Simultaneous determination of molecular nitrogen and nitrous oxide

in biochar-treated soils

Kerstin Michel^a, Regine Maier^b, Michael Tatzber^a, Barbara Kitzler^a

^a Austrian Research Centre for Forests (BFW), Vienna, Austria (kerstin.michel@bfw.gv.at)

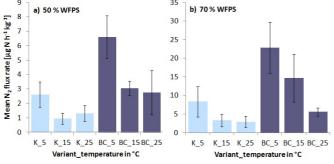
^b ETH Zurich, Zurich, Switzerland

1. Background and Objectives

Nitrous oxide is a potent greenhouse gas. The production of N_2 but also N_2 O removes reactive N from soils. In arable systems N losses are therefore of high ecological and economical significance. The use of biochar (BC), i.e. C rich material which is produced from biomass by pyrolysis at temperatures < 700 °C, is increasingly discussed as measure for soil amelioration. However, its (long-term) effects on denitrification activity in general and on N_2 losses in particular still remain unclear.

The objectives were therefore (1) to investigate the long-term impact of BC application on N gas fluxes, especially N_2 emissions, from two arable soils using the Helium-gas flow core technique and (2) to evaluate potential controlling factors.

2. Experimental Sites


Traismauer (Trm) (Lower Austria; soil sampling: 2015)	Kaindorf (Kd) (Styria; soil sampling: 2014)
Strongly continental climate	Temperate climate
(10 °C, 550 mm)	(8.8 °C, 800 mm)
Calcareous Chernozem	Cambisol
(pH 7.4)	(pH 6.6)
Single hardwood BC application in March 2011 (72 t ha ⁻¹)	BC (husk, fibre sludge) + compost in 2013 and 2014 (T1: 1%, T2: 0.5 % + 175 kg N ha ⁻¹)
Control: NPK	Control: (NH ₄) ₂ SO ₄
(each year: 75-120 kg N ha ⁻¹)	(2013: 350 kg N ha¹)

4. Results

N gas fluxes

N₂ fluxes

- N₂ fluxes were significantly higher in the BC treated soil samples except for Kd, 50 % WFPS (Figs. 2 and 3)
- Increasing water content significantly increased N₂ emissions (p < 0.05)
- Trm: Temperature did not significantly affect N₂ fluxes. However, there was a clear trend to higher emissions at low temperatures (5 °C).

Fig. 2 Mean N_2 fluxes (\pm SD; n = 3) from **Trm** samples at different water contents and temperatures. The differences between BC-treated (BC) and control (K) samples and the water contents are significant (Kruskal-Wallis test; p < 0.05).

N₂O fluxes

- Trm: N₂O was only sporadically detected (not shown)
- Kd:
 - Highest N₂O emissions were measured from N-enriched BC-compost samples (T2) at both water contents (Fig. 3)
 - N₂O emission were always lower than N₂ fluxes

3. Measurements

- N₂ and N₂O: He-gas flow core technique (Fig. 1)
 - Water content: Trm: 50 and 70 % water-filled pore space (WFPS), Kd: 23 and 50 % WFPS
 - Temperature: Trm: 5, 15, and 25 °C; Kd: 24 °C
- Organic C, total N, pH, extractable organic C, NH₄⁺, NO₃⁻
- Microbial biomass C and N

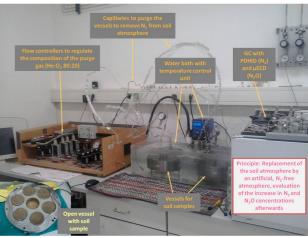


Fig. 1 Measuring device for the direct determination of N₂ and N₂O fluxes

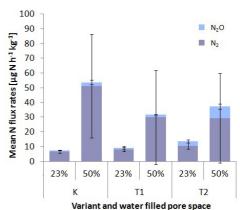


Fig. 3 Mean N gas fluxes (\pm SD; n = 3) from Kd samples at two different water contents and 24 °C. Fluxes of N₂O from T2 were significantly higher compared to K (control) and T1 (Student Newman-Keuls test, p < 0.05).

Controlling factors

- Only pH was significantly higher (0.2 units) in the BC-treated samples of **Trm** compared to the control
- The measured soil physico-chemical and microbial properties could thus not explain the differences in N gas fluxes between BC-treated and control samples

5. Conclusions

The effect of BC on N₂ fluxes depends on the water content of the soils. At lower water contents, N₂ emissions are higher in BC-treated soils compared to N-fertilized soils suggesting an increased denitrification activity. The changes in N₂ fluxes cannot be explained by altered physico-chemical conditions or changes in microbial biomass. Higher water contents increase N₂ emissions, but the extend is site- and treatment- dependent. Fluxes of N₂O also increase with increasing water content but are distinctly lower or even not detectable in the investigated soils.

