34	- 1.40	+ 5.93
S	13									
S										
A										
Я										
T-is	_									
1										
824000										
GESAMI			15	116	66	93				
				(Table 1 1 1 1 1 1 1 1 1 1						

Anmerkung: " + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q_I, Q_{II}, Q_{III}

RAND	RAND- ALTER	BA	ANZAHL	10° I	quotienten	SN QIII	TU Z1 : Z2	TUKEY - TEST Z1: Z3	TEST, KONTRASTE	E. Z1,2 : Z3
	1**	Fi	9	116	66	93	+ 8.79	+ 14.13	- 3,53	+ 10.59
	2	Fi	6	115	100	92	+ 8.64	+ 16.09	+ 0.42	+ 16.51
N								618		
я										3.14
S										
S		25.75								
A										
Я										
T				de						
-Ţ2										
[
GESAMT:			15	115	100	92				

Anmerkung: * + = signifikanter Unterschied - = kein signifikanter Unterschied

** 1 = Randalter 0 - 15 Jahre 2 = Randalter über 15 Jahre

Tab.IV/3

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, QII, QIII.

Anmerkung: * + = signifikanter Unterschied

- = kein signifikanter Unterschied

^{**} l = Randabstand kleiner als 15 m

^{2 =} Randabstand 15 - 30 m

^{3 =} Randabstand größer als 30 m

Tab. IV/4

MITTELWERTE DER QUOTIENTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, Q111.

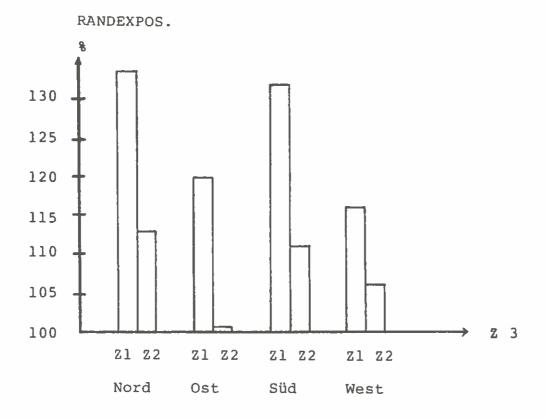
RAND KATEGORIE		ВА	ANZAHL PROFILE	or or	QUOTIENTEN	en Qiii	21 : 22	TUKEY - TEST	TEST, KONTRASTE*	E* Z1,2 : Z3
Fi – TRASSEW	Randalter über 15 Jahre Randabstand orößer 30 m	Fi	∞	118	100	91	+ 10.59	+ 19.46	+ 1.46	+ 20.93
GESAMT:										

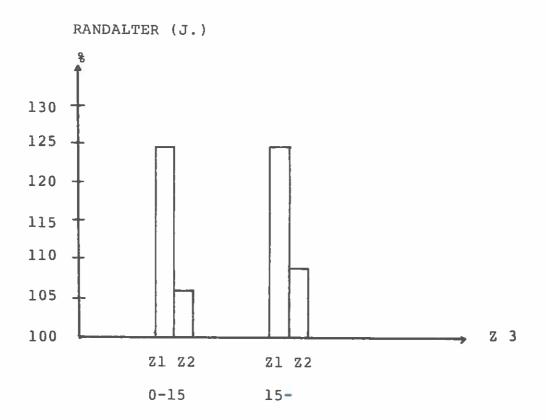
Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

Tab. IV/5

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII, QIII


RAND	Q11	₩ α	ANZAHL	Jo.	QUOTIENTEN	N		TUKEY - TEST.	. KONTRASTE.	• 4
KATEGORIE	40	40	PROFILE	Q _I	QII	Q _{III}	21 : 22	21: 23	Z2 : Z3	21,2 : 23
	03	٠,-t اش	-	145,0	102,0	75,0	1	1	1	ı
Э	40	·፫ 월	2	126,0	98,0	89,5	+	+		
S	90	Fi	-	123,0	104,0	82,0	ı	ı	8	ı
s A	20	Fi	М	115,3	0,66	93,0	4 0,47	+ 6,47	98'6 -	- 3,39
Я	90	<u>ir</u>	#	105,0	98,5	101,5	- 6,12	- 9,12	- 9,62	42,45 -
T	10	Ę.	4	111,5	0,66	93,5	+ 2,94	44,8 +	90,4 -	+ 4,37
						iv et e				
									!	
GESAMT:			15	115,5	99,3	91,1				


Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

TRASSE

Darstellung der Zonen I,II in Prozent der Zone III

4.4.2 Ki-Trassenränder

Diese Randart wurde hauptsächlich in den Bundesländern Steiermark und Kärnten entlang der Südautobahn erhoben. Da die Gesamtanzahl der dabei aufgenommenen Profile doch unter 20 liegt, kann eine entsprechende Interpretation nur in eingeschränktem Maße erfolgen.

Der "Tukey-Test" zeigt für die insgesamt 15 Flächen signifikante Unterschiede zwischen allen drei Zonen. Bei Betrachtung der Randexpositionsgruppierungen (Tab.IV/6) fallen kaum Unterschiede auf. Das neutrale Verhalten der Westränder sollte wegen der geringen Probeflächenanzahl unberücksichtigt bleiben.

Auch eine Gliederung nach unterschiedlichem Randalter (Tab.IV/7) führt zu einer ähnlichen Aussage wie bei den anderen freigestellten Rändern: jüngere Trassen unterscheiden sich weniger als ältere vom Bestandesinneren. Erst wesentlich ältere und breitere Trassen (Tab. IV/8) zeigen größere Unterschiede zwischen den Zonen.

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q_I, Q_{II}, Q_{III}.

RAND KATEGORIE	RAND- EXP.	BA	ANZAHL	0, T	QUOTIENTEN	EN CTIT	21 : 22	TUKEY - TEST	TEST, KONTRASTE	E* Z1,2 : Z3
					i					
	Z	Ki	3	115	101	91	+ 3.99	+ 13.66	00.0 +-	+ 13.65
	0	Ki	4	118	102	90	+ 3.76	+ 15.76	- 0.73	+ 15.03
	တ	Ki	2	119	102	89	+ 9.20	+ 22.60	+ 5.80	+ 28.40
N	B	Ki	3	101	95	102	- 21.41	- 26.41	- 20.08	- 46.49
Я										
s										
s										
A										
Я										
T-	-									
KŢ										
GESAMT:			15	114	100	92				

Anmerkung: " + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI, QII!

RAND	RAND-	BA	ANZAHL	ľ	QUOTIENTEN	SN	T		5	
KATEGORIE	ALTER		PROFILE	J.	o _{II}	Q _{III}	Z1 : Z2	Z1: Z3	22 : 23	21,2 : 23
	1**	Ki	9	111	101	94	+ 2.77	+ 9.27	- 1.39	+ 7.88
	2	Ki	2	121	97	93				
N	m	Ki	7	115	101	06	+ 3.43	+ 13.86	- 0.13	+ 13.72
В										
S										
S										
A			T							
Я										
T						- •				
-ţ,										
K						7 - Aug				
GESAMT:			15	114	100	92				
						-				

Anmerkung: * + = signifikanter Unterschied - = kein signifikanter Unterschied

^{** 1 =} Randalter jünger als 10 Jahre 2 = Randalter 11 - 15 Jahre 3 = Randalter über 15 Jahre

Tab. IV/8

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, Q111.

		$\overline{}$
E* Z1,2 : Z3		
TEST, KONTRASTE		
TUKEY - TEST Z1 : Z3		
TU : 72		
EN QIII	86	
QUOTIENTEN	102	
O, I	124	
ANZAHL PROFILE	m	
ВА	Ki	
	Randalter über 15 Jahre Randabstand über 30 m	
RAND KATEGORIE	Ki- T R A S S E N	GESAMT:

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

Tab. IV/9

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, Q111

RAND	UR	BA	ANZAHL		QUOTIENTEN	Z	Tu	KEY -	TEST, KONTRASTE	• 4
			TOUR TOUR	I	LIL	LIII			66: 22	61,6: 45
	01	Ki	2	103,0	101,0	97,5	- 6,55	- 3,05	- 5,05	- 8,10
	02	Ki	9	117,1	1,66	92,3	+ 10,41	+ 17,24	92.0 -	+ 16,47
ব্ৰ	60	Ki	9	123,0	101,6	96,6	+	+	+	
SS	10	Κį	-	0'99	0,96	113,0	t	1	1	ı
A				•						
Я										
Ţ						— · · <u>-</u> ·			TE TE	
						, -				
						=:				
GESAMT:			15	114,2 100,1	100,1	92,1				4

Anmerkung: * + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

4.5 Schitrassenränder

An Schitrassen treten deutliche Verlichtungsunterschiede zwischen den Zonen auf. Die Randzone zeigt einen ca. 12% höheren Verlichtungsgrad als der übrige Bestand. Auch Zone 2 und Zone 3 unterscheiden sich deutlich voneinander. (Übersichtstabelle 5)

In 29% der Probeflächen liegt der Verlichtungsgrad der Randzone unter dem Flächenmittel, in 23% ist der Unterschied zum Probeflächenmittel geringer als 5%. (Übersichtstabelle 2)

Hang- und Randexposition scheinen keinen wesentlichen Einfluß auf unterschiedliche Verlichtungsgrade auszuüben; relativ am höchsten allerdings ist der Verlichtungsgrad der Randzone auf Westhängen und westexponierten Rändern.

Am deutlichsten wirkt sich der Freistellungszeitraum (Alter der Trasse) auf Verlichtungsgradunterschiede der Trasse aus. So konnte auf Trassen im Alter von 11-15 Jahren ein sehr deutlicher Unterschied der Randzone zum übrigen Bestand festgestellt werden, an Rändern unter 5 und über 15 Jahren ergaben sich keine zonenweise signifikanten Unterschiede. (Tab. V/1-3)

Hinsichtlich der Trassenbreite zeigten sich keine wesentlich unterschiedlichen Verhältnisse. Lediglich auf Trassen über 30 Meter Breite ist der Verlichtungsgrad der Randzone deutlich höher als der des übrigen Bestandes.

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q111

RAND KATEGORIE	HANG- EXP.	BA	ANZAHL PROFILE	0,	QUOTIENTEN	EN O	TU 22 = 12	TUKEY - TEST	TEST, KONTRASTE°	E- Z1,2 : Z3
				4	•	111				
N	z	·여 대	1 3	111	101	9	4 6 42	114 10	4 5	40 24
a s	Ŋ	FF (FF	12	110	102	76	+ 3,99	+ 12,41	4 3.91	+ 16.32
S '	3	년 대	2	118	95	46	+ 14,06	+ 18,14	94.0 -	+ 17.67
A A	0	FF	2	114	66	76	+ 2,74	+ 6,74	+ 1,37	+ 11,11
ŢI	뗻	된	~	89	102	102	ı	1	1	ŧ
Н										
2 S										
•										
						÷_,,,,,,			.ā	
GESAMT:			35	111	100	46				

Anmorkung: * + = signifikanter Unterschied

^{- =} kein signifikantor Unterschied

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, Q111

RAND KATEGORIE	RAND- EXP.	BA	ANZAHL PROFILE	o I	QUOTIENTEN	EN CIII	Tu 22 : 12	TUKEY - TEST 21 : 23	TEST, KONTRASTE°	E• Z1,2 : Z3
	z	i i	6	111	101	46	+ 3,49	66'6 +	60'0 +	+ 10,08
E M	ß	Fi	80	110	98	26	+ 8,24	+ 16,86	+ 3,24	+ 20,10
5	>	:: E	80	114	100	92	+ 3,98	+ 5,10	- 6,51	1,41
s 4	0	Fi	10	111	102	93	+ 4,02	+ 12,72	+ 3,12	+ 15,84
R										
T										
Ι						1				
Н										
ວ										
S										
GESAMT:			35	111	100	†6				
			1							

Anmerkung: * + = signifikanter Unterschied

⁻ z kein signifikanter Unterschied

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, Q111

10000										
RAND KATEGORIE	RAND- ALTER	BA	ANZAHL	or or	QUOTIENTEN	EN QIII	TU 22 : 12	TUKEY - TEST,	KONTRASTE	21,2 : 23
RCHITRASEN	6 KV -4	·대 ·대 ·대 [조, [조, [조,	9 10 19	109	102 95 103	94 93 95	- 0,86 + 22,83 - 1,19	+ 7,13 + 25,23 + 6,59	+ 0,30 + 4,33	+ 7,44
GESAMT:			35	111	100	46				

Anmorkung: * + = signifikanter Unterschied - = kein signifikanter Unterschied

** 1 = Randalter 0 - 5 Jahre 3 = Randalter 11 - 15 Jahre 4 = Randalter über 15 Jahre

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11,

RAND	RAND-	BA	ANZAHL	o o	쀮~	NE	UT 22 : 1.2	TUKEY - TEST	TEST, KONTRASTE	E• Z7.2 : Z3
	ABSTAND				H		·	}		
вснітвавки	#	ent ent ent Des Des Des	Z 6 4Z	110	100	96	- 20,51 - 1,44 + 9,90	- 12,51 + 2,55 + 17,02	- 20,51 - 3,66 + 4,02	- 53,03 - 1,10 + 21,05
GESAMT:			35	111	100	46				

Anmerkung: * + = signifikanter Unterschied - = kein signifikanter Unterschied

** 1 = Randabstand kleiner als 15 m 2 = Randabstand 15 - 30 m 3 = Randabstand größer als 30 m

Tab. V/5

MITTELWERTE DER QUOTIBNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q_I, ^QII, ^QIII.

RAND KATEGORIE	UR	ВА	ANZAHL	O ^P	QUOTIENTEN	en CIII	TU ZZ : LZ	TUKEY - TEST,	, KONTRASTE* Z2 : Z3 Z1,2	E* Z1,2 : Z3
SCHITRASSE	09 09 09	기 개 대 대 본 단 본 단	ω ½ φ ω	120,5 115,0 109,8 98,8	98,4 92,0 101,3 103,0	97,1	+ 16,78 + 15,35 + 3,58 - 2,81	+ 24,03 + 14,27 + 11,24 - 5,93	+ 1,91 - 6,73 + 2,74 - 1,81	+ 25,93 + 5,38 + 13,98 - 7,74
GESAMT:			35	111,7	94.6	93,8				

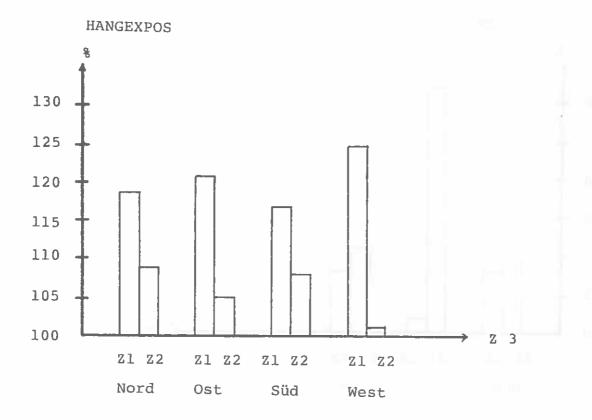
Anmerkung: * + = signifikanter Unterschied

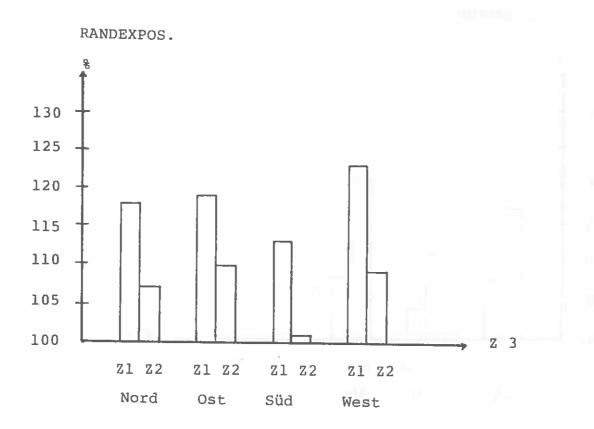
^{- =} kein signifikanter Unterschied

Tab. V/6

MITTELWERTE DER QUOTIRNTEN UND BERECHNUNG STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q_I, Q_{II}, Q_{III}.

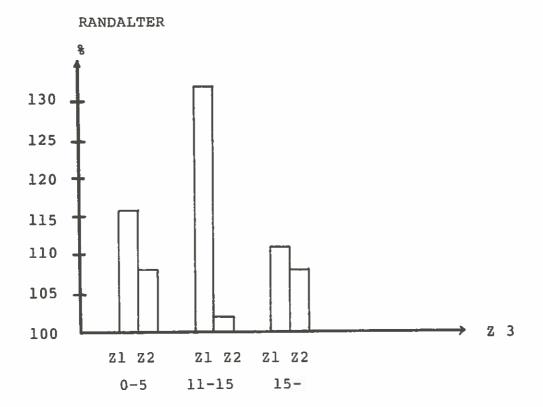
RAND	UR	BA	ANZAHL	no H	QUOTIENTEN	SN QIII	TU 22 : 12	TUKEY - TEST 21: 23	TEST, KONTRASTE	E. 21,2 : 23
	60	E E	00	118,8	102,2	105,3	- 5,67	- 8,79	- 19,17	- 34,21
Ε										
S										
S										
A										
R										
T										
I										
Н		_								
0										
8										
				7						-
GESAMT:			8	118,8	102,2	105,3				

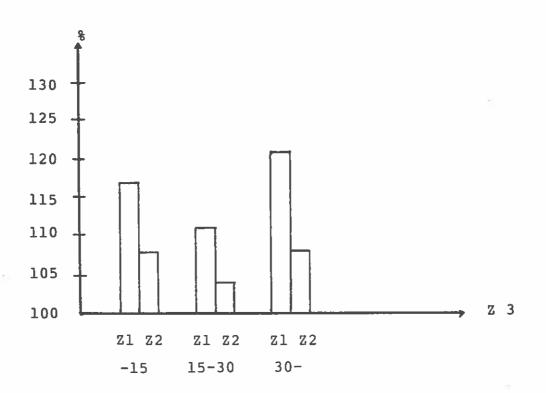

Anmerkung: * + = signifikanter Unterschied


- m kein signifikanter Unterschied

SCHITRASSE

Darstellung der Zonen I,II


in Prozent der Zone III



SCHITRASSE

Darstellung der Zonen I,II in Prozent der Zone III

RANDABSTAND

5. Zusammenfassung

Als ergänzende Sondererhebung zur Waldzustandsinventur wurde im Sommer 1986 die Untersuchung des Kronenverlichtungsgrades an Wald- und Bestandesrändern durchgeführt. Das Ziel dieser Untersuchung war, die Frage zu klären, ob Wald- und Bestandesränder einschließlich einer Übergangszone einen höheren Kronenverlichtungsgrad aufweisen als der Gesamtbestand. Die Kronenansprache erfolgte gemäß der Instruktion der Waldzustandsinventur.

Die unterschiedlichen Kronenverlichtungsgrade wurden für jede Baumart im Verhältnis zum Probeflächenmittel und zum Innenbestand errechnet. (Abbildung 2)

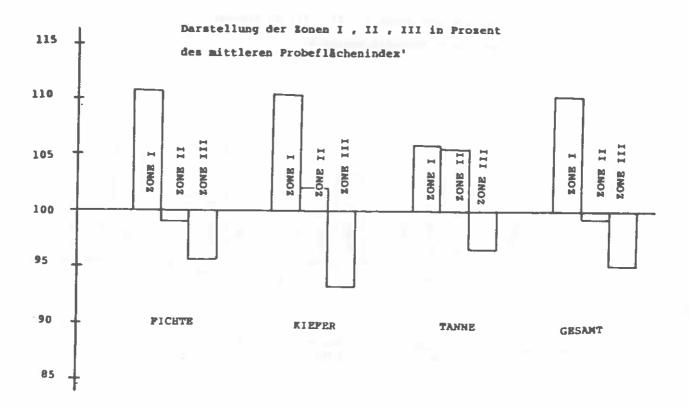
Die Randbäume weisen einen Kronenverlichtungsgrad auf, der durchschnittlich 11 % über dem Verlichtungsgrad des Gesamtbestandes liegt. Im Verhältnis zu den Stämmen im Bestandesinneren sind die Randbäume durchschnittlich 16 % stärker verlichtet.

Die Kronenverlichtung von Stämmen, welche anschließend an den unmittelbaren Wald- bzw. Bestandesrand bis etwa einer Baumhöhe in den Bestand reichen, ist weniger als 5 % stärker als die der Stämme im Bestandesinneren.

Die einzelnen Randarten zeigen zum Teil erheblich unterschiedliche Verhältnisse. (Abbildung 3)

An Waldrändern treten bedingt durch Hang- und Randexposition Unterschiede auf. An Südhängen und Südrändern ist die Kronenverlichtung relativ am höchsten. Die stärksten Unterschiede zwischen Rand und Bestand sind auf Südhängen mit südexponierten Rändern anzutreffen.

Forststraßenränder zeigen hinsichtlich der einzelnen Standorts-, Bestandes- und Randmerkmale sehr unterschiedliche Verhältnisse.


Die stärksten Verlichtungsunterschiede zwischen Rand und Bestand treten wiederum auf Südhängen und südexponierten Rändern auf. An Forststraßenrändern von einer Trassenbreite zwischen 15-30 m ist der Verlichtungsgrad der Randzone verhältnismäßig höher als auf schmäleren Trassen.

An Rändern von Verkehrs- und Freileitungstrassen zeigen sich im allgemeinen sehr hohe Verlichtungsunterschiede zwischen Rand und Bestand. Sehr deutlich sind die Unterschiede auch hier an Südrändern. Schlagränder zeigen sehr deutliche Unterschiede des Randes von der Übergangszone und dem Bestandesinnern. Hang- und Randexposition wirken sich erst bei zunehmender Dauer der Freistellung auf unterschiedliche Verlichtungsverhältnisse zwischen Rand und Bestand aus. Besonders deutlich sind diese Unterschiede auf Schlagrändern, welche breiter als 30 m und zwischen 15 - 30 Jahre alt sind.

Auf Schitrassenrändern sind die Verlichtungsunterschiede zwischen Rand und Bestand gleichfalls sehr deutlich; allerdings wird hier die Bedeutung der Exposition durch das Alter der Trasse überlagerrt. Trassen im Alter von 15 - 30 Jahre zeigen die stärksten Unterschiede.

Wenn die Bestandesinnenzone, welche den Kriterien der WZI-Dauerbeobachtungsflächen hinsichtlich Randabstand und Bestandesgröße entspricht, als Bezugsgröße verwendet wird, ergibt sich im Durchschnitt für den Randbereich eine 10-25% höhere Verlichtung. Die Übergangszone weist einen 3-10% höheren Verlichtungsgrad auf.

Abbildung 2

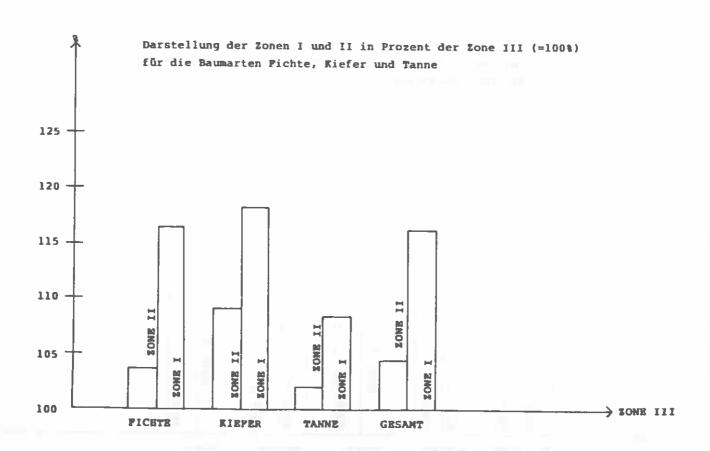
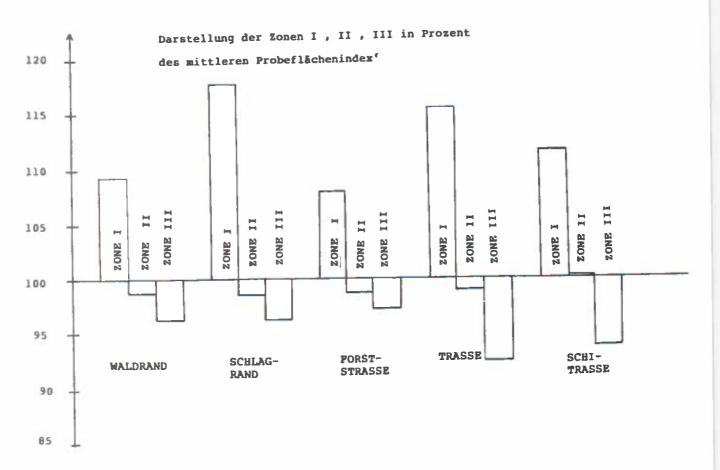
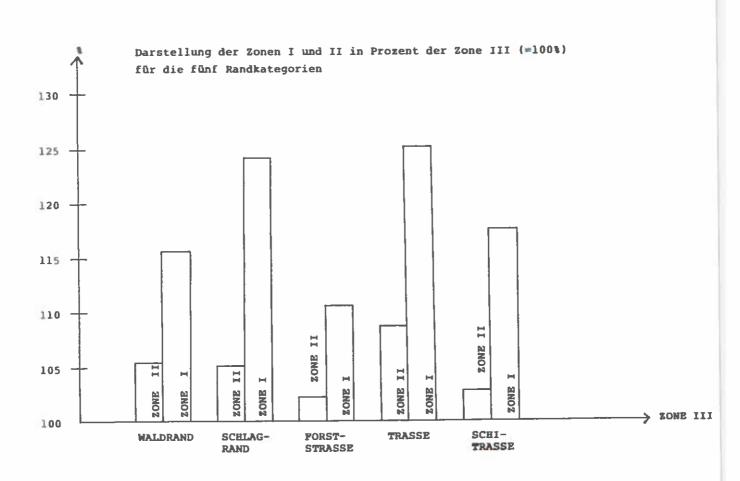




Abbildung 3

- 6. Anhang
- 6.1 Detaillierte Übersicht über die erhobenen Probeflächen

RANDSCHADENSUNTERSUCHUNG 1986

Übersicht über die erhobenen Probeflächen

Untersuchungsraum 01

(Feistritzsattel, Bucklige Welt, Wechsel)

					-00	Flächen
101	BFI	Burgenland-Nord	011 -	038	13	Flächen
314	BFI	Wr. Neustadt	011 -	051	9	Flächen
310	BFI	Neunkirchen	011 -	192	58	Flächen

Gesamt: 80 Flächen

Waldrand	24 Probeflächen	(10 Fi/14 Ki)
Schlagrand	<u>T</u>	(2 Fi/ 2 Ki)
Forststraße	42 "	(38 Fi/ 4 Ki)
Trasse	2 "	(O Fi/ 2 Ki)
Schitrasse	8 11	(8 Fi/ O Ki)

Untersuchungsraum 02

(A 2: Hartberg - Mooskirchen)

011 - 012	2 Flächen
011 - 012	2 Flächen
011 - 052	8 Flächen
011	2 Flächen
	011 - 052

Gesamt: 14 Flächen

Waldrand	6 Probeflächen	(5 Fi/ 1 Ki)
Schlagrand	2 "	(O Fi/ 2 Ki)
Forststraße	0 "	-
Trasse	6 "	(O Fi/ 6 Ki)
Schitrasse	0 "	••

(Kärnten: Petzen - Schnellstraße Völkermarkt - Klagenfurt - Wörtherseeautobahn - Weissensee - Kreuzberg)

				Goonma	15	Diver
208	BFI	Völkermarkt	011 -	022	4	Flächen
_		Villach	011		1	Fläche
		Spittal	011 -	022	3	Flächen
204	BFI	Klagenfurt	011 -	051	7	Flächen

Gesamt: 15 Flächen

Waldrand	4 Probeflächen	(4	Fi/	0	Ki)
Schlagrand	[©] 4 = 11	(4	Fi/	0	Ki)
Forststraße	0 "			_		
Trasse	7 "	(1	Fi/	6	Ki)
Schitrasse	0 "			_		

Untersuchungsraum 04

(Östliches Mühlviertel - Westliches Waldviertel: Gmünd - Freistadt - Weinsberger Forst - Ostrong)

308	BFI	Melk	061 - 094	16	Flächen
313	BFI	Waidhofen/Thaya	011 - 042	8	Flächen
316	BFI	Zwettl	011	1	Fläche
402	BFI	Freistadt	011 - 032	6	Flächen

Gesamt: 31 Flächen

Waldrand	15	Probeflächen	(15	Fi/ O	Ki)
Schlagrand	2	11		Fi/ O	
Forststraße	12	11	(12	Fi/ O	Ki)
Trasse	2	11		Fi/ 0	
Schitrasse	0	и		-	

(A 1: St. Pölten - Linz: Alpenvorland)

301	BFI Amstetten	011 - 221	24 Flächen
308	BFI Melk	011 - 051	8 Flächen
311	BFI St. Pölten	021 - 111	17 Flächen
312	BFI Scheibbs	011 - 012	2 Flächen
405	BFI Linz	011 - 022	4 Flächen

Gesamt: 55 Flächen

Waldrand	45 Probeflächen	(42 Fi/ 2 Ki/ 1 Ta)
Schlagrand	6 "	(6 Fi/ 0 Ki)
Forststraße	4 11	(4 Fi/ O Ki)
Trasse	0 "	-
Schitrasse	0 11	-

Untersuchungsraum 06

(Innkreisautobahn: Welser Heide - Ried)

		Gesamt:	8 Flächen
408	BFI Wels	011	1 Fläche
407	BFI Ried	011 - 041	7 Flächen

Waldrand	7 Probeflächen	(7 Fi/ O Ki)
Schlagrand	0 "	-
Forststraße	0 "	949
Trasse	1 "	(1 Fi/ 0 Ki)
Schitrasse	0 11	-

(Nordöstliches Alpenvorland - Lunz)

312 BFI Scheibbs 111 - 244 44 Flächen

Waldrand	8 Probeflächen	(8 Fi/ o Ki)
Schlagrand	12 "	(12 Fi/ O Ki)
Forststraße	21 "	(21 Fi/ O Ki)
Trasse	3 "	(3 Fi/ O Ki)
Schitrasse	0 "	-

Untersuchungsraum 08

(Hongar - Irrsberg - Postalm - Grossgmain)

403	BFI	Gmunden	011 -	-	012	2	Flächen
412	BFI	Vöcklabruck	011 -	-	032	6	Flächen
502	BFI	Salzburg - Land	011 -	-	121	24	Flächen

Gesamt: 32 Flächen

Waldrand	3	Probeflächen	(3	Fi/	0	Ta)
Schlagrand	8	11	(6	Fi/	2	Ta)
Forststraße	17	11	(15	Fi/	2	Ta)
Trasse	4	H	(4	Fi/	0	Ta)
Schitrasse	0	††			_		

(Schitrassen: Hintersee - Zell am See - Seefeld)

501	BFI Hallein	011 - 026	17 Flächen
505	BFI Zell am See	011 - 016	6 Flächen
703	BFI Innsbruck	011 - 022	12 Flächen

Gesamt: 35 Flächen

Waldrand	O Probeflächen	-
Schlagrand	0 "	_
Forststraße	0 "	-
Trasse	0 11	-
Schitrasse	35 "	(27 Fi/ 8 Ta)

Untersuchungsraum 10

Schitrasse 0 "

(Brennerautobahn)

716 BFI Steinach	011 - 014	5 Flächen
Waldrand	O Probeflächen	-
Schlagrand	0 11	*
Forststraße	0 11	-
Trasse	5 "	(4 Fi/ 1 Ki)

6.2 Übersichtstabellen

übersichtstabelle l

ZUSAMMENSTELLUNG NACH UNTERSUCHUNGSRÄUMEN, RANDARTEN UND BAUMARTEN

	Ta	- /	- /	- /	-/	- 1	-/	- /	# /	8 /	- /	/13
_G	Fi/Ki/Ta	58/22/	16 /5	/9 /6	31/ -/	52/2/	/- /8	/- /44	28/ -/	8 /- /22	1/ 1/	266/40/13
SUMME	Ges.	8	14	15	31	55	æ	44	32	35	5	319
SCHITRASSE	Fi/Ki/Ta	- /- /8	- /- /-	- /- /-	- /- /-	- /- /-	- /- /-	- /- /-	- /- /-	27/ -/ 8	- /- /-	35/ -/ 8
SCHIT	GeB.	00	ı	1	ı	ı	•	1	ı	35	1	43
E	Fi/Ki/Ta	-/ 5/-	- /9 /-	- /9 /1	-/-/2	- /- /-	1/ -/ -	3/ -/ -	- /- /4	- /- /-	- /1 /4	15/15/ -
TRASSE	Ges.	7	9	2	N	ı	<u>-</u>	5	4	1	77	30
FORSTSTRASSE	F1/Ki/Ta	- /4 /85	- /- /-	- /- /-	12/ -/ -	- /- /4	- /- /-	21/ -/ -	15/ -/ 2	- /- /-	- /- /-	2 /4 /06
FORST	Ge B.	745	ā	ı	12	4	ı	21	17	1	ı	96
SCHLAGRAND	Fi/Ki/Ta	2/2/-	-/ 5/ -	- /- /4	- /- /2	- /- /9	- /- /-	12/ -/ -	2 /- /9	- /- /-	- /- /-	32/ 4/ 2
SCHLA	Ges.	ব	2	4	Ŋ	9	ı	12	∞	ı	ı	38
AND	Fi/Ki/Ta	- /41/01	5/ 1/ -	- /- /4	- /- /51	42/2/1	- /- /2	- /- /8	3/ -/ -	- /- /-	- /- /-	1 /21/46
WALDRAND	Ge B.	54	9	4	15	45	2	80	М	1	1	112
URAUM		10	05	03	40	05	90	00	08	60	10	

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIENTEN UND VERTEILUNG DER QUOTIENTEN QI. QII.

RAND-	E	ANZAHL		QUOTIENTEN	NS	o di		G)	a	q
KATEGORIE		PROFILE	$q_{ m I}$	Q _{II}	QIII	€ 100	>100	501 = 56	95 II 105	95 IIIos
WALDRAND	Ή	46	109,6	98.8	96,2	28 %	72 %	22 %	K7 &	F. P.
WALDRAND	Ki	12	108,6	104,2	92,1		8 29		5 A	
WALDRAND	E E	-	124,0	107,0	87,0			_		2 C
SCHLAGRAND		32	118,8	98,1	92,8					
SCHIAGRAND	Κi	-7	111,8	95,8	8,66		-			
SCHLAGRAND	Ta	2	88,0	111,5	96,5	100 %	× 0		8	
FORSTRIRASSE	ord Fig	906	108,0	98,86	97,0	32 %	88 %			
FORSTSTRASSE	Κi	-3*	2,66	104,7	95,7	75 %	25 %	50 %		25. 28.
FORSTSTRASSE	Ta	2	93,0	102,0	101,0	50 %	50 %			
TRASSE	Fi	15	115,5	99,3	91,1	27 %	73 %			
TRASSE	Ki	15	114,2	100,1	92,1	20 %		20 %		-
SCHITEASSE	14 14	35	111,7	94.6	93,8	29 %	27.8	28		
SCHITRASSE	Ta	00	118,8	102,2	8,96	38 %	62 %		. % . %	, N
GESANT:		319	110,6	99,3	95,1	27 %	73 %	24 %	70 %	50 %

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIENTEN UND VERTEILUNG DER QUOTIENTEN Q1. Q11. Q111.

			0.00		c		O	_	Q
RANDKATEGORIE	ANZAHL	on I	QUOLIENTEN	QIII	€100 I>100	>100	95 I 105	95 <u>I</u> 105	95 11405
WAT.DRAND	112	4,601	6,66	9,46	29 %	21 %	21 %	% 99	24 %
SCHIAGRAND	38	116,4	98,6	93,7	80	92 %	16 %	8 29	50 %
FORSTSTRASSE	96	107,3	1,66	97,0	34 %	% 99	40 %	72 %	2¢ %
TRASSE	30	114,8	66.4	91,6	23 %	77 %	20 %	26 %	37 %
SCHITRASSE	43	113,0	98,5	6,56	30 %	20 %	23.8	% 29	40 %
GESAHT:	319	110,6	99,3	95,1	27 %	73 %	24.8%	% 0%	50 %

RANDSCHADENSUNTERSUCHUNG 1986

MITTELWERTE DER QUOTIENTEN UND VERTEILUNG DER QUOTIENTEN Q1, QII, QIII.

BAUMART	ANZAHL	on one	QUOTZENTEN	q _{III}	% 100 ° I	I >100	95 I 105	95 II 105	95 1195
FICHTE	266	110,7	98,7	95,1	26 %	24 %	27 %	20 %	52 %
KIEFER	04	110,1	101,9	93,2	88	20 %	15 %		
TANNE	13	110,5	104,0	98,6		24 %	23 %	31 %	× 9†
GESAMT:	319	110,6	5,66	95,1	27 %	73 %	% ħZ	70 %	50 %

RANDSCHADENSUNTERSUCHUNG 1986

STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI'QII' MITTELWERTE DER QUOTIENTEN UND BERECHNUNG

RAND	BA	ANZAHL	10	QUOTIENTEN	OIII	TUKEY-TEST,	EST, KO	KONTRASTE
KATEGORIE		PROFILE	(Kon.Int.)	(Kon.Int.)	(Kon.Int.)	21/22	21/23	22/23
WALDRAND	Fi	95	109.4	8.86	96.3	+	+	ı
SCHLAGRAND	Fi	32	(105.6-113.3)	(97.6-100.1) 98.6	(94.7-97.9) 92.8	+	+	+
PORST-	F.	16	(113.5-122.1) 108.0	(96.2-100.1) 98.8	(90.2–95.4) 97.2	+	+	1
STRASSEN	, , ,] U	(104.9-111.1)	(97.7-100.0)	(95.7–98.7)	+	+	1
TRASSEN	1	n H	(106.1-125.1)	(96.4-101.8)	(88.2-96.9)	•		
SCHI-	Fi	35	111.7	100.2	93.8	+	+	+
TRASSEN			(106.5-116.9)	(98.4-102.1)	(91.2-96.4)			
		ħ						
GESAMT	Fi	268	110.6	98.9	95.6 (94.7-96.6)	+	+	+

Anmerkung: + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

KANDSCHADENSUNTERSUCHUNG 1986

STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN QI'QII'QIII MITTELWERTE DER QUOTIENTEN UND BERECHNUNG

	BA	ANZAHL		OUOTIENTEN		THERY-TEST KONTENSET	RST. KO	OTTO A CITIE
KATEGORIE		PROFILE	QI (Kon.Int.)	(Kon.Int.)	QIII (Kon.Int.)	21/22	z1/z3	22/23
WALDRAND	Ki	20	110.3	104.3	92.5	1	+	+
SCHLAGRAND	Ki	4	(100.5-120.1)	(100.8-107.7)	(89.7–95.3)	4	4	
	8		(100.4-123.1)	(87.8-103.7)	(91.4-108.1)	•	-	I
FORST-STRASSEN	Ki	₹'	99.8 (81.7-117.8)	104.8	95.8 (86.3-105.2)	ı	ı	ı
TRASSEN	Ki	15	114.2	100.2	92.1	+	+	1
			(104.5-123.9)	(97.4-103.0)	(86.8-97.5)			
L L				1				
				Ą				
~	-				***************************************			
				1				
			110.8	102.1	93.3			
GESAMI	K1	43	(105.2-116.4)	(105.2-116.4) (100.1-104.1)	(91.0-95.7)	+	+	+

Anmerkung: + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

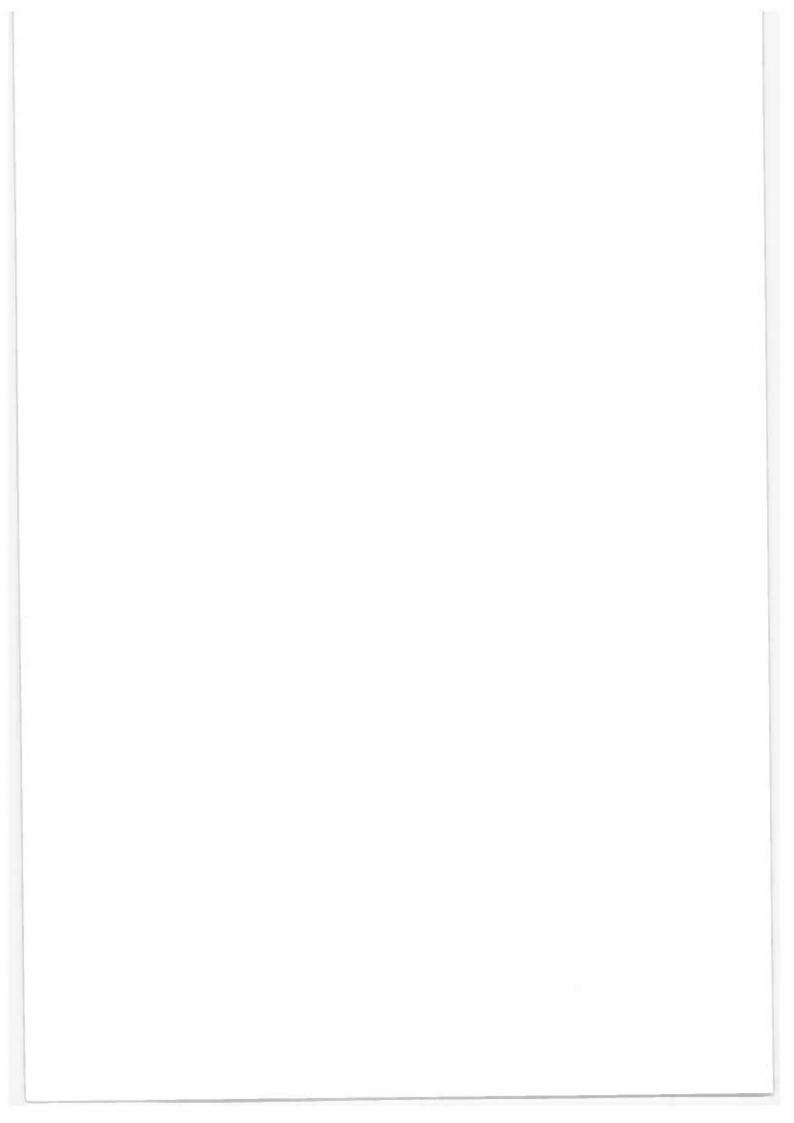
RANDSCHADENSUNTERSUCHUNG 1986

STATISTISCHER KENNZAHLEN ÜBER DIE QUOTIENTEN Q1, Q11, VIII MITTELWERTE DER QUOTIENTEN UND BERECHNUNG

RAND	BA	ANZAHL		QUOTIENTEN	1110	TUKEY-TEST, KONTRASTE	EST, KO	VTRASTE
KATEGORIE		PROFILE	(Kon.Int.)	(Kon.Int.)	(Kon.Int.)	21/22 21/23	z1/z3	22/23
WALDRAND	Ta	r	124.0	107.0	87.0			
SCHLAGRAND	Ta	2	88.0 (24.5-151.5)	111.5 (41.6-181.4)	96.5 (90.1-102.9)	ı	I	1
FORST- STRASSEN	Ta	2	93.0 (-21.4-207.4)	102.5 (7.2-197.8)	101.0 (-38.8-240.8)	I	1	ı
SCHI-	Ta	6	111.0	105.1	98.6	ı	ı	1
TRASSEN			(76.0-146.0)	(91.4-118.8)	(73.2-131.9)			
				i.e.				
THE OUT	Ta	14	106.1	105.8	8-96	. 1	1	ı
T CECOTO			(84.4-127.8)	(97.3-114.3)	(87./= 18.0)			

Anmerkung: + = signifikanter Unterschied

^{- =} kein signifikanter Unterschied

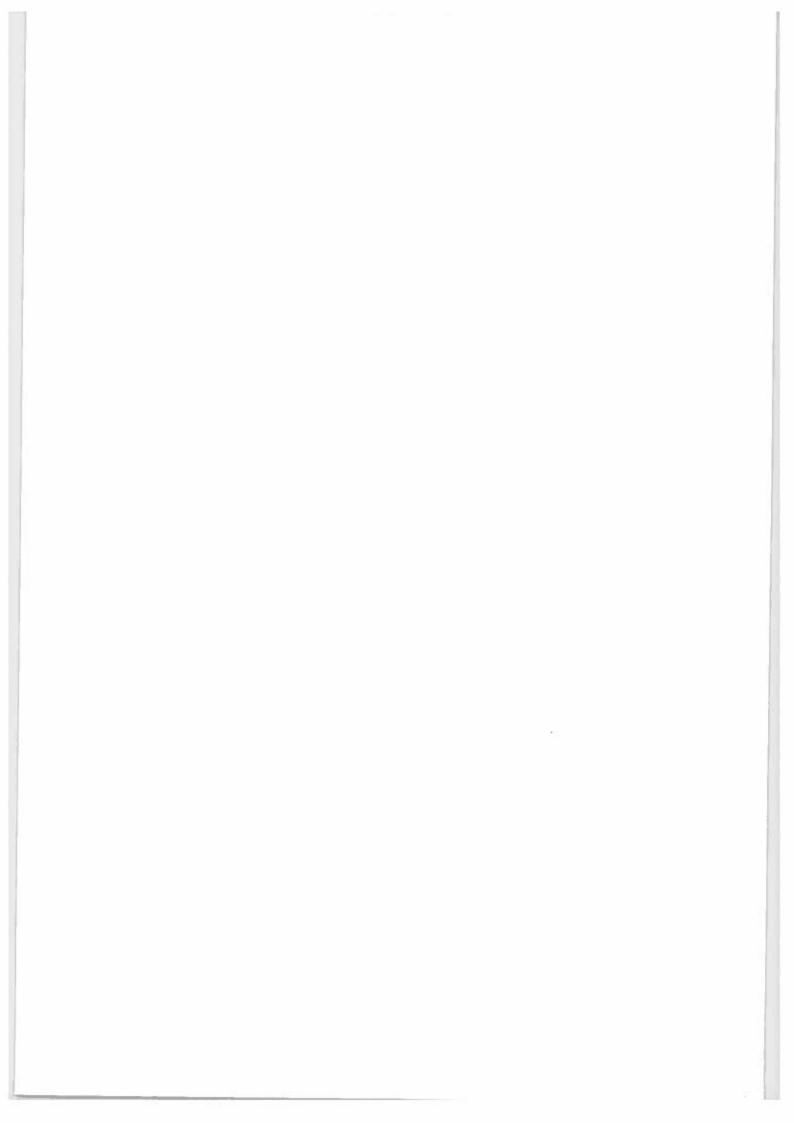

7. Literaturhinweise

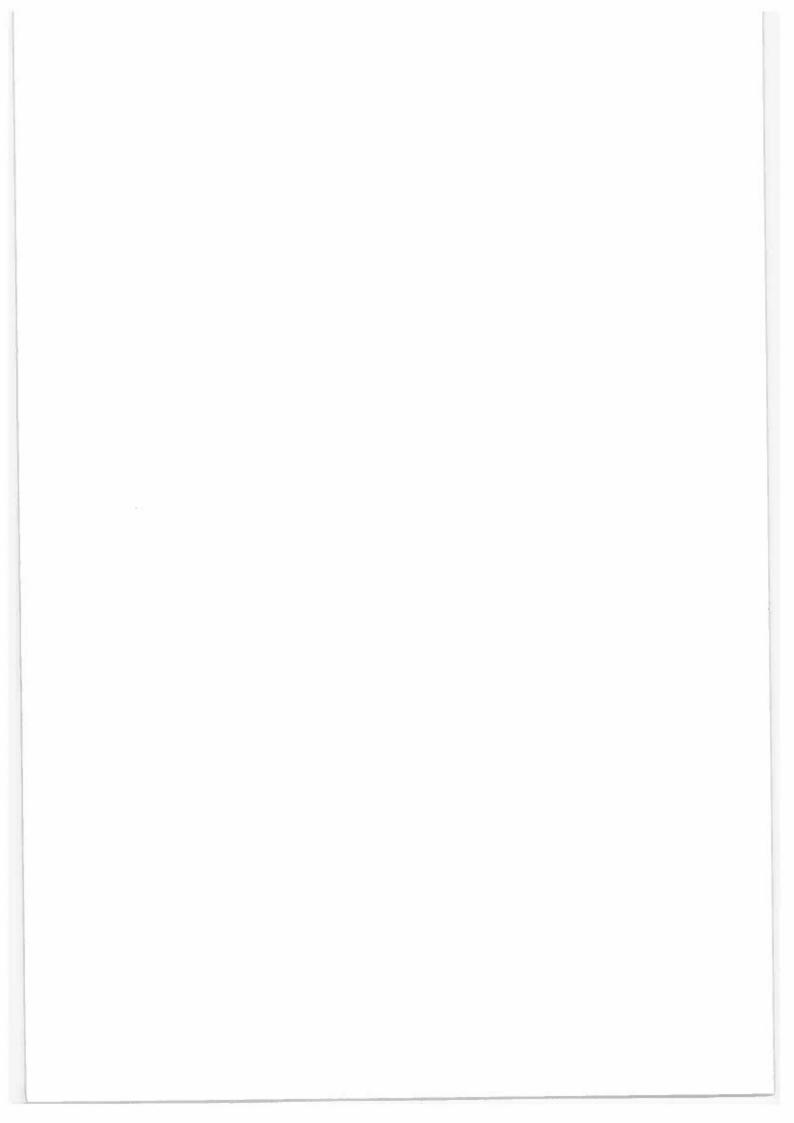
Pollanschütz J., Kilian W., Neumann M., Siegel G., 1985: Instruktion für die Feldarbeit der Waldzustandsinventur nach bundeseinheitlichen Richtlinien 1984-1988 (Fassung 1985). Herausgeber Forstliche Bundesversuchsanstalt Wien.

Pollanschütz J., 1986/2: Zur Kritik an der Waldzustandsinventur. Holzkurier 41.Jg., Nr.13, 1986. S 1-4.

FBVA-Wien:

Instruktion für die Feldarbeit der Österreichischen Forstinventur 1981-1985 (Fassung 1981).




FBVA-BERICHTE

Schriftenreihe der Forstlichen Bundesversuchsanstalt Wien

1985	8	Pollanschütz, Josef: Waldzustandsinventur 1984. Ziele - Inventurverfahren - Ergebnisse. Preis ÖS 30 vergriffen 29 S.
1985	9	Glattes, F.; Smidt, St.; Drescher, A.; Majer, Chr.; Mutsch, F.: Höhenprofil Zillertal. Untersuchung einiger Parameter zur Ursachenfindung von Waldschäden. Einrichtung und Ergebnisse 1984. Preis ÖS 90 vergriffen 81 S.
1985	10	Merwald, Ingo: Lawinenereignisse und Witterungs- ablauf in Österreich. Winter 1974/75, 1975/76 und 1976/77. Preis ÖS 80 76 S.
1986	11	Stagl, W.G.; Drescher, A.: Wild - Vegetation - Forstschäden. Vorschläge für ein Beurteilungs-schema. Preis ÖS 30 19 S.
1986	12	Nather, J.: Proceedings of the International Symposium on Seed Problems under Stressfull Conditions, Vienna and Gmunden, Austria June 38. 1985. Preis ÖS 300 vergriffen 287 S.
1986	13	Smidt, St.: Bulkmessungen in Waldgebieten Öster- reichs. Ergebnisse 1984 und 1985. Preis ÖS 40 32 S.
1986	14	Exner, Robert: Die Bedeutung des Lichtfaktors bei Naturverjüngung. Untersuchungen im montanen Fichtenwald Preis ÖS 50 vergriffen 48 S.
1986	15	Merwald, Ingo: Lawinenereignisse und Witterungs- ablauf in Österreich. Winter 1977/78, 1978/79 und 1979/80. Preis ÖS 90 81 S.
1986	16	Hauk, E.; Höller, P.; Schaffhauser H.: Lawinener-eignisse und Witterungsablauf in Österreich. Winter 1984/85 und 1985/86. Preis ÖS 90 90 S.
1987	17	Merwald, Ingo: Lawinenereignisse und Witterungs- ablauf in Österreich. Winter 1980/81 und 1981/82. Preis ÖS 80 74 S.
1987	18	Exner, Robert: Erhaltung und Verjüngung von Hochlagenbeständen. Strukturanalysen im subalpinen Fichtenwald (Niedere Tauern, Radstadt/Salzburg). Preis ÖS 100 102 S.
1987	19	Krehan, H.; Haupolter R.: Forstpathologische Son-

		dererhebungen im Rahmen der Österreichische zustandsinventur 1984-1988. Kiefernbe Bucklige Welt. Haupolter, R.: Baumsterben in Mitteleur Literaturübersicht. Teil 1: Fichtensterbe Preis ÖS 80	stände - opa. Eine
1987	20	Glattes, F.; Smidt, S. Höhenprofil Z Untersuchung einiger Parameter zur Ursach von Waldschäden. Ergebnisse von Luft- schlags- und Nadelanalysen 1985. Preis ÖS 70	enfindung
1987	21	Ruetz, W.; Nather, J.: Proceedings of Working Party on Breeding Strategy for Do as an Introduced Species. Working Party: Vienna, Austria June 1985. Preis ÖS 300	uglas-Fir
1987	22	Johann, Klaus: Standraumregulierung Fichte. Ausgangsbaumzahl - Stammzahlre Durchforstung - Endbestand. Ein Leitfade Praktiker. Preis ÖS 60	duktion -
1987	23	Pollanschütz, Josef und Neumann, Markus standsinventur 1985 und 1986. Gegenübe der Ergebnisse. Preis ÖS 100	s: Waldzu- erstellung 98 S.
1987	24	Klaushofer, Franz; Litschauer, Rudolf; Waldzustandsinventur Untersuc Kronenverlichtungsgrade an Wald- und Erändern. Preis ÖS 100	chung der

