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Kurzfassung
Die Avalanche Terrain Exposure Scale (ATES) klassifiziert die Exposition und Komplexität des

Geländes in Bezug auf potenzielle Lawinengefahren in vier Klassen, von einfachem bis extremem

Gelände.  ATES-Karten  unterstützen  Personen  oder  Organisationen  bei  der  Kommunikation,

Planung und Durchführung von Freizeit-  oder  Berufsaktivitäten  im Gelände.  Der ursprünglich

manuelle  ATES-Workflow  wurde  durch  automatisierte  Prozesse  ergänzt  oder  ersetzt,  indem

hochauflösende digitale Geodaten und kürzlich entwickelte Open-Source-Tools verwendet wurden.

Diese  Arbeit  präsentiert  eine  Machbarkeitsstudie  zur  Anwendung  und  Bewertung  einer

automatisierten  ATES-Klassifizierungsmethode  für  eine  700  km²  große  Pilotregion  in  Tirol,

Österreich. Die Methode basiert auf frei verfügbaren Geodaten und umfasst drei Teilmodelle: (i)

automatische Ausweißung potenzieller Auslösegebiete, (ii) Abgrenzung potenzieller Auslaufgebiete

für  Lawinen  der  Größe  3  (EAWS-Skala)  mit  Hilfe  eines  datenbasierten  Simulationstools  für

gravitative Massenbewegungen (Flow-Py) und (iii) einen Klassifizierungs- und Kartierungsschritt.

Im  letzten  Schritt  werden  die  Resultate  der  Teilmodelle  mit  lokalen  Hangneigungen,

Waldbedeckungsgrad  und  vergletscherten  Flächen  kombiniert,  um  diskrete  ATES-Klassen  zu

ermitteln. Es werden verschiedene Ansätze zur Parametrisierung von Teilmodellen untersucht und

anhand  von  Referenzdaten  bewertet.  Die  Studie  zeigt,  dass  es  eine  Herausforderung  ist,

Auslaufwinkel  mit  verschiedenen  Größenklassifizierungsansätzen  in  Einklang  zu  bringen.  Die

Bewertung  von  zwei  ATES-Szenarien  zeigt,  dass  ein  weniger  konservativer  Ansatz  zu  einem

differenzierten  und  ausgewogenen  Kartenergebnis  führt,  das  dem  sehr  komplexen  Gelände

Rechnung  trägt.  Die  Anwendbarkeit  des  vorgestellten  Arbeitsablaufs  in  der  Pilotregion  wird

aufgezeigt, ebenso wie aktuelle Einschränkungen und potenzielle Verbesserungen, einschließlich der

Segmentierung von Lawinenbahnen und der Wechselwirkungen zwischen Lawinen und Wald.

Schlüsselwörter: Lawine, Geländeklassifizierung, ATES, Flow-Py, potentielle Auslösegebiete
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Abstract
The  Avalanche  Terrain  Exposure  Scale  (ATES)  classification  categorizes  the  exposure  and

complexity of terrain concerning potential avalanche hazards into four classes, ranging from simple

to extreme terrain. ATES maps support individuals or organizations in communicating, planning,

and executing recreational  or professional  activities  in alpine terrain.  Since the mid-2000s,  the

ATES scheme has gained significance in North America and European mountain regions, but not in

the Austrian Alps. The original manual ATES workflow has been complemented or replaced by

automated processes  utilizing high-resolution digital  terrain data and recently developed open-

source tools from various research groups. This thesis presents a feasibility study on the application

and assessment of an automated ATES classification method for a 700 km² pilot region in Tyrol,

Austria. The method is built upon freely available terrain data and comprises three sub-models: (i)

automated delineation of potential avalanche release areas, (ii) identification of potential runout

extents for size 3 avalanches (EAWS scale) using a data-based simulation tool for gravitational

mass movements (Flow-Py), and (iii) a classification and mapping step. In the last step, the sub-

model results are combined with the local slope angle, degree of forest cover, and glaciated areas to

determine discrete ATES classes. Various sub-model parameterization approaches are explored and

assessed using reference data. The study reveals challenges in aligning runout angles with different

size classification approaches. The assessment of two ATES scenarios shows that a less conservative

approach  yields  a  differentiated  and  balanced  map  result,  accounting  for  the  highly  complex

terrain. The applicability of the presented workflow in the pilot region is demonstrated, along with

current  limitations  and  potential  improvements,  including  avalanche  path  segmentation  and

avalanche-forest interactions.

Keywords: Avalanche, Terrain Classification, ATES, Flow-Py, Potential Release Areas
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1 Introduction and motivation
The classification and delineation of avalanche-prone terrain is a valuable safety tool for individuals and

organizations.  It  facilitates  efficient  communication,  planning,  and  execution  of  recreational  or

professional activities in alpine environments (McClung & Schaerer, 2006). Over the past two decades,

several  classification  schemes  and  resulting  map  products  have  been  published  focusing  on  the

classification and mapping of avalanche terrain to improve and contribute to more safe navigation in the

backcountry (Campbell & Gould, 2013; Harvey et al., 2018; Larsen et al., 2020; Schmudlach & Köhler,

2016; Schumacher et al., 2022; Statham et al., 2006). The large-scale automatic assessment of avalanche

terrain has been made possible by the increasing availability of high-quality digital elevation models in

combination with innovative geographic data analysis, especially for remote areas with insufficient field

or historical avalanche data (Sharp, 2018). The capability of the different models to work at a regional or

even national scale with minimal human input greatly decreases the cost and time to produce spatial

information (Bühler, von Rickenbach, Christen, et al., 2018). 

One foundational framework for terrain classification is the Avalanche Terrain Exposure Scale (ATES)

introduced  by Statham et  al.  in  (2006).  The  ATES scheme provides  a  standardized  framework  to

enhance the communication and evaluation of the terrain complexity, along with the potential risks

associated with travel in alpine regions, particularly concerning avalanches and related hazards. The

ATES terrain classes encompass simple (class 1), challenging (class 2), and complex (class 3) terrain

categories. Recent developments have introduced an additional class for extreme terrain (class 4) (AAA,

2023). The ATES scheme has established the foundation for the automated delineation of distinct terrain

classes concerning avalanche-prone terrain in Norway, utilizing open-source tools  (Larsen et al., 2020;

Schumacher et al., 2022).

Additionally,  there  exist  other  products,  particularly  for  the  Swiss  Alps,  designed  to  enhance  safe

navigation  in  the  backcountry  (Harvey  et  al.,  2018;  Schmudlach  et  al.,  2018).  Nevertheless,  these

products are either unavailable for Austria (Harvey et al., 2018; Larsen et al., 2020; Schumacher et al.,

2022) or their workflow, or certain components of it, are not openly accessible  (Harvey et al., 2018;

Schmudlach & Köhler, 2016). This limitation hinders the thorough application and investigation of these

products for Austria. This paves the way for the current study, which aims to assess and adapt an

automated avalanche terrain classification scheme for a study area in Austria. The open-source terrain

classification method introduced by Larsen et al. (2020) forms the base for this endeavor. 
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Figure 1: Symbolic illustration of the ATES classification  applied on the terrain (left, picture: Lukas Ruetz), followed by
its conversion into a two-dimensional map product (right).

The core motivation behind this study is to apply a methodology for classifying mountainous terrain

prone to avalanches for a high-alpine test area of approximately 700 km² in the Central Alps (Sellrain in

Tyrol, Austria). This study's underlying framework is based on utilizing open-source tools and geospatial

data.  The terrain classification focuses on incorporating regional  avalanche mobility simulations and

emphasizing the assessment of large-sized avalanches, considering their significant contribution to most

avalanche-related incidents (EAWS, 2023). The novelty of this endeavor in the Austrian Alps underscores

its motivational significance.

This thesis's main objective is to adapt and apply the model chain of the autoATES terrain classification

(Larsen et al., 2020; Schumacher et al., 2022) to a study area in Austria. The model chain encompasses

three sequential steps, each progressively building upon the preceding one. Each model step is subjected

to individual testing and discussion in alignment with its respective sub-objectives. The model steps and

their corresponding objectives of this thesis include:
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(1) PRA delineation

Parameterization of the PRA model (Sharp, 2018; Sykes et al., 2022; Veitinger et al., 2016) to realistic

delineate potential release areas (PRAs) within the study area (Section 4.1)

This is achieved by comparing three PRA model configurations, focusing on roughness parameter with

the  Swiss  reference  dataset  of  observed  release  areas.  The  plausibility  is  determined  by  assessing

statistical skill scores. Within the application to the study area, the forestation effect is qualitatively

assessed, and the final parameterization for the model chain is determined.

(2) Avalanche mobility model

Assessment of the data-based avalanche mobility model (D’Amboise, Neuhauser, et al., 2022) for regional

runout modeling size three avalanches for the ATES terrain classification (Section 4.2)

This is achieved by three comparative optimization analyses (OA). OA 1 involves an investigation of

various Flow-Py parameters using an avalanche reference dataset (Section  3.2.2) as a reference, which

includes 19 mapped avalanche outlines in the study area. By qualitatively analyzing the impacts of these

parameters, the primary aim of this OA is to determine an appropriate exponent parameter for further

investigations.

OA 2 aims to assess the feasibility of utilizing a single alpha angle for back-calculating the travel lengths

of the 19 reference avalanches. Plausibility is quantitatively assessed through the computation of the root

mean square error (RMSE) for each set of avalanche simulations corresponding to different alpha angles.

OA 3 involves a quantitative comparison of 100 randomly selected avalanche simulations across the study

area using discrete avalanche size classification ranges for travel length, impact pressure, and affected

area. The goal is to evaluate the extent to which the modeled avalanches correspond to the specified size

categories.

(3) ATES classification

Application and adaptation of the ATES classifier (Larsen et al., 2020; Schumacher et al., 2022) for size

three avalanches in the study area (Section 4.3)

This is achieved by incorporating the findings of the PRA and the avalanche mobility model steps and a

subsequent discussion on the ATES classification parameters and thresholds, such as for slope angle,

avalanche runout, overhead hazard, and forestation.  
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To address the research objectives, the thesis is structured into the following sections:

Section  2,  Theory, serves as an introduction to snow avalanches, providing foundational knowledge. It

also explores diverse avalanche terrain classification methods, including recent automated approaches,

laying the groundwork for the subsequent analysis.

In Section 3, Study area and data, detailed insights into the study area, and the data employed in this

thesis are presented. It outlines the sources of data and information crucial for the research.

The subsequent Section 4, Application and testing of the model chain, provides detailed information on

the application and testing of the model chain. This encompasses assessing the sequential model chain

steps, such as the PRA model, avalanche mobility model, and ATES classification.

Section 4.3.2, Discussion of the model chain results, engages in a comprehensive analysis and discussion

of the outcomes derived from the model chain. It delves into the implications of the results and offers

interpretations that shed light on their significance.

The thesis concludes with Section 5, Conclusion and outlook, with a summary of the key findings, their

significance, and potential future directions for research and application.
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2 Theory
In the majority of snow-covered mountain environments around the globe, snow avalanches, hereafter

called avalanches, pose a considerable natural hazard. They are rapidly flowing, down-slope snow mass

movements driven by gravity. Furthermore, avalanches can entrain ice, soil, vegetation, or rocks. They

are considered meteorologically driven hazards (Schweizer et al., 2003, 2015). 

The introductory section of  the  theory chapter  highlights the fundamental  aspects  essential  for the

automated classification  of  avalanche  terrain.  It  starts  by  introducing  two approaches  to  avalanche

classification:  the  first  approach  focuses  on  genetic  avalanche  characteristics,  which  involves

understanding the origin of avalanches and the factors that contribute to their formation, while the

second  approach  revolves  around  avalanche  terrain  characteristics,  specifically  the  morphological

classification. Furthermore, different size classification schemes are introduced. The chapter reviews other

concepts for delineating potential release areas (PRAs). It presents the two approaches for avalanche

mobility modeling, essential for automated model chains for avalanche terrain classification. The chapter

concludes with a literature review covering different avalanche terrain classification approaches, ranging

from  manual  route  classification  and  maps  to  automated  model  chains  for  avalanche  terrain

classifications.

2.1 Avalanche formation
The avalanche formation is a widely discussed topic, and various models for release mechanisms have

been established. Schweizer  (1999), Schweizer et al.  (2003), McClung & Schaerer  (2006), and Rudolf-

Miklau  &  Sauermoser  (2011) provide  a  comprehensive  overview  of  these  models.  The  avalanche

formation  factors  (Schweizer  et  al.,  2003) roughly  align  with  the  genetic  avalanche  classification

(UNESCO, 1981). 

For an avalanche to be triggered, it is mechanically essential for the stress within the snowpack to reach

or surpass the strength of the snow. This can occur due to various additional loadings, such as new snow

deposition, increased density due to sudden warming events, or human impacts (McClung & Schaerer,

2006).

According to Schweizer et al. (2003), avalanche formation is the result of a complex interaction between

(1) snowpack, (2) meteorological, and (3) terrain conditions. However, meteorological and snow cover

parameters respond dynamically to meteorological conditions and are subject to short-term variations

(Veitinger & Sovilla, 2016). A comprehensive review is stated in Schweizer et al. (2003) and McClung &
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Schaerer (2006). Terrain parameters, in contrast can be regarded as broadly constant; moreover, they can

be  derived  from digital  elevation  models  (DEMs)  (Bühler  et  al.,  2013;  Maggioni  &  Gruber,  2003;

Schweizer et al., 2003; Veitinger et al., 2016) and satellite data (Bühler et al., 2013; Sykes et al., 2022).

The following section will outline the contributing factors to avalanches, with a specific focus on terrain-

related factors. A thorough examination is presented in the mentioned literature.

(1) Snowpack

The contributing factors related to the snowpack can be categorized into two components: the snowpack

stratigraphy, the presence or absence of a weak layer,  and its spatial  distribution. A comprehensive

introduction to the contributing factors for avalanches related to the snowpack is stated in Schweizer et

al. (2003).

(2) Meteorology

The meteorological factors cover new snow, wind,  and the radiation balance of  the snowpack. High

accumulations of new snow play an essential role in the avalanche formation. They are associated with

large and catastrophic avalanche events (Schweizer et al., 2015). In addition, wind-terrain interaction is a

crucial factor in avalanche formation. On wind-exposed "windward" slopes, avalanches are less likely than

on wind-protected "leeward" slopes (Gauer, 2001). Other significant meteorological interactions are the

temperature, the slope aspect, and the altitude itself (McClung & Schaerer, 2006). 

(3) Terrain

The inclination of the terrain slope strongly influences the potential avalanche release areas  (Voellmy,

1955).  McClung & Schaerer  (2006) state  that  most  avalanches  are  initiated at  slopes  from 35-45°.

Research on avalanche occurrence in Switzerland and Canada has revealed that the first quartile for

avalanche release is 37°, the median is 39°, and the third quartile is 41° (Schweizer & Jamieson, 2001).

Munter (1997) states that on slopes steeper than 60°, avalanches are widespread but minor in size since

no significant snow accumulation is possible. In addition to that, on slopes below 30°, the gravitational

forces are too weak to cause an avalanche. However, if the liquid water content within the snowpack is

high enough, a wet-snow avalanche can initiate at inclinations below 25° (Schweizer et al., 2015). 

The  morphology  of  the  terrain  affects  the  occurrence  of  avalanches.  In  general,  convex  slopes  are

generally  considered  less  prone  to  avalanches  (Maggioni  & Gruber,  2003).  Furthermore,  the  slope's

roughness significantly influences stabilization forces  (McClung, 2001) and the formation and spatial

distribution of weak layers. However, while the terrain roughness still supports the stability of a shallow

snowpack, the effects can be neglected for a thicker snowpack (Schweizer et al., 2003).
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Schweizer et al.  (2003) review that the presence of a dense forest plays a crucial role in reducing the

likelihood of an avalanche initiation. Forests alter the accumulation and distribution of snow. The canopy

of trees also regulates the incoming and outgoing radiation, which influences or even limits the formation

of surface hoar and faceted crystals, which are highly related to the formation of weak layers (McClung

& Schaerer, 2006; Schweizer et al., 2003). The physical barriers of tree stem can increase the friction on

susceptible slopes to some extent and stabilize the snowpack  (Teich et al., 2014). Therefore, forests are

essential for avalanche mitigation measures  (Bebi et al., 2001). However, if the potential impact of an

large avalanche exceeds the stability of  the forest,  the trees hardly affect the avalanche.  Large and

extremely  large  avalanches  can  break  single  trees  or  destroy  whole  forests.  The  trees  can  also  be

entrained,  causing  a  greater  mass  and,  thus,  a  more  significant  potential  for  damage  (McClung  &

Schaerer, 2006). 

2.2 Avalanche terrain
As avalanches descend down-slope, they adhere to distinct routes known as avalanche paths. These paths

can span  across  the  entirety  of  a  mountain  slope  or  affect  only  a  limited  portion.  When  an area

encompasses one or more avalanche paths, it is referred to as avalanche terrain (McClung & Schaerer,

2006). The avalanche path is divided into a (1) starting zone, (2) track, and (3) runout zone. Along an

avalanche path, different avalanches with varying sizes can originate from different starting zones, each

with its own track and runout zone (McClung & Schaerer, 2006). The Avalanche Atlas (UNESCO, 1981)

includes these zones in its morphological classification and assesses attributes along the avalanche path.

2.2.1 Release area

The starting zone, also referred to as avalanche release area or zone of origin, is the area where the initial

snow mass starts to move down-slope. It is subsequently referred to as release areas. The classification

scheme  (UNESCO,  1981) distinguishes  between the  manner  of  starting,  the  position  of  the  sliding

surface, and the liquid water content.

The characteristic of the different release mechanism involves different complex processes and will be

mentioned  briefly  in  this  thesis.  McClung  &  Schaerer  (2006) and  Schweizer  et  al.  (2003,  2015)

comprehensively review the different types and processes involved in the avalanche release process. In

general,  two  main  types  can  be  distinguished  based  on  the  manner  of  release  shape:  loose  snow

avalanches and slab snow avalanches (Figure 2). Loose snow avalanches (Figure 2, left image) occur as a

point  release  in  or  on  the  surface  layer  of  relatively  poor  cohesive  dry  or  wet  snow.  Loose  snow
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avalanches  gain mass  as  they  move  down-slope  in  a  triangular  shape  (McClung  & Schaerer,  2006;

Schweizer et al., 2003). 

The slab avalanches (Figure 2, right image) approximate a rectangle shape and leaves a typical fracture

line, the crown, delineating the upper part of the starting zone (McClung & Schaerer, 2006). The release

of a slab avalanche involves a cohesive snow layer, the slab, which can be dry or wet. Slab avalanches are

associated with a weak layer's initial failure and the fracture's propagation within the weak layer. A

broad introduction to the topic of weak layer and avalanche formation is presented in Schweizer et al.

(2003).  A detailed review of  wet-snow slab and glide snow avalanches can be found in Mitterer  &

Schweizer (2013).

Figure 2: Two types of avalanche release characteristics, loose snow avalanche (left) and slab avalanche (right). Pictures:
EAWS (2023) 

2.2.2 Transition zone

The transition zone, track, or path of avalanches, hereafter referred to as avalanche path, links the

release area and the runout zone. According to avalanche classification (UNESCO, 1981), paths can be

categorized  as  unconfined or  channelized.  While  the  path  is  a  prominent  terrain  feature  for  larger

avalanches, it may be less present in unconfined or smaller avalanches with shorter travel distances.

As the avalanche flow intensifies at the beginning of  the track and diminishes towards its end, the

maximum velocity of the avalanche is typically reached within the track (McClung & Schaerer, 2006).

Unless hindered by narrow gullies or rough terrain features, significant accumulation of avalanche debris

does not typically occur in the path after an avalanche event (UNESCO, 1981).
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In mountainous regions, avalanche paths are often identified by areas devoid of trees within forested

regions. Tree vegetation's presence or absence can offer valuable insights into avalanche frequency (Nairz

et al., 2011).

Regarding  movement,  avalanches  can  occur  as  dense  snow  avalanches  or  powder  snow  avalanches

(UNESCO, 1981). Dense snow avalanches primarily follow the terrain's morphology in their flow path. In

contrast, the path of a powder snow avalanche is less constrained by the terrain, as the powder cloud can

easily flow over terrain features (Sauermoser et al., 2014).

Concerning the movement, avalanches can occur as dense snow avalanches or powder snow avalanches. In

the  case  of  dense  snow  avalanches,  the  flow  path  is  predominantly  determined  by  the  terrain's

morphology. The terrain less influences the path of powder snow avalanche as the powder cloud easily

overflows terrain features (Sauermoser et al., 2014).

2.2.3 Runout area

In general, the runout area is the area where avalanche debris accumulates due to a decrease in energy

caused by friction. The extent of the runout can vary for each avalanche along the same path. For

powder avalanches, the runout area is determined by the sedimentation of the snow cloud (UNESCO,

1981). According to Gruber et al.  (1999), a rough estimate of a 10° slope angle signifies the point at

which large dry slope avalanches start decelerating and reducing their movement. However, it should be

noted that smaller avalanches can deposit even at steeper slope inclinations, while larger avalanches tend

to roll over them. Consequently, achieving precise classification becomes challenging (Nairz et al., 2011). 

2.3 Avalanche size classification 
A standardized framework for the wide range of avalanche sizes, serves to establish consistent criteria for

assessing  and  categorizing  avalanches.  Such  a  framework  enables  researchers,  practitioners,  and

stakeholders  to  compare  and  contrast  avalanche  events,  and  examine  the  specific  characteristics

associated with each avalanche size category (McClung & Schaerer, 2006). 

Several  size  classification  systems are  currently  in use  since  there  has  yet  to  be  an internationally

standardized  approach  for  classifying  avalanche  sizes.  One  such  system  is  the  Canadian  Avalanche

Association  (CAA, 2016) classification,  which categorizes  avalanches into five classes  based on their

destructiveness,  see  Table 1. This system provides a qualitative description of  the potential  damage

caused by avalanches to individuals, vegetation, infrastructure, and settlements. Additionally, the system

provides quantitative parameters such as typical mass [t], impact pressure [kPa], and path length [m].
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The CAA classification system was adopted and calibrated by Perla & Martinelli (1976) and McClung &

Schaerer (1980). 

Table 1: Avalanche size classification after CAA (2016)

Size Destructive potential Typical mass [t] Typical path 

length [m]

Typical impact 

pressure [kPa]

D-1 Relatively harmless to people. < 10 10 1

D-2 Could bury, injure, or kill a person. 100 100 10

D-3 Could bury and destroy a car, damage a truck, destroy 

a wood-frame house or break a few trees.

1,000 1,000 100

D-4 Could destroy a railway car, large truck, several 

buildings or a forest area of approximately 4 hectares.

10,000 2,000 500

D-5 Largest snow avalanche known. Could destroy a village 

or a forest area of approximately 40 hectares

100,000 3,000 1,000

Table 2: Avalanche size classification after AAA (2016)

Size Avalanche size

R-1 Very small, relative to the path

R-2 Small, relative to the path

R-3 Medium, relative to the path

R-4 Large, relative to the path

R-5 Major or maximum, relative to the path

Table 3: Avalanche size classification after Bühler et al. (2019)

Size Affected area [m²]

Small ≤ 500

Medium > 500 & ≤ 10,000

Large > 10,000 & ≤ 80,000

Very large > 80,000 & ≤ 500,000

Extremely large > 500,000
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The American Avalanche Association  (AAA, 2016) has implemented a separate classification scheme

based on avalanche dimensions, specifically volume and, travel length, in relation to the slope (Perla &

Martinelli, 1976). The AAA classification is stated in Table 2. This classification system comprises five

classes, ranging from very small to major. Unlike other schemes, the size classification in relation to the

path enables the comparisons and assessments of different avalanche events along the same path rather

than different avalanches from different locations (McClung & Schaerer, 2006).

Table 4: Avalanche size classification after EAWS (2023) 

Size Potential damage Run out Typical length 

[m]

Typical volume 

[m³]

Small 

(Sluff)

E-1

Unlikely to bury a person, except in run out zones with

unfavorable terrain features (e.g. terrain traps).

In extremely steep terrain, the danger of deep falls 

prevails the danger of burials.

Stops within steep 

slopes.

10 - 30 100

Medium

E-2

May bury, injure or kill a person.

Size 2 corresponds to the typical skier-triggered 

avalanche.

May reach the end 

of the relevant 

steep slope.

50 - 200 1,000

Large

E-3

May bury and destroy cars, damage trucks, destroy 

small buildings and break a few trees.

When skiers are caught by avalanches of this size, 

probability for severe consequences are very high.

May cross flat 

terrain (well below 

30°) over a 

distance of less 

than 50 m.

several 100 10,000

Very large

E-4

May bury and destroy trucks and trains.

May destroy fairly large buildings and small areas of 

forest.

Very large avalanches may occur at danger level 3-

Considerable and are typical during periods with 

danger levels 4-High and 5-Very High.

Crosses flat terrain 

(well below 30°) 

over a distance of 

more than 50 m.

May reach the 

valley floor.

1000 - 2,000 100,000

Extremely 

large

E-5

May devastate the landscape and has catastrophic 

destructive potential.

Typical for danger level 5-Very High.

Reaches the valley 

floor.

Largest known 

avalanche.

> 2000 > 100000

The size classification of the European Avalanche Warning Services EAWS (2023) shares the same size

classes as the CAA scheme but exhibit slight differences in their specific values and parameters. The

EAWS has adapted this system by incorporating a more qualitative approach. The scheme incorporates
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a semi-quantitative parameter for the runout classification. Additionally, EAWS employs a volume-based

[m³] parameter instead of mass [t] and describes path length [m] using typical ranges rather than typical

values. The destructiveness is only classified with a description, which aligns with the CAA but does not

provide typical values for the impact pressure. 

According to the glossary of the EAWS (2023), an avalanche is defined as a rapidly moving mass of snow

with a volume exceeding 100 m³ and a minimum length of 50 m. Smaller avalanches are referred to as

"sluff"  or  small  avalanches,  representing  the  first  size  class  in  the  EAWS  size  classification.  The

subsequent size classes are medium (size 2), large (size 3), very large (size 4), and extremely large (size

5). According to the EAWS, avalanches of sizes 2 and 3 are considered the most fatal for skiers, whereas

avalanches of the size classes 4 and 5 threaten infrastructure and settlements. Table 3 represents the

EAWS size classification.

In recent studies, Bühler et al.  (2019) introduced a size classification parameter based on the affected

area of avalanches (Table 3). Using satellite imagery, the authors employed this parameter to classify and

analyze more than 18,000 mapped avalanches.

2.4 Introduction to automated avalanche terrain classification 
Over  the  past  two  decades,  several  classification  systems  and  resulting  map  products  have  been

published focusing on the classification and mapping of avalanche terrain to improve and contribute to a

more safe navigation in the backcountry  (Campbell & Gould, 2013; Harvey et al., 2018; Larsen et al.,

2020; Schmudlach & Köhler, 2016; Schumacher et al., 2022; Statham et al., 2006).

The following section provides an overview of existing classification and mapping methods as well as

available  products  for  mountain  terrain  prone  to  avalanches  (Table  5).  The  autoATES  approach

presented by  Larsen et al. (2020) is discussed in more detail, given its relevance for testing and applying

within the Austrian study area.

The large-scale assessment of avalanche terrain has been made possible by the increasing availability of

high-quality digital elevation models in combination with innovative geographic data analysis, especially

for remote areas with insufficient field or historical avalanche data (Sharp, 2018). The capability of the

different models to work at a regional or even national scale with minimal human input greatly decreases

the cost and time to produce spatial information, which can help professionals and recreationists improve

judgments regarding their  exposure to avalanche hazards  (Bühler,  von Rickenbach,  Christen,  et  al.,

2018).
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The  Avalanche  Terrain  Exposure  Scale  (ATES),  developed  by  Statham  et  al.  (2006),  provides  a

standardized framework to enhance the communication and evaluation of the complexity and potential

risks associated with travel in alpine terrain. Following the classic ski area difficulty scale, they assigned

a difficulty level to well-known backcountry routes. The scale ranges from simple (class 1), challenging

(class 2), and complex (class 3). The recent development incorporates additional classes for extreme

terrain (class 4) and an optional class 0 for non-avalanche terrain (AAA, 2023). The methods include

geographic data analysis, visually interpreted aerial photographs, local expertise, and field assessments.

Statham et al. (2006) develop two outcomes: the ATES Public Communication Model (Table 5) and the

ATES Technical Model (Table 6). The former is intended to provide a simple, easy-to-read overview for

the public; the latter contains more detailed information about the scheme's application for experienced

and professional users.

Table  5: ATES Public Communication Model (v.1/04)  (Statham et al., 2006); the extreme class (4) is adapted from

Statham (2020)

Description Class Terrain Criteria

Simple 1 Exposure to low angle or primarily forested terrain. Some forest openings may involve the runout zones

of infrequent avalanches. Many options to reduce or eliminate exposure. No glacier travel.

Challenging 2 Exposure to well defined avalanche paths, starting zones or terrain traps

Complex 3 Exposure to multiple overlapping avalanche paths or large expanses of steep, open terrain

Extreme 4 Exposure to very steep faces with cliffs, spines, couloirs, crevasses or sustained overhead hazard. No 

options to reduce exposure and even small avalanches can be fatal
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Table 6: ATES Technical Model (v.1/04) (Statham et al., 2006)

Simple (Class 1) Challenging (Class 2) Complex (Class3)

Slope angle Angles generally < 30º Mostly low angle, isolated slopes

>35º

Variable with large % >35º

Slope shape Uniform Some convexities Convoluted

Forest density Primarily treed with some forest 

openings

Mixed trees and open terrain Large expanses of open terrain. 

Isolated tree bands

Terrain traps Minimal, some creek slopes or 

cutbanks

Some depressions, gullies and/or

overhead avalanche terrain

Many depressions, gullies, cliffs, 

hidden slopes above gullies, 

cornices

Avalanche frequency 

(events:years)

1:30  size 2≥ 1:1 for < size 2 

1:3 for  size 2≥

1:1 < size 3 

1:1  size 3≥

Start zone density Limited open terrain Some open terrain. Isolated 

avalanche paths leading to valley

bottom

Large expanses of open terrain. 

Multiple avalanche paths leading

to valley bottom

Runout zone 

characteristics

Solitary, well defined areas, 

smooth transitions, spread 

deposits

Abrupt transitions or depressions

with deep deposits

Multiple converging runout 

zones, confined deposition area, 

steep tracks overhead

Interaction with 

avalanche paths

Runout zones only Single path or paths with 

separation

Numerous and overlapping paths

Route options Numerous, terrain allows 

multiple choices

A selection of choices of varying 

exposure, options to avoid 

avalanche paths

Limited chances to reduce 

exposure, avoidance not possible

Exposure time None, or limited exposure 

crossing runouts only

Isolated exposure to start zones 

and tracks

Frequent exposure to start zones

and tracks

Glaciation None Generally smooth with isolated 

bands of crevasses

Broken or steep sections of 

crevasses, icefalls or serac 

exposure
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Delparte (2008) extends the consideration of individual routes to a spatial classification using geographic

data analysis and determines that the slope and forest density significantly influence the ATES model. .

Campbell and Gould (2013) introduce a zonal ATES model based on a semi-automated geographic data

classification method with quantified ATES parameters  (Statham et al., 2006). The method primarily

emphasizes slope angle and forest density in assessing avalanche terrain exposure. 

Table 7: Overview of areal coverage and accessibility across different avalanche terrain classification approaches

Author Product Areal coverage Map view Open accessible 

method

Larsen et al. (2020) autoATES Norway temakart.nve.no yes

Harvey et al. (2018) CAT/ATHM Swiss map.geo.admin.ch no

Schmudlach & Köhler 

(2016)

Skitourenguru Alps info.skitourenguru.ch no

2.4.1 autoATES

Larsen  et  al.  (2020) introduce  an  automated  process  chain,  the  autoATES  model,  for  classifying

avalanche terrain in Norway. The autoATES model is based on the quantitative zonal model proposed by

Campbell and Gould (2013). The product availability is stated in Table 5.

The automated terrain classification process consists of three main steps. The first step involves the

delineation of PRAs (Veitinger et al., 2016). The second step incorporates an avalanche mobility model

to estimate potential runouts, the TauDEM model (Tarboton, 2005). In the last step, a comprehensive

classification is performed using the so called  ATES classifier.  This step combines information from

PRAs, modeled runout areas, and local slope gradient is combined. Two avalanche mobility scenarios are

integrated, each interpreted to represent different frequencies of avalanche occurrence. The first scenario

encompasses avalanches with a runout angle (alpha angle) of 18°, while the second scenario encompasses

avalanches with an alpha angle of 23°. The resulting map product presents four ATES classes, ranging

from class 0 (non-avalanche terrain), class 1 (simple terrain), class 3 (challenging terrain), and class 4

(complex terrain). The process chain is applied to map an area of over 365,000 km², encompassing the

Norwegian mainland and nearby coastal islands. The input data is a digital terrain model (DTM) with a

resolution of 10 m.
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However, the maps had some limitations: Due to the need for more suitable forest data, the focus is

shifted to areas above the tree line, which still accounts for 70% of the Norwegian backcountry terrain.

Additionally, the algorithm does not account for overhead exposure to hazards, and the simulation of

avalanches encountered difficulties in adequately representing flat runout areas (Schumacher et al., 2022).

Schumacher et al.  (2022) updated the autoATES by integrating an enhanced PRA delineation (Sharp,

2018), as stated in Section 2.5.1.2, and included forest data in the terrain classification step. Moreover,

the TauDEM model is replaced with the Flow-Py avalanche mobility model (D’Amboise, Neuhauser, et

al., 2022). The forest advancements are facilitated by the forthcoming availability of spatial forest data

derived from the National Forest Inventory of Norway (Breidenbach et al., 2020).

Schumacher et al. (2022) compare the updated model chain with the autoATES approach of Larsen et al.

(2020) compared the results with 52 manual classified ski routes created by local experts as a reference.

The study area covers approximately 3,200 km². The results indicate that incorporating forest data

improves the accuracy of  the  process  chain and contributes to  a  more  realistic  classification of  the

avalanche terrain. For example, the proportion of incorrectly classified terrain classes is reduced. The

overall improvement increased by up to 12% compared to the model with no forest implementation. 

The most recent adaptations of the model chain incorporate additional features such as an overhead

hazard parameter and the inclusion of an extreme terrain class. These modifications are currently in the

development  phase.  The  overhead  hazard  parameter  assesses  and  accounts  for  potential  hazards

originating from higher elevations in the terrain. In contrast, the newly introduced extreme terrain class

(AAA,  2023;  Statham,  2020) enables  the  characterization  and  analysis  of  particularly  steep  and

hazardous terrain conditions. 

2.4.2 CAT and ATHM

Harvey  et  al.  (2018) propose  an  alternative  method  for  classifying  avalanche  terrain.  The  authors

highlight that too many tours are categorized as complex within the ATES system for the Swiss Alps. To

address this, they introduce an automated geographic data analysis classification workflow, creating two

map products for the Swiss Alps and Jura regions. The emphasis is placed on common skier-triggered

avalanches, with a maximum size classification of 3. The resulting maps have a spatial resolution of 5 m.

The product availability is stated in Table 5.

The initial map product, known as classified avalanche terrain (CAT), encompasses multiple components

such as PRAs, modeled avalanche runout zones for avalanches of the size 3 with a release height of

0.5 m,  and  areas  susceptible  to  remote  avalanche  triggering.  This  map  is  designed  to  offer  both
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qualitative and quantitative insights into the spatial arrangement of avalanche hazards.  Harvey et al.

(2018) incorporate several key elements in developing the CAT map. The PRAs are identified using the

approach proposed by Bühler et  al.  (2013;  2018). These  PRAs serve as  input for avalanche runout

simulations.  To carry out avalanche runout simulations, Harvey et al.  (2018) utilize the process-based

avalanche simulation tool RAMMS::EXTENDED (Bartelt et al., 2012, 2016), which is based on the work

of Christen et al.  (2010). In their study, approximately 860,000 individual avalanche simulations are

performed within the study area. Determining remote triggering potential is grounded in analyzing 75

case studies of avalanches triggered remotely.

The second map product, avalanche terrain hazard maps (ATHM), focuses on the potential consequences

of being caught in an avalanche. The ATHM provides continuous spatial information on the hazard level

of the terrain. This data is generated by amalgamating avalanche deposit depth and pressure information

with a fall trajectories model.

2.4.3 Skitourenguru

The Skitourenguru  (Schmudlach & Köhler, 2016) provides two products aiming to provide a planning

and communication tool for traveling in the backcountry: first, a spatial map product, and subsequently,

a  ski  route  planning  tool.  This  review focuses  on  the  map  product.  Schmudlach  & Köhler  (2016)

developed a fully automated classification method for avalanche terrain at a national level. The product

availability is stated in Table 5.

The approach distinguishes itself from previously mentioned products by assessing the relevant terrain

from  the  skier's  perspective  (point  of  view)  and  exposure  to  avalanches  or  risks  due  to  terrain

characteristics impacting the point of view rather than calculating avalanche propagation models. If the

current point of view is on a steep slope, for example, the terrain evaluation focuses more on the upward

and downward perspectives. In contrast, all surroundings are equal in flat terrain, and the relevant slope

area becomes a circle. As soon as the relevant slope area is defined, the algorithm further analyzes the

terrain by following these steps: analyzing the slope characteristics and determining the level of danger

based on the adapted ATES criteria. In contrast to the discrete ATES classes, this procedure is applied

individually to each cell of a raster with a 10-meter cell size, resulting in a continuous ATES-rated

hazard map. For instance, steeper slopes are assigned a higher hazard rating than flatter ones.

Subsequently,  Schmudlach  et  al.  (2018) introduced  an  optional  step  involving  the  computation  of

dynamic risk maps using real-time avalanche forecast data and a quantitative risk reduction approach.

This  process  requires  converting  avalanche  forecast  data  into  continuous  spatial  map  information,

specifically focusing on key terrain attributes such as altitude and aspect.
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2.5 Components for automated avalanche terrain classifications model 
chains

Automated model chains have been developed and utilized to capture and delineate avalanche terrain

effectively, encompassing multiple avalanche paths with various avalanche release, transition, and runout

areas (Campbell & Gould, 2013; Harvey et al., 2018; Larsen et al., 2020; Schmudlach & Köhler, 2016;

Schumacher et al., 2022). 

The main emphasis of this chapter lies in the methodology of the autoATES model proposed by Larsen

et al.  (2020), as it is subject to testing and application within the context of the present thesis for a

study area in Tyrol. 

The structure of this chapter follows the framework of the autoATES model. It begins with a brief

introduction to the automated delineation of PRAs, followed by a deeper insight into the PRA model

(Sharp, 2018; Veitinger et al., 2016), which is part of the autoATES model. The subsequent section

focuses on the various methods used to calculate avalanche runouts, explicitly emphasizing the Flow-Py

model  (D’Amboise, Neuhauser, et al., 2022), constituting the second step in the autoATES model. In

addition  to  the  main  components  of  avalanche  terrain  classification,  such  as  PRAs  and  avalanche

mobility,  other  factors  are  also  considered  in  certain  studies.  Harvey  et  al.  (2018),  for  instance,

incorporate the assessment of potential hazards like remote triggering, deep burial,  or serious injury

resulting from a large fall. Lastly, the chapter examines the terrain classification steps, representing the

model chain's final step.

2.5.1 PRA models

Potential  release areas (PRA) are specific slope sections susceptible to avalanche release due to the

factors contributing to avalanche formation described in Section 2.1. The spatial information about the

PRAs  and  the  different  factors  contributing  to  avalanche  formation  is  crucial  for  understanding

avalanches and developing automated assessment and mapping of the avalanche terrain (Bühler et al.,

2013).

As stated in Section 2.1, terrain parameters can be regarded as broadly constant. Consequently, terrain

parameters  serve  as  the  foundation  for  algorithms  developed  for  automated  PRA delineation.  The

different approaches use a combination of different derivations of a DEM, such as slope angle, curvature,

roughness, and aspect. The spatial extents of avalanche release areas, calculated through PRA models,

serve as input for numerical avalanche simulations or enhance terrain assessments with additional spatial

information (Sykes et al., 2022). 
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In early stages of avalanche research, Voellmy  (1955) discovered that the slope angle of the terrain is

essential for determining PRAs. He stated that terrain areas with a slope angle ranging from 28°-60°  are

highly susceptible to avalanche releases.  Munter  (1997) emphasized that snow slab avalanches occur

when gravity in the snowpack exceeds shear forces, which is rarely the case below 28°. On steeper slopes

beyond 60°, on the other hand, avalanches often occur, but only to a small extent, as the slopes are too

steep to accumulate large amounts of snow.

Based on topographic factors and the analysis of documented avalanche events, Maggioni et al.  (2002)

developed a geographic data analysis to identify PRAs. Maggioni and Gruber (2003), Maggioni (2005) as

well as the findings by Ghinoi and Chung (2005) subsequently addressed the topic and established the

basis for future approaches (Bühler et al., 2013; Pistocchi & Notarnicola, 2013; Veitinger et al., 2016).

By analyzing documented avalanche occurrence and frequency, Maggioni and Gruber (2003) determined

that terrain parameters that can be derived from DEM, such as slope, curvature, aspect, and ridge

distance, significantly influence avalanche release susceptibility.

Two primary models  for  PRA delineation are  utilized in the  mentioned classification approaches in

Section  2.4. The classification method proposed by Harvey et al.  (2018) incorporates the PRA model

introduced by Bühler et  al.  (2013;  2018), while  the model  chain developed by Larsen et al.  (2020)

incorporates the PRA model of Veitinger et al. (2016).

The  main  distinction  between  these  two  PRA models  is  that  Bühler  et  al.  (2013;  2018)  identify

individual PRAs in a vector data format. The algorithm introduced by Veitinger et al. (2016) generates

a raster data layer. In this format, each cell  is assigned a value on a scale from 0, representing no

potential for avalanche release, to 1, indicating a high potential for avalanche release. Importantly, this

approach does not delineate individual PRAs.

2.5.1.1 PRA delineation after Bühler et al. (2013)
Bühler et al.  (2013) conducted a study on identifying individual PRAs. Their algorithm is validated

using a dataset of observed avalanche release areas near Davos, Switzerland (CH ORA Dataset, Section

3.2.1). The delineation process involves parameters such as slope, curvature, and roughness. Forested

areas are excluded from the PRAs using a binary forest layer. The separation into individual PRAs is

done with a flow direction algorithm. 

Building upon this research, Bühler et al. (2018)enhanced the PRA separation process by incorporating

object-based image analysis (OBIA) techniques (Blaschke, 2010).

For the PRA identification process, Harvey et al. (2018) redefine the approach of Bühler et al. (2018) by

replacing the simple curvature parameter with the fold parameter. The parameter was introduced by
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Schmudlach & Köhler  (2016) to quantify the significant changes in terrain morphology, such as gullies

and crest lines, by determining the maximum curvature in each dimension. To optimize the delineation

algorithm, they analyze the terrain morphology of 5200 well-documented avalanche release areas around

Davos and subsequently compute a spatial density estimation correlating with the PRA probability. To

delineate the PRAs for their map product, the OBIA workflow of Bühler et al. (2018) is used. 

2.5.1.2 PRA delineation after Veitinger et al. (2016)
The PRA delineation model,  which forms part of  the autoATES model  developed by Larsen et al.

(2020), is based on the open-source PRA algorithm created by Veitinger et al. (2016). This model uses

on a fuzzy logic approach (Zadeh, 1965). The PRA algorithm employs three DEM derivatives as criteria:

slope, terrain roughness, and a wind shelter index, as well as an optional binary forest mask, to exclude

forested areas from the PRA. Sharp et al.  (2018) expanded the PRA model by including the forest

parameter into the fuzzy operator to account for the forest density. The model uses Cauchy membership

functions  (Jang et al., 1997), which are generalized bell functions that address the problem of sharp

changes  caused by simplified triangular  functions  (Veitinger  et  al.,  2016).  The Cauchy membership

function is defined by three parameters (a,b,c) that determine the location and shape of the curve and,

in turn, the membership values of the different input parameters. Various studies  (Schumacher et al.,

2022; Sharp, 2018; Sykes et al., 2022; Veitinger et al., 2016) have explored and tested different sets of

parameters for the membership function. The Cauchy membership function is given as follows:

μ(x )= 1

1+( x−c
a )

2b

To quantify the potential for an area to release an avalanche, the input raster layers with membership

values for slope, terrain roughness, and wind shelter are combined using the "fuzzy AND" operator. This

operator was first introduced by Werners (1988) and is comprehensively described in the corresponding

literature by Veitinger et al. (2016).

While tested initially for a 2 m grid cell size, recent studies have adapted the model for coarser DEM

resolutions (e.g., 10 m) in recent studies (Larsen et al., 2020; Schumacher et al., 2022). The output of

the PRA delineation is a raster file with values between 0 and 1, where lower values indicate lower

probability and higher values suggest a higher susceptibility to avalanche release. To use the output as

input for modeling avalanche mobility, a PRA threshold is applied to create a binary layer, where values

below the threshold are classified as no PRA, and values equal to or greater than the threshold are

classified as PRA. The application of the Cauchy membership function on the DEM derivatives: slope,

ruggedness, wind shelter index, and the forest layer is visualized in Figure 3.
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The  algorithm  identifies  slope  areas  with  inclinations  ranging  from  28°  to  60°  as  PRAs.  In  the

implementation by Veitinger et al. (2016), the highest degrees of membership are assigned to inclinations

between 35° and 45°, as the first row in Figure 3 visualizes.

A wind shelter index combines terrain curvature and potential wind effects based on the assumption that

wind drift is a major component of snow redistribution at a slope scale (Gauer, 2001). The wind shelter

parameter  is  calculated  after  Plattner  et  al.  (2004).  According  to  the  membership  function,  wind-

protected terrain morphologies  are  attributed large  membership values.  In contrast,  terrain features

exposed to wind are attributed low membership values, indicated by the reddish areas in Figure 3. In

addition  to  that,  the  PRA  model  is  designed  to  account  for  primarily  wind  directions.  However,

regarding the autoATES model, Larsen et al.  (2020) and Schumacher et al.  (2022) neglect a primarily

wind direction.

The  roughness  parameter  combines  the  terrain  roughness  derived  from  the  summer  DEM  with

smoothing effects due to snow accumulation in winter. The method uses the vector ruggedness measure

after  Sappington  et  al.  (2007).  The  fuzzy  logic  method  assigns  low  membership  values  to  rough

morphologies and high membership values to flat and smooth terrain parts, which are more prone to

avalanches,  indicated by the reddish areas in Figure 3. However, Schumacher et al. (2022) and Larsen et

al.  (2020) do not include the roughness parameter in their models due to using a 10 m grid cell size.

These authors argue that applying the roughness parameter to a 10 m DEM would result in accounting

for the mountain morphology rather than individual slope characteristics.

The  forest  is  included  by  accounting  for  basal  area,  stem  density,  or  percentage  of  canopy  cover

depending on the data availability (Schumacher et al., 2022; Sharp, 2018; Sykes et al., 2022). Figure 3

demonstrates the assignment of the membership function to the PCC Forest Layer (percentage of canopy

cover). It is visible that areas with no forestation are assigned with high membership values. 
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Figure  3: Visualization of the application of the Cauchy membership function  on the 10m DEM derivatives:  slope,
ruggedness, wind shelter index, and the PCC Forest Layer. The depiction includes the input layers (first row), the Cauchy
membership function with specified parameters a, b, and c (second row), and the output rasters (map results, third row)
showing the effects of the applied Cauchy membership function. These are displayed in correlation with the corresponding
inputs, such as slope with the 'C' suffix denoting the Cauchy transformation.
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2.5.2 Avalanche mobility models

The movement of avalanches is a highly complex process that can only be approximated by simplified

models. The available avalanche models differ in complexity, including the physical methods used and

the level of detail of the calculation results. Computational models can be used to simulate avalanches,

and parameter studies can be used to comprehend the sensitivity of the input parameter. Avalanche

simulation  models  are  the  most  objective  tool  to  determine the  characteristic  features  of  avalanche

movement for avalanche mitigation measures (Sauermoser et al., 2011). 

According to Harbitz et al.  (1998), avalanche calculation models can be divided into two approaches:

physical-dynamic  (process-based)  and  statistical-topographic  (data-based)  models.  The  former  are

physically  motivated  and usually  require  more  input  parameters  than the latter  models,  which  are

empirically  motivated  and  often  less  computationally  intensive.  However,  Physical-dynamic  models

provide more detailed information about the process and its interaction with the terrain. The selection of

the  appropriate  modeling  method  is  determined  by  factors  such  as  the  intended  objectives  and

accuracies, the input data, and the spatial scale of the simulations (D’Amboise, Neuhauser, et al., 2022).

A comprehensive review of used models in Europe is presented by Sauermoser et al. (2014).

2.5.2.1 Process-based physical models
Process-based models describe the physical processes involved in avalanche dynamics using mathematical

equations that simulate avalanche movement from the release to the runout zone. These models can

calculate dynamic quantities such as avalanche runout distance, pressure, and flow height  (Maggioni,

2005). A widely used approach (Christen et al., 2010; Oesterle et al., 2022; Sampl & Zwinger, 2004) is

the Voellmy-Salm model  (Salm et al., 1990) with dry friction and a turbulent friction term, which is

based on the early findings of Voellmy (1955) by determining the avalanche dynamics with the Voellmy

fluid law, a combination of the Chezy friction term and Coulomb dry friction. The dry friction depends

on snow properties and the pressure perpendicular to the slope. The turbulent friction refers to the

roughness of the avalanche path (Sauermoser et al., 2014). Essential for a profound avalanche simulation

is detailed knowledge about the initial  conditions, such as release area,  release height,  and the two

friction coefficients: μ and ξ (Maggioni, 2005).

The CAT / ATHM map products developed by Harvey et al. (2018) integrated the avalanche simulation

tool RAMMS::EXTENDED, which is based on the work of Bartelt et al. (Bartelt et al., 2012, 2016) and

Christen et al.  (2010). These process-based avalanche propagation models require more detailed input

parameters, including individual PRAs in a vector data format, release volumes, and friction parameter.

To obtain these parameters, the approach described by Salm et al. (1990), as mentioned in Bühler et al.
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(2018), is followed to determine the release height. The release volume is calculated by multiplying the

release depth with the size of the PRAs resulting in an average release height of 50 cm. Additionally, the

friction  parameters  are  determined using  the method proposed by Christen  et  al.  (2010),  with the

classification of individual PRAs based on their size. 

2.5.2.2 Data-based empirical models
Data-based empirical models are based on the quantitative assessment of avalanche runout distances

(McClung & Schaerer, 2006). The runout distance of avalanches can be quantified as the angle of reach,

the alpha angle, measured from the maximum point of the runout debris to the uppermost part in the

release area, the starting point (Heim, 1932; Lied & Bakkehøi, 1980), as shown in Figure 4. The alpha

angle is primarily determined by four parameters: the vertical drop height, the slope angle of the release

area, the overall slope, and the longitudinal profile of the runout. To estimate the runout of avalanches,

the alpha-beta model  (Lied & Bakkehøi,  1980) was introduced. The model is based on a statistical

analysis of avalanche runouts in Norway and correlates the alpha angle with the beta angle. The beta-

angle  is  measured  from the  uppermost  part  of  the  release  area  to  the  10°  terrain  point,  which  is

associated with the point where the avalanche tends to decelerate. Lied et al. (1995) later also applied

the method for the Austrian Alps. 

Other data-based model approaches are, for instance, the runout ratio model, as presented in McClung

& Schaerer (2006).

In addition, recent studies (D’Amboise, Neuhauser, et al., 2022) use a data-based approach to numerical

estimate the runout dimensions by implementing the alpha angle as a stopping criterion for a two-

dimensional avalanche simulation. The authors apply this approach to large-scale regional  avalanche

simulations  without  considering  individual  PRAs.  In  this  study,  the  open-source  Flow-Py  model

(D’Amboise, Neuhauser, et al., 2022) is incorporated into the automated avalanche terrain classification.

2.5.2.2.1 Flow-Py
Flow-Py is an open-source gravitational mass flow (GMF) simulation tool for avalanches, landslides,

rockfall, and debris flows (D’Amboise, Neuhauser, et al., 2022). It is derived by a data-based, empirically

motivated approach to model the magnitude, such as the dimensions of the runout, travel length, and

intensity of the GMFs. In this study, it is applied to avalanches.

Flow-Py is  programmed in Python3  (Rossum & Drake,  2010);  the  Flow-Py architecture  follows  an

object-orientated approach, facilitating model adaptions. The model code is openly accessible (Neuhauser

et al., 2021). The modeling process is done in three levels: (1) the cell level where the iterative routing is
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done, (2) the path level contains the spatial extent of the path from a corresponding release cell, and (3)

the raster level which includes the quantities for all paths (D’Amboise, Neuhauser, et al., 2022). 

Figure 4: GMF path from release (s0, z(s0)) to runout area sɑ, z(sɑ)) characterized by the altitude z(s), projected travel
length (s), and the local slope gradient. Derived geometrical quantities for the local runout point (s, z(s)) from the alpha
angle concept are the total local geometrical vertical drop height (Zγ), local travel angel (γ) and intensity measures  Zδ

and Zα

The data-based model uses geometric relationships derived from two fundamental principles: (1) routing

and the (2) stopping. The routing framework (1) incorporates a model for three-dimensional flow path

identification in a given terrain. The model is based on the path model for gravitational processes from

Wichmann (2017). The model is designed to model mass movements in mountainous terrain, including

flat  or  uphill  terrain.  The specific  terrain,  the  flow direction,  and process  intensities  determine the

routing from the release area to the runout area.

Furthermore,  the  algorithm considers  the  concentration of  the  flow and the  lateral  dispersion.  The

stopping criteria (2) is defined by the runout angle concept, the alpha angle (Lied & Bakkehøi, 1980). In

addition, the model incorporates stopping criteria for lateral spreading, which is determined by a cut-off

threshold for the routing flux and the exponent.  Following the assumption that a GMF must have

specific fluid properties or a minimum routing flux to continue its propagation. 

Determining the process intensity along the avalanche path and the subsequent runout is  based on

applying the alpha angle concept (Heim, 1932; Lied & Bakkehøi, 1980), allowing the derivation of the

corresponding  geometric  parameters.  In  Figure  4,  the  alpha  angle  (ɑ)  represents  the  total  stopping

criteria of the avalanche runout, therefore, from the line from the release area, s0, z(s0), to the runout,

sɑ, z(sɑ). The local runout angle (γ), represented by a line from s0, z(s0) to the local runout point, s,

z(s), can be used to derive quantitative properties to describe the process intensity. The local geometrical

vertical drop height (Zγ) is derived by the difference of s, z(s0) and s, z(s). The geometrical drop height
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(Zγ) at the point s, z(s), is divided into two components: z delta (Zδ) and z alpha (Zɑ). Following the

law of  conservation of  energy and Coulomb friction of  a block movement  (Heim, 1932),  z alpha is

associated with the dissipated energy (frictional dissipation) and z delta with the kinetic energy height.

Consequently, z delta is associated with the energy associated with the process and allows the derivation

of process intensity properties: velocity and impact pressure (D’Amboise, Neuhauser, et al., 2022). The

deviation is shown in Section 4.2. 

To perform a simulation, the model requires a digital elevation model and the location of the release

areas as input data. In addition to the spatial input data, the algorithm is determined by four model

parameters.

(1) alpha = stopping criterion for the avalanche runout. If alpha is set to 25°, the total angle from the

runout to the release area measured along the projected path will be 25°. 

(2) exponent = affects the lateral spreading. If the exponent is close to 1, the lateral spreading has a

broad or even fluviatile characteristic, while approximating ∞ causes the flow divergence to become

similar to a single-block characteristic.

(3) R stop = stopping criterion for the routing flux. The GMF initiates with R start = 1 and stops

when R stop is reached.

(4) z delta limit = maximum limit for the local geometrical vertical drop height (Zγ), which is related

to the maximum kinetic energy or the velocity of the GMF.

The output are numerous raster layers in the same resolution as the input layer, providing computed

information about the avalanche mobility, the routing flux, which can be correlated with a theoretical

mass (D’Amboise, Teich, et al., 2022), the cell count, which contains information about  number of cells

that propagate through a raster  pixel,  and the local  geometrical  vertical  drop height (Zγ)  which is

associated with the kinetic energy height (D’Amboise, Neuhauser, et al., 2022). 

2.5.3 Avalanche terrain classification models

In  the  context  of  the  discussed  approaches,  avalanche  terrain  classification  models  represent  the

concluding phase of the model chain. Schmudlach & Köhler (2016) emphasize continuous ATES ratings

based on geomorphological characteristics. On the other hand, Harvey et al.  (2018) and Larsen et al.

(2020) integrate an avalanche mobility model. Larsen et al.  (2020) utilize discrete terrain classes for

classification, while Harvey et al. (2018) developed two map products, the Classified Avalanche Terrain

(CAT) and Avalanche Terrain Hazard Maps (ATHM), each with its unique classification scheme. In the

CAT product, the PRAs are classified into four categories, represented by varying shades of reddish
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colors, which indicate the likelihood of avalanche release. The maximum runout of simulated avalanches,

based on an average release height of 0.5 m, is depicted in yellow areas. Additionally, three shades of

blue represent the potential for remote triggering.

On the other hand, the ATHM combines information about avalanche terrain (potential for avalanche

release and remote triggering as well as runout) and the potential consequences of being caught in an

avalanche. In the classification step, the raster values of these layers were normalized and merged to

generate a continuous avalanche terrain hazard layer.  The resulting map provides continuous values

ranging from 0 (indicating low terrain hazard) to 1 (indicating high terrain hazard).

In the final step of the model chain proposed by Larsen et al. (2020), the ATES classifier is utilized to

classify the terrain. The ATES classifier model merges information classified information on terrain slope,

PRAs, and modeled potential runouts of avalanches to delineate the ATES classes. The parameters for

the model are based on Campbell and Gould (2013).

The autoATES model (Larsen et al.,  2020) has been enhanced through the contributions of various

researchers (Schumacher et al., 2022; Sharp, 2018; Sykes et al., 2022). The model of Schumacher et al.

(2022) considers the forest cover's density, which can range from open to dense, and considers its impact

on the assessment of avalanche terrain. The algorithm is designed to consider parameters such as percent

canopy cover, stem density, or basal area, depending on data availability. For instance, if the assigned

ATES class from the previous step is initially classified as challenging, but a dense forest is detected in

the area, the ATES classifier takes into consideration the mitigating effect of the forest and reduces the

assigned class to simple (Schumacher et al., 2022).

In Section 4.3, Figure 23 visualizes the workflow of the autoATES classifier. 
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3 Study area and data
The study area is in Tyrol, Austria, and encompasses the mountainous terrain of the Stubaier Alps and

parts of the Ötztaler Alps (Figure 5).  The terrain is characterized by high alpine terrain, including

rugged mountains, deep valleys, and glaciated areas. It stretches from the Kühtaisattel in the north to

the main crest of the Alps in the south. The Ötztal valley defines the western boundary, while the

eastern boundary is formed by the mountain ridge east of the Lüsenstal.

Regarding elevation, the study area ranges from 782 m a.s.l (meter above sea level) to its highest point

at 3380 m a.s.l. The average elevation within the area is approximately 2258 m a.s.l.

The data used in this study is presented below. It is decided to work with a 10 by 10 m grid resolution

to apply and test the model chain. However, finer digital elevation data is available. The 10 m resolution

proved its computational efficiency within this study and is in line with previous studies (Larsen et al.,

2020; Schumacher et al., 2022).

3.1 Digital elevation models
The digital elevation models (DEMs) splits into two products. The digital terrain models (DTMs) and

the digital surface models (DSMs) both use geo-referenced positions and heights in a regular (height-)

grid,  also  referred  to  as  raster,  of  cells  or  pixels  to  describe  the  elevation  of  an  area.  The  DTM

specifically describes the terrain without vegetation or buildings, while the DSM includes all objects on

the surface, including vegetation and buildings  (BEV, 2023). Airborne laser scans from the summer

terrain generate spatial data. For the application and testing of the model chain, the DTM with a 5 m

resolution is obtained and resampled to 10 m, hereafter referred to as 10m DEM, for the derivation. In

addition to that, the DTM and the DSM are also obtained in a 1 m resolution. The difference between

the DTM and the DSM is used to obtain the spatial forest information, as described in Section 4.1.2.

Hereafter, both data layers are referred to as 1m DTM and 1m DSM.

The data for the study area is obtained from the public web coverage service (WCS) from the Open

Government Data of the Province of Tyrol and is licensed under a Creative Commons Attribution 4.0

International Public License. The coordinate reference system (CRS) is the MGI / Austria GK West –

EPSG code: 31254.

The underlying digital elevation data for the PRA validation process is sourced from the swissAlti3D

DTM, which is accessed from the public server of the Federal Office of Topography, swisstopo. The CRS
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used is LV95 – EPSG code: 2056. The raster data has a resolution of 2 by 2 m. For further processing,

the DTM is resampled to 10 m resolution.

3.2 Reference data
To comprehensively  evaluate  the  model  chain  components,  diverse  reference  datasets  are  employed.

Observed release  areas  contribute  to  assessing  the  PRA model,  while  a  dataset  of  19  documented

avalanche outlines aids in the qualitative and quantitative analysis of the avalanche mobility model. To

enhance  the  interpretation  of  the  avalanche  mobility  model  findings  in  relation  to  the  ATES

classification, a Swiss avalanche data analysis derived from satellite imagery is used, covering over 18,000

avalanches. Furthermore, the ATES terrain classification evaluation is supported by mapped avalanches

in  the  study area,  also  obtained from satellite  imagery,  and  documented ski  routes  categorized  by

difficulty.

3.2.1 Observed avalanche release areas

For the PRA validation process,  a  data set  of  observed release areas (ORAs) of  the  Swiss  Federal

Institute for Snow and Avalanche Research (SLF) is used, hereafter referred to as CH ORA Dataset. The

data set covers the Davos region, considered one of the best reference data sets available (Bühler & von

Rickenbach, 2018) with 5785 manually mapped release areas in the field from 1970 to 2016. Part of it is

publicly available and covers the Rinerhorn, Jakobshorn, and Parsenn regions. The data set has 2129

individual PRAs in a vector data format. The test regions are limited to areas well observed from the ski

resorts,  and  observations  of  natural  and  artificially  triggered  avalanche  events  are  included  in  the

database (Bühler et al., 2018).

3.2.2 Manually mapped avalanches within the study area

To compare the Flow-Py results within the study area, a data set of the affected areas (vector data) of

19 avalanches is used, hereafter referred to as AUT AWS Avalanche Reference Dataset. The avalanche

size of the observed avalanches corresponds to the EAWS size class 3, determined by expert assessment.

The mapping process is done with geographic data analysis and photo documentation. 

The  mapping  is  conducted  and  provided  by  avalanche  experts  from the  Tyrol  Avalanche  Warning

Service.
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3.2.3 Large-scale avalanche data from satellite imagery 

To  enhance  the  interpretation  of  the  avalanche  mobility  model  findings  in  relation  to  the  ATES

classification, a large-scale Swiss avalanche data analysis derived from SPOT6 satellite imagery is used

(Toft et al., 2023). The data analysis is based on over 18,000 mapped avalanches from an avalanche cycle

in Switzerland (Bühler et al., 2019), hereafter referred to as CH SPOT6 Avalanche Reference Dataset.

These avalanches span approximately 936 km² and are classified into size categories ranging from 1 to 5

based on the affected area (Table 3). Toft et al.  (2023) analyzed this dataset, including assessments of

quantities like travel length and the alpha angle. 

To assess the ATES terrain classification, an additional avalanche dataset is utilized. This dataset is also

generated based on SPOT6 satellite imagery and includes mapped avalanche runout areas. In addition to

that, the dataset includes an avalanche size estimation based on the EAWS travel length. The mapping

and the size estimation are conducted and provided by avalanche experts from the Tyrol Avalanche

Warning Service. The SPOT6 data within the study area was acquired shortly after an avalanche cycle

in February 2023. Hereafter, the dataset is referred to as AUT SPOT6 Avalanche Reference. 

It is important to note that due to the recent completion of this mapping campaign, the dataset still

needs to be published and could not be included in earlier assessments for the PRA and avalanche

mobility models. However, this data opens up possibilities for enhancing the parameterization of the

individual model chain components.

3.3 Additionally data
A reference dataset of mapped glaciers is integrated to incorporate glaciated areas into the ATES terrain

classification (Buckel & Otto, 2018). The vector dataset is transformed into a binary raster file with a 10

by 10 meters resolution, hereafter referred to as the Glacier Layer. This dataset was generated through a

mapping campaign primarily utilizing Google Earth satellite imagery from 2015. However, the dataset is

not the most recent. It represents the latest data accessible. According to the Glacial layer, about 5%

(34.3 km²) of the total land area in the study area is covered by glaciers.
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Figure  5: Study  area;  Stubaier  Alpen  and  parts  of  the  Ötztaler  Alpen  (approx.  700  km²),  forestation  is  shown as
percentage per canopy cover (derived in Section 4.1.2)
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4 Application and testing of the model chain
The  main  objective  of  this  thesis  is  to  apply  and  test  the  model  chain  of  the  autoATES terrain

classification  (Larsen  et  al.,  2020;  Schumacher  et  al.,  2022).  The  model  chain  encompasses  three

sequential steps, each progressively building upon the preceding one. Each model step is subjected to

individual testing and discussion in alignment with its sub-objectives, thereby structuring this chapter.

The model steps and their corresponding objectives include:

(1) PRA delineation

∙ Parameterization of the PRA model  (Sharp, 2018; Sykes et al., 2022; Veitinger et al., 2016) to

realistic delineate potential release areas (PRAs) within the study area (Section 4.1)

(2) Avalanche mobility model

∙ Assessment of the data-based avalanche mobility model (D’Amboise, Neuhauser, et al., 2022) for

regional runout modeling size three avalanches for the ATES terrain classification (Section 4.2)

(3) ATES classification

∙ Application and adaptation of the ATES classifier (Larsen et al., 2020; Schumacher et al., 2022) for

size three avalanches in the study area (Section 4.3)

4.1 PRA model
To establish a suitable parameterization for the PRA model (Sharp, 2018; Sykes et al., 2022; Veitinger et

al., 2016) and, subsequently, the model chain, the following methodology is employed:

The initial phase involves evaluating the PRA model's performance in realistically delineating PRAs

through a comparison with observed release areas using the CH ORA Dataset (Section 3.2.1) since there

is no PRA validation set in our study area. This step involves comparing three different configurations of

the PRA model, focusing on implementing the roughness parameter, detailed in Table 10. Statistical skill

scores are derived from an error matrix and subsequently discussed to quantify the comparison and

plausibility.  Additionally,  the  study assesses  the  influence of  the  forest  parameter  (Sharp,  2018) by

applying the PRA model to the study area, as the CH ORA Dataset lacks forested regions. While the

impacts of forest effects are described qualitatively, a comprehensive analysis is not conducted, given that

they  are  not  the  central  focus  of  this  thesis.  In  addition,  by  applying  it  to  the  study  area,  the
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determination of the PRA model parameterization for the model chain is enhanced by a qualitative

assessment of the PRA roughness parameter.

4.1.1 Comparison of PRA model performance with observed release areas

An established approach for evaluating the precision of thematic maps in remote sensing, detailed by

Congalton & Green (1999), involves calculating an error matrix and deriving statistical skill scores from

it.  This method has been previously employed to compare the performance of  various PRA models

(Bühler, von Rickenbach, Stoffel, et al., 2018).  In this study, the Heidke skill score (kappa, or HSS) and

the true skill statistic score (TSS) are adopted to assess the plausibility of different parameterizations of

the PRA models and,  consequently,  the resulting outcomes.  The prepossessing for  the error  matrix

involves converting the reference vector data of the CH ORA Dataset into a binary raster map. In this

map, 1 indicates the presence of observed release areas (ORA), while 0 indicates their absence (no

ORA).  Additionally,  areas  outside  the  validation  domain  are  assigned  a  value  of  -1.  Similarly,  the

continuous output raster map of the PRA model is converted into binary raster layers according to the

applied PRA threshold. In this process, raster cells with a value equal to or above the PRA threshold are

assigned as PRA (1), while those below the threshold are designated as no PRA (0). The PRA threshold

is  incrementally  increased  for  each of  the  three  PRA model  setups  from 0  to  1  in  steps  of  0.01,

generating  100  binary  PRA raster  layers  per  PRA model  setup.  Subsequently,  the  error  matrix  is

computed to compare each PRA file with the observed release areas. The error matrix only considers

values within the validation domain, neglecting raster values with -1.

The error matrix distinguishes between: 

∙ True Positive (TP): The PRA model correctly identifies an ORA as a PRA.

∙ False Positive (FP): The PRA model incorrectly identifies a no ORA area as a PRA.

∙ True Negative (TN): The PRA model correctly identifies a no ORA as a PRA.

∙ False Negative (FN): The PRA model incorrectly identifies an ORA as a no PRA.

Using the error  matrices,  specific  quantities  (Allouche et al.,  2006) can be calculated to assess  the

precision of different model configurations and analyze the corresponding PRA thresholds. The quantities

are:

(1) Sensitivity (SE), in the context of the PRA model, represents the proportion of ORAs correctly

identified as PRAs. It quantifies the model's ability to avoid omitting true release areas (omission

errors).
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SE= TP
TP+FN

(2) Specificity (SP), in the context of the PRA model, represents the proportion of non-observed

release areas correctly identified as no PRAs. It quantifies the model's  ability to avoid falsely

identifying areas as PRAs (commission errors).

SP= TN
FP+TN

Regarding the goals of this subsection, it is essential for the PRA model setup and the corresponding

PRA  threshold  to  exhibit  a  high  probability  of  ORA  detection  (sensitivity)  while  simultaneously

maintaining a low proportion of false positives, which equals 1 – specificity. The assessment of the overall

model performance involves calculating a Receiver Operating Characteristic (ROC) curve  (Fielding &

Bell, 1997). However, due to the specific interest threshold, the focus shifts to evaluating only the HSS

and the TSS.

(3) Overall accuracy (OA),  is a measurement to quantify the proportion of how well the PRA

model performs in correctly identifying ORA and noORA.

OA= TP+TN
TP+FP+TN +FN

 

(4) Heidke skill score (HSS) or kappa is a statistical skill score that adjusts the overall accuracy by

considering all four categories of the confusion matrix and incorporates the accuracy that would be

achieved  by  chance.  Kappa  ranges  from -1  to  1,  with  1  indicating  perfect  agreement  and  0

indicating agreement no better than expected by chance, and -1 worst than by chance.

HSS=OA−CA
1−CA

   with:   CA=
(TP+FP)∗(FP+FN)+(FN+TN )∗(FP+TN )

(TP+FP+TN+FN )2

(5) True skill statistic score (TSS) incorporates all four categories and ranges from -1 to 1, like

kappa. The main advantage of the TSS is that the prevalence, or the varying proportions of the

distinct classes of model and reference data, such as PRA or ORA and noPRA or noORA, do not

bias it. Therefore,  the Peirce skill  score is a composite measure of the true positive and false

positive rates. It is a valuable tool for validating and evaluating models used in natural hazard

assessment and risk management, as stated by . 

TSS=SE+SP−1

In this study, three different model setups are investigated, each differing in the implementation of the

roughness parameter. Table 8 provides a comprehensive summary of the different model setups, outlining
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the incorporation of the roughness parameter, cut-off values, and membership values (a,b,c), along with

their respective references.

The integration of  the roughness parameter is  achieved through three distinct approaches:  (1) as a

binary mask layer, akin to the methodology utilized by Bühler et al. (2013), involving the subtraction of

raster pixels exceeding a threshold of 0.02 during PRA delineation; (2) inclusion within the fuzzification

step of the PRA model, following the original methodology introduced by Veitinger et al. (2016); and (3)

without any roughness implementation, aligning with the approaches adopted by Larsen et al.  (2020)

and Schumacher et al. (2022).

In this study, the wind shelter parameter is not further examined and is implemented as suggested by

Veitinger et al.  (2016). The originally implemented parameter for the wind direction  (Veitinger et al.,

2016) is disregarded by setting the wind direction to 0° with a tolerance of 180°. This approach aligns

with  recent  developments  (Larsen  et  al.,  2020;  Schumacher  et  al.,  2022).  The  combination  of  the

membership values (a,b,c) aligns with recent developments from other working groups. Figure 6 provides

a visualization of distinct model setups (rows) alongside three exemplary PRA thresholds: 0.01, 0.50, and

0.80 (columns), furthermore, a subset of the CH ORA Dataset.

Table 8: The PRA model setups vary based on the implementation of roughness, categorized as: binary roughness mask

(labeled as 1 binary-rugg), fuzzy roughness (labeled as 2 fuzzy-rugg), and no roughness (labeled as 3 no-rugg). The

membership values (a, b, c) of the parameter, the slope cutoff, and the corresponding literature for these membership

values are also provided.

Model code Parameter Implementation Membership value Cutoff Literature

1 binary-rugg Slope

Roughness

Wind shelter Index

Fuzzy

Binary

Fuzzy

a=11, b=4, c=43

-

a=2, b=5, c=2

< 28° & >60°

< 0.02

-

Veitinger et al. 2016

Veitinger et al. 2016

2 fuzzy-rugg Slope

Roughness

Wind shelter Index

Fuzzy

Fuzzy

Fuzzy

a=11, b=4, c=43

a=0.01, b=5, c=-0.007

a=2, b=5, c=2

< 28° & >60°

-

-

Veitinger et al. 2016

Sharp et al. 2018

Veitinger et al. 2016

3 no-rugg Slope

Wind shelter Index

Fuzzy

Fuzzy

a=11, b=4, c=43

a=2, b=5, c=2

< 28°& >60°

-

Veitinger et al. 2016

Veitinger et al. 2016
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Figure 6: Comparison of the binary-rugg, fuzzy-rugg, and no-rugg PRA model output (blue), displayed in the rows of the
figure, with a corresponding PRA thresholds of 0.01, 0.50, and 0.80 displayed in the columns of the figure.  The ORA
Reference Dataset is indicated with a transparent orange overlay.

The examination of the Heidke skill score (HSS) and the true skill score (TSS) is depicted in Figure 7.

The figure reveals the relationship between the PRA threshold (x-axis) and the associated HSS (upper

plot) and TSS (lower plot) score on the y-axis for the three distinct model setups. Examining the HSS

plot, it is evident that all three models exhibit a similar trend. Initially, there is a sharp increase in the

HSS score from PRA threshold 0 to 0.01, caused by delineating 0 ORA at a threshold of 0, whereas, at a

threshold 0.01, the maximum of true positives is reached. However, at the same time, the maximum of
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false positives occurs.  Following this initial  rise,  the HSS scores for all  models stabilize and remain

relatively constant up to a threshold of 0.1.  The binary-rugg and fuzzy-rugg models display similar

values,  with the no-rugg model starting slightly lower. Beyond a threshold of approximately 0.1, all

models achieve higher HSS scores due to the minimization of the false positives. While the binary-rugg

model consistently performs the best (up to a threshold of around 0.7), the no-rugg model gradually

approaches the performance of the binary-rugg model.

Figure 7: HSS and TSS Plots of the binary-rugg, fuzzy-rugg, and no-rugg PRA model, calculated from the error matrix
derived from comparing the model's output and the CH ORA Reference Dataset with a PRA threshold range from 0 to 1.

Conversely,  the  fuzzy-rugg  model  exhibits  a  continuous  decline  in performance from a  threshold  of

approximately 0.17. The peaks of the binary-rugg (0.67897) and no-rugg (0.66360) models occur at a

threshold of 0.36 and exhibit a minimal deviation of 0.01627. The maximum of the fuzzy-rugg (0.62208)

model is reached at a threshold of 0.30. Notably, the curves between thresholds 0.2 and 0.5 appear

relatively flat,  indicating a relatively stable performance range for the models  within this  threshold

range. When examining the TSS plot,  a clear pattern is evident: both the binary-rugg and no-rugg

models exhibit a consistent trend. While the curve of the fuzzy-rugg model reflects this pattern, it does
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not exceed the initial value of 0.69619 after the detection of PRAs with a threshold of 0.01 when the

threshold value increases.  The other two models,  binary-rugg and no-rugg,  show a similar trend as

observed in the HSS plot. Starting from a threshold of approximately 0.1, the TSS values of the binary-

rugg and no-rugg models begin to rise again, reaching their maximum at thresholds of 0.27 with a value

of 0.78158 for the binary-rugg model and 0.28 with a value of 0. 78670 for the no-rugg model. Both

models show a relatively consistent TSS from a threshold of 0.2 to 0.4. However, it is not as dominant as

depicted in the HSS plot. Beyond a threshold of 0.4, the no-rugg and binary-rugg models exhibit a

decline.

In summary, evaluating the HSS and TSS scores of the binary-rugg and no-rugg models show similar

performance  in  identifying  ORAs  as  PRAs.  However,  the  performance  of  the  fuzzy-rugg  model  is

considered insufficient for further investigation and, therefore, not used for the model chain.

4.1.2 Adaptation of the PRA model to the study area

The PRA model is applied to the study area in the following section to discuss a qualitative assessment

of the binary-rugg and no-rugg PRA model setups. This includes the integration of a forest layer and a

comparison between the binary-rugg and the no-rugg model. This section defines the PRA model setup

with a corresponding PRA threshold for the subsequent model chain steps.

As discussed in Section 2.1, the presence or absence of forest is a crucial factor in mitigating  avalanche

releases. Therefore, it is reasonable to incorporate the forestation parameter in the PRA model. Since

forested regions are not covered in the CH ORA Reference Dataset, the influence of integrating the forest

parameter is qualitatively assessed within the study area. This is conducted using the no-rugg model,

employing a corresponding threshold 0.25 (see Table 9). The parameterization of the fuzzy membership

function of the forest layer is based on the work of Sykes et al. (2022).

Table  9:  The PRA model  setups  vary  based on the  neglection (3-1 noForest)  or the  implementation of  the  forest

parameter (3-1 Forest), accompanied by the model with no roughness (labeled as 3 no-rugg). The membership values (a,

b, c) of the parameter, the slope cutoff, and the corresponding literature for these membership values are also provided.

Model code Parameter Implementation Membership value Cutoff Literature

3-1 noForest Slope

Wind shelter Index

Fuzzy

Fuzzy

a=11, b=4, c=43

a=2, b=5, c=2

< 28° & >60°

-

Veitinger et al. 2016

Veitinger et al. 2016

3-1 Forest Slope

Wind shelter Index

Forestation (PCC)

Fuzzy

Fuzzy

Fuzzy

a=11, b=4, c=43

a=2, b=5, c=2

a=40, b=3.5, c=-15

< 28°& >60°

-

-

Veitinger et al. 2016

Veitinger et al. 2016

Sykes et al. 2022
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To integrate forest information into the PRA model, prior research has employed  (Schumacher et al.,

2022; Sharp, 2018; Sykes et al., 2022) various parameters such as stem density, basal area, or percentage

of canopy cover (PCC). Given the data availability (Section  3) for the study area, the percentage of

canopy cover is used, hereafter referred to as PCC Forest Layer. The PCC Forest Layer is derived from

the difference between the 1m DEM and the 1m DTM (Section 3.1). The difference between the DEM

and  DTM is  interpreted  as  the  height  of  the  vegetation  or  forest.  This  might  result  in  potential

misinterpretations concerning the presence of buildings and settlements. However, it is essential to note

that the ATES classification applies to areas above 1,500 m.a.s.l., and buildings are primarily situated at

lower elevations within the study area. Following the approach of Schumacher et al. (2022), the difference

layer is converted into a binary layer by employing a threshold of 5 m for the difference. To calculate the

PCC Forest Layer for a 10 m raster cell, the SAGA aggregate function  (Olaya, 2005) is used. This

function calculates the sum of the binary layer values (> 5 m difference) within a 10 m raster cell and

assigns the sum as a new value to the aggregation layer. The resulting layer contains values from 0 to

100 representing the PCC Forest Layer, as shown as a sub-layer in Figure 5.

The findings of the visual validation demonstrate that the integration of forest information in the PRA

model substantially affects the reduction of PRAs, as shown in Figure 8. The incorporation of the PCC

Forest Layer in the PRA algorithm leads to a significant decrease in the overall PRA area by 10.3%

throughout the study area. Furthermore, the reduction is even more significant below the treeline at

1800 m a.s.l., with a reduction of 36.1% (Table 10).

As discussed in Section  2.1, forested areas have a mitigating effect on the susceptibility of avalanche

release.  Incorporating  a  forest  layer  in  the  PRA  model  effectively  captures  this  phenomenon,  as

evidenced by a visual comparison of the results (Figure 8). Although the study area in the high alpine

region  contains  only  23%  forested  areas,  the  overall  reduction  in  PRA  is  by  10.3%  (Table  10).

Furthermore, the reduction of PRA by approximately one-third below the 1800 m a.s.l.  threshold is

substantial and appears reasonable in a visual comparison. However, a rigorous validation using observed

release areas in forested regions and more detailed spatial information on forests would further support

these findings. However, this is not the focus of this study. In addition to that, it is essential to note that

the  forest  structure  changes  over  time.  This  aspect  must  be  considered  when  incorporating  forest

information, such as PCC Forest Layer, into the model chain. However, incorporating this information

enhances the PRA model since the mitigating effect of forestation is being considered. This enhancement

is integrated into the model chain, aligning with the methodology proposed by Schumacher et al. (2022),

Sykes et al. (2022). 
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Figure  8: Effect of the forestation (PCC Forest Layer) on the PRA delineation applied to the study area. Figure 3-OP
depicts the forestation on the orthophoto, Figure 3-nF displays the PRA result of the model without the forest parameter
(3-1 noForest), and Figure 3-F shows both the orthophoto and the result of the PRA model with the forest parameter (3-
1 Forest).

Table 10: Percentage of the area covered by PRA with and without the PCC Forest Layer compared to the total study

area and the area below the treeline (1800 m a.s.l.).

Reference area PRA noForest PRA Forest

Study area [km2] area [km2] % of area area [km2] % of area

total height range 730.84 373.87 51.16 298.60 40.86

below treeline 148.68  70.77 47.59 17.09 11.50

Furthermore,  including  the  ruggedness  parameter  in  the  PRA  model  is  also  under  consideration.

Subsequently,  the  qualitative  impact  of  the  binary  ruggedness  parameter  is  discussed.  Figure  11

illustrates the PRA results obtained from the no-rugg model (left) and the binary-rugg model (right),

each at a threshold of 0.3. The map in the middle displays the binary ruggedness mask, which is applied

in the binary-rugg model.

It is evident that the no-rugg model delineates PRAs extensively across the slope without considering

the presence of ridges or very rough morphologies. In contrast, the binary ruggedness mask effectively

detects areas such as ridges and rough morphologies and subtracts them in the binary-rugg model. The

exclusion of these morphological features within the PRA model is reasonable, as they are known to be

less susceptible to avalanche release, as stated in Schweizer et al. (2003) or Section 2.1. 
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Figure 9: Comparison of the no-rugg and the binary-rugg PRA model, with the corresponding binary ruggedness mask.

4.1.3 PRA model parameterization for the model chain

The quantitative assessment of the three examined PRA models against the CH ORA Dataset reveals

that both the binary-rugg and no-rugg models outperform the fuzzy-rugg model (Section  4.1.1). Prior

research implemented the roughness parameter using a 2 m grid resolution  (Veitinger et  al.,  2016);

however, the application on a 10 m DEM accounts for the mountain morphology rather than individual

slope  characteristics  (Larsen  et  al.,  2020;  Schumacher  et  al.,  2022).  This  statement  provide  an

explanation for the lower performance observed in the case of the fuzzy-rugg model.

The application of the binay-rugg and the no-rugg model to the study area is presented in Section 4.1.2.

A qualitative assessment suggests that including the PCC Forest Layer is  reasonable.  However,  the

derivation of this layer from the 1m DTM and 1m DSM is based on the assumption that differences

greater than 5 m between the two layers indicate the presence of forests. However, this approach may

need to accurately reflect current conditions, as it captures only a specific moment of exploration data.

Since  forests  undergo  dynamic  changes  over  time,  this  method  may  only  partially  capture  their

variability. Additionally, it is worth mentioning that this derivation needs to account for distinctions

between deciduous and evergreen trees. A comprehensive examination beyond this thesis's scope can

refine this incorporation further.

The binary-rugg and no-rugg models perform comparably in identifying the CH ORA Dataset. However,

when  qualitatively  comparing  within  the  study  area,  it  becomes  apparent  that  including  a  binary

ruggedness  mask  results  in  excluding  very  rugged  and  convex  terrain  features,  such  as  ridges.  As

discussed in Section 2.1, these specific terrain features have a lower susceptibility to avalanche release,
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reflected in their low occurrence covered in the CH ORA Dataset. Therefore, excluding these features

from the PRA description is considered reasonable. Furthermore, more precise delineation of PRAs is a

critical step in dividing PRAs into more detailed individual PRAs, as sharp terrain changes such as

ridges serve as natural boundaries between PRAs.

Given these findings, the PRA model selected for subsequent steps in the model chain is the binary-rugg

model,  incorporating  the  PCC  Forest  Layer.  The  model  yields  optimal  HSS  and  TSS  results  at

thresholds of 0.27 and 0.36 (Figure 7). As the trend is relatively low in the range of 0.20 to 0.50 in the

HSS analysis and between 20 and 40 in the TSS analysis, it is decided to work with a threshold value of

30 for the binary-rugg model. Table 11 summarizes the delineated PRA area in the context of the study

area.

Table 11: Summary of the resulting area and percentage covered by PRAs within the study area. The applied model is the

binary-rugg model, with forest parameter at a corresponding PRA threshold of 0.3. 

Study area [km2] 730.84

PRA area [km2] 243.44

% of area 33.32

4.2 Avalanche mobility model
In the subsequent step of the autoATES model chain (Larsen et al., 2020; Schumacher et al., 2022), the

avalanche mobility model Flow-Py developed by D’Amboise, Neuhauser, et al.  (2022), is investigated.

The  simulation  results  are  incorporated  into  the  ATES  classification  step  with  two  alpha  angles,

accounting for less and more frequent avalanches  (Schumacher et al.,  2022). The area between the

runout determined by the two alpha angles is considered challenging terrain. In contrast, terrain below

this range is classified as simple terrain, and terrain above the range is classified as complex. 

The objective of the avalanche mobility model of this thesis is to connect the two alpha angles to the

range  of  size  characteristics  typically  associated  with  size  3  avalanches.  The  alpha  angle  threshold

corresponding to the lower range of size three avalanches will establish the Flow-Py parameterization for

the model chain. The findings of the alpha angle for the upper range of size three avalanches will also

contribute  to  the  parameterization for  the  ATES classification step.  In order  to  achieve  this,  three

comparative optimization analyses (OA) are established and discussed:
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OA 1 involves an investigation of various Flow-Py parameters using the AUT AWS Avalanche Reference

Dataset (Section 3.2.2), as a reference, which consists of 19 mapped avalanche outlines in the study area.

Through a qualitative analysis of the effects of these parameters, the main objective of this OA is to

identify a suitable exponent parameter for the ongoing investigations.

OA 2 aims to assess the feasibility of utilizing a single alpha angle for back-calculating the travel lengths

of  the  19  avalanches  in  the  AUT AWS Avalanche  Reference  Dataset.  Plausibility  is  evaluated  by

computing the root mean square error (RMSE) for each set of avalanche simulations corresponding to

different alpha angles.

OA 3 quantitatively compares 100 randomly selected avalanche simulations across the study area using

discrete avalanche size classification ranges for travel length, impact pressure, and affected area.

The simulation procedure for each OA involves systematically altering the alpha angle, ranging from 20°

to 40°,  with an increment of  2°.  Additionally,  varying exponents,  which affect the lateral  spreading

(Section 2.5.2.2.1), are applied for the OA 1. The setup of input parameters is described in Table 12. The

used DEM and the PRA layer have a raster resolution of 10 m.

Table 12: Input parameters for the Flow-Py simulations, varying in alpha angle and exponent, R stop, and z delta limit, are

default values (D’Amboise, Neuhauser, et al., 2022)

Parameter OA 1 OA 2 OA 3

alpha angle 26 – 36 (in steps of 2) 20 – 40 (in steps of 2) 20 – 40 (in steps of 2)

exponent 2, 4, 6, 8, 10, 15, 20, 30, 45 8 8

R stop 0.0003 (default) 0.0003 (default) 0.0003 (default)

z delta limit 270 (default) 270 (default) 270 (default)

To facilitate this multiple simulation procedure, an automated batched Flow-Py simulation code is used

to explore different parameter combinations across multiple avalanches.

The Flow-Py output raster files are consolidated into a single comma-separated values (CSV) file per

simulation,  where  each  column represents  the  raster  values  of  a  specific  output  file.  Although this

consolidation results in losing geographic position information (longitude-, latitude-values), it enables an

easily generalizable analysis workflow. The affected area in square meters is calculated by multiplying the

number of entities in the cell count column of the CSV file by 100, accounting for a raster resolution of

10 by 10 m. 
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The  impact  pressure  is  obtained  in  accordance  with  Rudolf-Miklau  &  Sauermoser  (2011) as  the

following:

impact pressure[Pa ]=ρv 2

The flow density is assumed to be ~200 kg m ³, which aligns with McClung & Schaerer ⁻ (2006). Based

on the energy-line method (Körner, 1980), the velocity can be estimated directly from the flow intensity

result of Flow-Py (z delta), which represents the kinetic energy height, as the following: 

velocity [ms−1]=√z delta2 g

Runout length requires no additional  calculations and can be derived directly from the simulations.

Nevertheless, changes were made to the Flow-Py code to capture the maximum travel length achieved in

the  avalanche  mobility  simulation.  The  resulting  file  of  calculated  runout  lengths  contains  values

representing the projected horizontal travel distance along the avalanche path. For the OA, the 99 th

percentile is used. In the following section, all three OA are evaluated separately.

4.2.1 Qualitative  comparison  of  the  mobility  model  with  mapped  avalanches  
(OA 1)

The qualitative  investigation of  the  Flow-Py simulation results  encompasses  the  Flow-Py parameter

alpha angle and exponent. The resulting PRA layer from Section  4.1.3 for the Flow-Py simulations is

used as input. The PRA layer is cropped to the extent of the mapped avalanche outlines. It is important

to note, that all calculated PRAs in the mapped avalanche extent are considered, which may deviate

from the actual circumstances. In order to discuss the varying parameters, as stated in Table 12, three

avalanches (ID 12 in Figure 11, ID 14 in Figure 10, and ID 5 in Figure 12) are used as an example. 

Figures 11, 10, and 12 illustrate the effects of different alpha angles and exponent values. As examples

for the alpha parameter and exponent values for avalanche ID 12 (Figure 11), the angles of 26°, 30°, and

34° are chosen, and exponent values of 2, 8, and 30. For avalanche ID 14 (Figure 10) and ID 5 (Figure

12), the angles of 26° and 28° are chosen and exponent values of 2, 8, and 30. In the figures, the blue

pixels  represent  the  delineated PRAs within the  documented avalanche areas.  The simulated travel

lengths are displayed in the Viridis color map (Nuñez et al., 2018), with darker shades of blue indicate

increasing  travel  lengths.  The  avalanches  12,  14,  and  5  are  selected  based  on  their  different  slope

geometries. Avalanche 12 (Figure 11) occurred on a steep slope with a sharp transition to the flat valley

bottom.  The  shape  of  the  slope  in  the  upper  part  perpendicular  to  the  slope  gradient  is  convex,

transitioning into multiple smaller channels towards the valley bottom. Avalanche 14 (Figure 10) exhibits
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a less steep slope gradient and a concave shape perpendicular to the slope gradient. Avalanche 5 (Figure

12) is characterized by a flat section in the upper part followed by a second steep area down-slope.

Figure 11 shows that the modeled travel length of avalanche 12 with an exponent of 2 results in a

significant spread of the affected area. In contrast, the simulation result with an exponent of 30 affects a

much smaller area. The variations in alpha angle from 26° to 30° exhibit relatively minor differences, as

all avalanches reach the valley floor. Only from an alpha angle of 34° can the avalanche no longer reach

the valley floor. 

Figure 10 (avalanche 14) displayed a less pronounced effect of an increasing exponent value, resulting in

similar lateral spreading across all modeled travel lengths. However, for alpha angles greater than 26°,

the extent of the documented avalanche is no longer covered. 

The modeled travel lengths of avalanche 5, shown in  Figure 12, also exhibit minimal changes in the

affected  area with  increasing exponents.  However,  another  phenomenon becomes  evident.  The  PRA

pixels (bluish points) are divided into two distinct regions, an upper and a lower PRA section (the PRAs

are omitted to enhance the readability of the modeled travel length in the lower row of Figure 12). With

an alpha angle of 26°, the simulation results of the upper PRA section generosity overlap with the lower

region, resulting in one contiguous avalanche. However, the effect is less pronounced with an alpha angle

of 28°. In this case, a significant portion of the avalanche remains in the upper flat part of the slope,

while only a tiny portion travels far enough to enter the lower part. This portion overlaps with the lower

simulation results and spreads out based on the exponent value. The overlapping of the steeper section

highlights the Flow-Py behavior in that pixels with a higher local energy height overrule lower ones. 

In summary, the qualitative analysis reveals distinct patterns in the behavior of different avalanches in

different slope morphologies. Avalanche 12 (Figure 11) demonstrates sensitivity to the exponent while

displaying less sensitivity to the alpha angle. Conversely, avalanches 14 (Figure 10) and 5 (Figure 12)

exhibit  sensitivity  to  the  alpha  angle  but  display  less  sensitivity  to  the  exponent.  Moreover,  the

simulation results of avalanche 5 showcase the significant influence of overruling effects. These effects are

observed when the simulation results are initiated from higher PRAs with a higher local energy height

overlap  with  the  simulation  results  initiated  from  lower  PRAs.  The  analysis  reveals  a  significant

dependency  of  the  sensitivity  of  the  alpha  angle  or  exponent  on  the  different  slope  morphologies.

Particularly the exponent, is strongly influenced by the shape of the slope perpendicular to the slope

gradient.  Convex  slopes  demonstrate  heightened  sensitivity,  whereas  concave  slopes  exhibit  greater

resistance.
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Taking into consideration the observed phenomena, an exponent value of 8 is being utilized for the

ongoing Flow-Py investigations and the model chain. This choice acknowledges the influence of slope

morphology on the exponent parameter and ensures a balanced representation of avalanche behavior in

varying slope morphologies in the Flow-Py simulations. Additionally, this exponent is supported by the

statements of D’Amboise, Neuhauser, et al. (2022).

Figure  10: Qualitative assessment of the Flow-Py parameter, showing the comparison of the modeled travel length for
avalanche 14 with an alpha angle of 26° and 30°, displayed in the rows of the figure, with a corresponding exponent value
of 2, 8, and 30 displayed in the columns of the figure.
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Figure  11: Qualitative assessment of the Flow-Py parameter, showing the comparison of the modeled travel length for
avalanche 12 with an alpha angle of 26°, 30°, and 34°, displayed in the rows of the figure, with a corresponding exponent
value of 2, 8, and 30 displayed in the columns of the figure.
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Figure  12: Qualitative assessment of the Flow-Py parameter, showing the comparison of the modeled travel length for
avalanche 5 with an alpha angle of 26° and 28°, displayed in the rows of the figure, with a corresponding exponent value
of 2, 8, and 30 displayed in the columns of the figure.
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4.2.2 Quantitative comparison of modeled with mapped travel lengths (OA 2)

The modeled  travel  lengths  are  compared to the  travel  length  of  19  avalanches  of  the  AUT AWS

Avalanche Reference Dataset (3.2.2). The same PRA layer as described in Section 4.2.1 is used as input.

In order to compare the travel length of the simulations, the mapped avalanches of the AUT AWS

Avalanche Reference Dataset are analyzed. The analysis involves the derivation of the alpha angle. The

alpha angle is defined as: 

tan (α )= vertical dropheight [m ]
projected pathlength [m ]

The projected path length or travel length is derived from the manually defined avalanche path, which

extends from the approximate highest point to the lowest point within the mapped area. The start and

end elevations required to calculate the vertical drop height are extracted from the 10m DEM, along

with the projected length of the defined path.

To evaluate the plausibility of a specific Flow-Py alpha angle parameterization, the RMSE is used as a

criterion.  The  RMSE provides  a  measurement  of  the  overall  difference  between  the  simulated  and

observed avalanches. A lower RMSE indicates a better fit, suggesting that the modeled travel lengths

closely match the travel lengths of the AUT AWS Avalanche Reference Dataset. Conversely, a higher

RMSE suggests overestimating or underestimating the modeled travel lengths. The RMSE is calculated

for each alpha angle parameter separately, considering all 19 avalanches in one evaluation. The RMSE is

calculated after the following equation:

RMSE=√ 1n∑i=1n ( yi− ŷi)
2

Table 12 presents the analysis of the 19 avalanches from the AUT AWS Avalanche Reference Dataset,

providing statistical quantities. For instance, the mean travel length is 649.1 m, accompanied by a mean

alpha angle of 26.85°.
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Table 13: Analysis of the AUT AWS Avalanche Reference Dataset 

Avalanche ID Alpha Angle [°] Travel Length [m] Vertical Drop Heigth [m]

0 28.36 969.75 523.38

1 24.62 501.51 229.81

2 23.04 548.16 233.17

3 32.68 524.18 336.29

4 27.85 732.77 387.10

5 24.97 922.60 429.66

6 24.66 680.59 312.46

7 27.84 157.35 83.11

8 30.47 1218.78 717.16

9 28.64 736.87 402.45

10 24.76 403.14 185.93

11 27.98 483.56 256.90

12 31.40 1129.32 689.30

13 22.14 517.95 210.76

14 25.62 775.22 371.68

15 34.60 554.21 382.32

16 23.94 629.52 279.53

17 25.71 352.44 169.70

18 20.87 495.38 188.89

Min 20.87 157.35 83.11

Quartile 25% 24.28 489.47 199.83

Median 25.62 548.16 279.53

Quartile 75% 28.31 734.82 384.71

Max 34.60 1218.78 717.16

Mean 26.85 649.12 336.29
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Figure  13:Quantitative analysis of modeled travel length with alpha angles ranging from 20° to 40° compared to AUT
AWS Avalanche Reference Dataset (left). The dotted line represents a perfect 1-to-1 match, where modeled and observed
travel lengths coincide. Corresponding RMSE values are shown in the right plot, with the lowest RMSE at 28° (marked in
red).

Figure 13 depicts the effects of  different alpha angles on the modeled travel length of  the Flow-Py

simulations. The dotted line represents a perfect 1-to-1 match, where the modeled travel length aligns

with the observed travel length, as stated in Table 13. The vertical distance between the simulated travel

length and the 1-to-1 line serves as an indicator of the accuracy of the simulation. A larger distance

indicates a greater deviation in meters between the simulated and observed travel length. The RMSE

serves as a metric to quantify the accuracy of the simulation results obtained with a specific alpha angle,

as displayed in Table 12. Figure 13 reveals that larger alpha angles correspond to shorter travel lengths

(yellowish points), while lower alpha angles result in longer travel lengths (blueish points). The trend of

the RMSE is depicted in the right plot of  Figure 13. The RMSE reaches its maximum value for the

travel  length  with an alpha  angle  of  20°  and steeply decreases  over  four steps  as  the  alpha angle

increases. RMSE values are minimized within the range of 26° to 30°, with the lowest value occurring at

28°, corresponding to an RMSE of 200.9 m. However, as alpha angles increase beyond this range, RMSE

values gradually escalate.
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In summary, the quantitative comparison of the modeled travel length with the 19 size 3 avalanches from

the AUT AWS Avalanche Reference Dataset suggests that an alpha angle within the range of 26° to 30°

yields plausible results, as evidenced by the minimal RMSE values. Table 14 displays the RMSE values

for alpha angles within the range of 24° to 30°. The alpha angle of 26° exhibits the lowest RMSE at 0.85°

to the mean alpha angle of the AUT AWS avalanche reference data, indicating a reasonable correlation

of  the simulated travel  lengths with the observed mean alpha angle of  26.85° from the AUT AWS

Reference Dataset.

Table 14: Correlation between RMSE of modeled travel length and corresponding RMSE for alpha angles of 19 avalanches

in the AUT AWS Avalanche Reference Dataset. Presented for alpha angle range of 24° to 30°.

Alpha Angle [°] RMSE travel length [m] RMSE alpha angle [°]

24° 323.6 2.85

26° 217.0 0.85

28° 200.9 1.15

30° 261.9 3.15

Within the context of the ATES classification, these findings could be adopted as suitable alpha angle

thresholds for the challenging class, aligning with size three avalanches based on their travel lengths and

the agreement with the AUT AWS Avalanche Reference Dataset. However, due to the relatively limited

size of the dataset, its robustness is somewhat constrained. To enhance the reliability of the findings, the

analysis  is  extended to include  a broader  scope.  Specifically,  this  involves  the  consideration of  100

randomly selected avalanches distributed across the entire study area, as detailed in the subsequent

section.

4.2.3 Quantitative comparison of the mobility model with size classification 
ranges (OA 3) 

A quantitative analysis is performed to refine further the determination of a plausible alpha angle range

corresponding  to  size  3  avalanches  for  the  ATES classification  step.  This  analysis  encompasses  the

evaluation of the modeled travel length, affected area, and impact pressure concerning established size 3

avalanche ranges. To conduct this comparison, distinct and well-defined ranges are essential. However,

the  existing  size  classification  schemes,  such  as  the  EAWS  (2023),  offer  only  semi-quantitative

descriptions of potential damage, runout, and length, while the CAA (2016) provides similar descriptions

but also only includes typical values for impact pressure, path length, and mass rather than volume.
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These schemes serve as a foundation for creating discrete classes,  considering travel length, volume,

impact pressure, and affected area. The typical dimensions for the length of the EAWS scheme are

applied as travel length (Etl). The limits of the Etl ranges correlate with the typical path lengths from the

CAA (2016). 

The mean value between two classes is used as the boundary to establish discrete classes for volume (Ev,

EAWS,  2023) and  impact  pressure  (Cip,  Canadian  Avalanche  Association,  2016).  Additionally,  the

affected area (Baa) is applied according to the ranges outlined in Bühler et al.  (2019). To correlate the

typical mass [t], as indicated by the CAA (2016), with the typical volume values per size class provided

by the EAWS  (2023), a density of 200 kg m ³ is required.  ⁻ The derived size classification ranges are

presented in Table 15 and Figure 14.

Table 15: Discrete avalanche size classification ranges for travel length (Etl), impact pressure (Cip), volume (Ev), affected

area (Baa) (Bühler et al., 2019)

Size Travel length

Etl [m]

Impact Pressure

Cip [kPa]

Volume

EV [m³]

Affected area

Baa [m²]

Small ≤ 50 ≤ 5 ≤ 500 ≤ 500

Medium > 50 & ≤ 200 > 5 & ≤ 50 > 500 & ≤ 5,000 > 500 & ≤ 10,000

Large > 200 & ≤ 1,000 > 50 & ≤ 250 > 5,000 & ≤ 50,000 > 10,000 & ≤ 80,000

Very large > 1000 & ≤ 2000 > 250 & ≤ 750 > 50,000 & ≤ 150,000 > 80,000 & ≤ 500,000

Extremely 

large

> 2000 > 750 > 150,000 > 500,000
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Figure 14: Discrete avalanche size classification ranges for travel length (Etl), impact pressure (Cip), volume (Ev), affected
area (Baa) (Bühler et al., 2019)

In OA 3, the initiating PRAs are randomly selected. The selection of PRAs is determined to match size

3 avalanches according to the size classification stated in  Table 15. The size estimation is based on a

simplified model,  where  the  avalanche  volume  is  approximated by  multiplying  an  assumed average

release thickness of 0.5 m with the area covered by the delineated PRA. The assumed release height is

derived from Harvey et al. (2018), who utilized this release height for simulating size 3 avalanches. It is

assumed  that  an  avalanche  initiated  from  an  area  of  20,000 m²  can  yield  a  maximum volume  of

10,000 m³, corresponding to an avalanche size 3 after the volume (EAWS, 2023). It is important to note

that this estimation neglects potential entrainment processes. As a result of this assumption, PRAs with

an area of 10,000 to 100,000 m² are considered for further analysis. The distribution of the area of the

selected PRAs is displayed in Figure 15, indicating that almost two-thirds of the selected PRAs cover an

area of below 30,000 m². The 100 chosen PRAs collectively span 3.10 km², accounting for approximately

1.3% of the total PRA-covered area within the study region.
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Figure 15: The distribution of the single PRA area coverage among the 100 selected PRAs is based on the classification of
volumes corresponding to size 3 avalanches (Ev).

The results of the comparison are revealed in the following. The plots illustrate the distribution of the

modeled travel length (Figure 16), the affected area (Figure 18), and the impact pressure (Figure 18)

across the size classification ranges, modeled with rising alpha angles from 20° to 40° in steps of two. The

blue bars represent the count of underestimated avalanches, while the red bars represent the count of

overestimated avalanches. The green bars indicate the count of avalanche simulation results that fall

within the defined size classification ranges, hereafter referred to as range fit TL for travel length, range

fit AA for affected area, and range fit IP for impact pressure.

Figure 16 shows that within the alpha angle range of 26° to 38°, more than half of the modeled travel

lengths align with the expected travel  length classification of  200 to 1,000 m for size 3 avalanches.

Within this range, the number of overestimations decreases from 39 at an alpha angle of 26° to 5 at an

alpha angle of 38°. The maximum range fits TL are concentrated within the peak range of 28° to 30°,

accounting for almost two-thirds of the total count. However, the number of avalanches exceeding the

size  range is  between 29  to 25%.  The analysis  of  the  affected area (Figure  17)  demonstrates  that

underestimations are extremely infrequent, with only two instances observed at 38° and 40°. 
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Figure  16:  Comparisons of modeled travel length for 100
avalanches  with  varying  alpha  angles  from  20°  to  40°,
relative  to  the  travel  length  size  3  classification  range
(Etl=200-1,000 m).

    

Figure  17:  Comparisons of modeled affected area for 100
avalanches  with  varying  alpha  angles  from  20°  to  40°,
relative  to  the  affected  area  size  3  classification  range
(Baa=10,000-80,000 m³) according to Bühler et al. (2019)

Figure 18: Comparisons of modeled impact pressure for 100 avalanches with varying alpha angles from 20° to 40°, relative
to the impact pressure size 3 classification range (Cip = 50-250 kPa).
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Furthermore,  consistent  with  the  trends  observed  in  the  travel  length  analysis,  the  count  of

overestimation decreases from 90 at 20° to 22 at 40°. The relationship between the simulated impact

pressure and the size classification range is depicted in Figure 18. The plot shows a continuous increase

of range fits IP falling within the size classification range of 50 to 250 kPa as the alpha angle increases.

With an alpha angle of 32° or higher, approximately 50% of the modeled avalanches are within the size 3

range. The number of overestimations in the range drops from 40 at 32° to 19 at 40°.

In  summary,  by  comparing  the  modeled  travel  length,  affected  area,  and  impact  pressure  of  100

randomly selected avalanches with the size classification ranges outlined in  Table 15 and  Figure 14,

identifying a single alpha angle that universally fits all size classification scopes proves challenging.

To  differentiate  the  different  size  classification  approaches  in  OA 3,  the  different  size  classification

approaches are compared by plotting the assumed release volume against the affected area (Figure 19),

as well as the modeled impact pressure (Figure 20) and the modeled affected area (Figure 21) against

the modeled travel resulting from a 30° alpha angle. The plots show the travel length size classes on the

x-axis and size classes for the affected area or impact pressure on the y-axis.

Figure 19: Release volume plotted against the simulated affected area, along with the size classification ranges based on
release volume (Ev) in the upper plot and affected area (Baa) in the lower plot.
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Figure  20:  Simulated travel length plotted against simulated impact pressure, along with the size classification ranges
based on travel length (Etl) in the upper plot and impact pressure (Cip) in the lower plot. The red crosses mark the
examples for Figure 22.

Figure 21: Simulated travel length plotted against simulated affected area, along with the size classification ranges based
on travel length (Etl) in the upper plot and affected area (Baa) in the lower plot. The red crosses mark the examples for
Figure 22
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The plots reveal different outcomes for size classification based on travel length, impact pressure, or

affected area. For instance, using travel length leads to 62 avalanches in size class 3. However, with

affected areas, only 36 avalanches fall into class 3, and the remaining 26 are in class 4. Similarly, for

modeled impact pressures, only 39 of the 62 avalanches are in class 3, while 11 are in lower classes, 49 in

class 4, and 1 in class 5. 

To visually illustrate these variations,  Figure 22 displays four selected avalanches (marked with red

crosses in Figure 20 and 21), all modeled at a 30° alpha angle and classified as size 3 according to the

volume (Ev, Section 4.2.3). This visualization highlights significant variations with an alpha angle of 30°

in travel length, affected area, and impact pressure across different avalanche simulations. For example,

the travel length ranges from around 200 m (avalanche 73) to approximately 2500 m (avalanche 52). To

establish  a  connection  between the  modeled  avalanche  size  and  slope  coverage,  a  size  classification

relative to the path is estimated in classes R1 (Very small,  relative to the path) to R5 (Major or

maximum, relative to the path)  (Table 2, American Avalanche Association, 2016). The orange line in

Figure 22 represents the assumed avalanche path. The profile plots show the assumed avalanche path

with vertical drop height against the projected path length.

Figure  22: Maps view (upper row) showing varying avalanche size classes (Etl 2 to 4 from left to right) based on the
modeled travel length with an alpha angle of 30°, along with the corresponding assumed path (orange line), release point
(blue point), and deposition point (green point), all avalanches are classified as size 3 according to the volume (E v). The
profile view (lower row) displays the energy height (red dotted line) across the avalanche path from release to deposition
point.
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For avalanche 73 (Figure 22),  a size classification based on travel  length falls  within class  2,  while

considering the affected area or the impact pressure places the avalanche in size range 3. Compared to

the classification based on the path, this could correspond to an R1 or even R2.

Avalanche 88 (Figure 22) exhibits two significant phenomena. Firstly, the avalanche fans out due to the

convex  shape  perpendicular  to  the  slope,  as  observed  in  the  qualitative  analysis  in  Section  4.2.1.

Secondly, the narrow valley causes the avalanche to go uphill and spread even further. The steep release

area results in a very high z delta (energy height), leading to a peak impact pressure of 813 kPa and a

corresponding velocity of 64 m/s, classifying it as impact pressure class 5. However, this value appears

somewhat unrealistic concerning the profile of the avalanche. Taking into account its size in relation to

the slope, this avalanche would be classified as R2.

Avalanches 22 and 52 (Figure 22) are classified as size 4 and 5, respectively, based on the travel length,

and both are classified as size 4 based on the affected area. The impact pressure is relatively low for

avalanche 22, classifying it as class 2, while avalanche 52 is classified as size 4. Regarding the size relative

to the slope, avalanche 22 would be classified as R2 to R3 and avalanche 52 as R4.

Table 16 summarizes the different size classes for the four chosen avalanches based on travel length, the

affected area, and impact pressure and states a size assumption relative to the path.

In conclusion, the modeled avalanches with an alpha angle of 30° demonstrate a broad spectrum of

results, highlighting the substantial influence of varying terrain. This suggests that slope morphology

significantly determines the travel length, affected area, and impact pressure, leading to diverse outcomes

for avalanches sharing the same alpha angle (Figure 22).

Table  16: Avalanche size classification for the avalanches with ID 73, 88, 22, and 52 based on the volume (E v), travel

length (Etl), impact pressure (Cip), affected area (Baa) and relative to the slope (R)

Avalanche ID 73 88 22 52

Ev 3 3 3 3

Etl 2 3 4 5

Cip 3 5 2 4

Baa 3 4 4 4

R 1-2 2 2-3 4
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4.2.4 Avalanche mobility model parameterization for the model chain 

The objective of evaluating the data-based avalanche mobility model Flow-Py (D’Amboise, Neuhauser,

et al., 2022) for regional modeling of size 3 avalanche runout, particularly in the context of ATES terrain

classification, is investigated along three comparison OA (OA 1, Section 4.1.1; OA 2, Section 4.2.2; OA 3,

Section  4.2.3). This objective includes the essential definition of two different alpha angle thresholds

within the ATES classification step. The determination of challenging terrain class considers the runout

associated with the affected area between these alpha angle thresholds, while terrain affected by lower

alpha angles is categorized as simple terrain, and terrain affected by higher alpha angles is considered as

challenging terrain. The alpha angle threshold corresponding to the lower range of size three avalanches

will establish the Flow-Py parameterization within the model chain. The findings of the alpha angle for

the  upper  range  of  size  3  avalanches  will  also  contribute  to  the  parameterization  for  the  ATES

classification step.

In OA 1 (4.2.1),  the impact of different alpha angles and exponents on the results of  the Flow-Py

simulations is presented. A qualitative parameter study is conducted using the documented affected area

from observed  avalanches.  Figures  11,  10,  and  12 present  plausible  results  for  back-calculating  the

affected area of the documented avalanches, using a sample of three avalanches as illustrative examples.

However, a parameter set that fits all back-calculations cannot be determined. Through the evaluation

process, an exponent value of 8 is determined to achieve a favorable balance between the different slope

morphologies within the simulation results. This choice is reinforced by the statements of D’Amboise,

Neuhauser, et al. (2022). Furthermore, the qualitative analysis highlights the importance of considering

the impact of slope morphology on the simulation results of different avalanche paths.

In the quantitative analysis of OA 2 (4.2.2), the RMSE is used to analyze the deviation of modeled

travel lengths across different alpha angles from the 19 size 3 avalanches of the AUT AWS Avalanche

Reference  Dataset.  The analysis  reveals  that  an  alpha  angle  within  the  range  of  26°  to  30°  yields

plausible results, as evidenced by the minimal RMSE values. Regarding the ATES classifier, this result

can be interpreted as a plausible alpha angle to capture the runout of size 3 avalanches and potentially

serve as a threshold for the challenging terrain. However, the sample size of just 19 avalanches is rather

small.

In OA 3, the modeled travel length, affected area, and impact pressures of 100 size 3 avalanches are

compared with the avalanche size classification ranges, as stated in Table 15.

Comparing the modeled travel length with the expected travel length range for size 3 avalanches (E tl=

200-1000 m), it is evident that over 50% of the avalanches lie within this size range for alpha angles
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between 26° and 38°. The peak count of avalanches within this size range occurs within the range of 28°

and 30°. The alpha angles which result in the maximum count of avalanche within the size 3 range

correlates with the lowest RMSE of OA 2. 

A noticeable trend emerges in comparing the modeled affected area and impact pressure: the count of

overestimations is approximately twice as high as the travel length counts across different alpha angles.

This is due to the following limitations:

The selection of the PRAs is based on the volume assumption outlined in Section 4.2.3. This assumption

involves multiplying the PRA area by an assumed release height of 0.5 m. As a result, PRAs within a

size range of 10,000 to 100,000 m², corresponding to a volume range (Ev) of 5,000 to 50,000 m³ (size 3

avalanches, Table 15), are included. This size range of PRAs significantly aligns with the classification by

Bühler et al. (2019). However, two-thirds of the 100 selected PRAs have an area smaller than 30,000 m².

The area covered by the PRAs already significantly overlaps with the size classification according to the

affected area (Baa). 

Nevertheless, the volume or mass is linked to the routing flux; however, additional research is required to

delve further into this matter. The consistently higher range of overestimation is also observed in the

analysis of impact pressure as compared to the travel length. This observation might be linked to the

derivation of the impact pressure (ip [kPa]) from the energy height (z delta). The derivation takes into

account  both  the  velocity  (v  [m s-1])  and  the  density  (ρ [kg m-³]).  Obtaining  an  impact  pressure

estimate relies on the simple relation ip = ρ v² (Rudolf-Miklau & Sauermoser, 2011). The velocity (v)

can be derived directly from the flow intensity result of Flow-Py (z delta) following the energy-line

method after Körner (1980), and the flow density is assumed to be ~200 kg m ³, which is in line with⁻
McClung & Schaerer  (2006) but may deviate from actual circumstances. The frictional dissipation is

given due to the geometric relations of the alpha angle concept  (Heim, 1932; Lied & Bakkehøi, 1980)

based on the law of conservation of energy and Coulomb friction of a block movement. This friction term

can also be replaced or enhanced by other models, for instance, the Voellmy friction  (Voellmy, 1955).

Moreover, the size classification in the impact pressure scope considers the 99 th percentile over the entire

modeled avalanche path. An alternative approach could involve considering the impact pressure relative

to specific path sections, such as the runout zone, as it is common for general avalanche hazard mapping

for settlements and infrastructural facilities (Rudolf-Miklau & Sauermoser, 2011). 

This observation indicates  a relatively weak correlation and underscores the necessity for additional

examination of these assumptions and constraints. When considering the parameterization of the Flow-

Py model for the ATES classifier and addressing the limitations of the affected area and impact pressure,
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the focus for Flow-Py parameterization, based on the results from OA 3, will be placed on the travel

length.  Table 17 summarizes of the outcomes from OA 2 (Section  4.2.2) and 3 (Section  4.2.3).  The

determined alpha angle for the Flow-Py simulations is 26°, representing a conservative alpha angle for

size 3 avalanches. This choice is based on the considerable RMSE increase and an 11% decrease in the

range fit TL for smaller alpha angles, moreover, the alpha angle of 26° has the smallest alpha angle

RMSE (0.85°). Further discussion on the alpha angle thresholds for the ATES terrain classification is

presented in the subsequent section, focusing on the parameterization for the ATES classifier.

Table 17: Flow-Py assessment results for OA 2 and 3, the range fit reflects the count within the travel length, the affected

area, or the impact pressure range of size 3 avalanches.

Alpha angle [°]
OA 2 

RMSE [m]

OA 3

range fit TL [%]

OA 3

range fit AA [%]

OA 3

range fit IP [%]

20 1141.3 31 10 14

22 675.5 36 13 22

24 323.6 46 17 25

26 217.0 57 26 33

28 200.9 63 30 41

30 261.9 62 36 36

32 317.8 57 50 46

34 432.5 52 57 46

36 512.1 51 67 49

38 570.9 51 70 53

40 612.5 42 77 53
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4.3 ATES classification
The  autoATES  v1.0  model  (Larsen  et  al.,  2020) is  undergoing  continuous  improvements  and

enhancements (Schumacher et al.,  2022). The ATES classifier used in this study builds upon recent

developments and is provided by the working group of Sykes, J. and Toft, H. The classifier incorporates

four distinct ATES classes: simple, challenging, complex, and a newly proposed class for extreme terrain

(AAA, 2023; Statham, 2020). The terrain classification process relies on six layers: slope, PRA, avalanche

runout, cell count, z delta, and a forest layer. This study uses the PCC Forest Layer, as derived in

Section  4.1.2. In addition to that, this thesis incorporates an additional layer to account for glaciated

areas (Glacier Layer, Section 3.3).

The flowchart (Figure 23) serves as a visualization of the workflow of the ATES classifier. In the first

step of the ATES classification, the slope, avalanche mobility layer, and overhead exposure layer are

reclassified along the corresponding thresholds, as stated in  Figure 23 and  Table 19. The algorithm

combines the reclassified layers to generate the preliminary ATES classes by selecting the maximum

value for each raster cell. In the subsequent step, the smoothing filter (Virtanen et al., 2020) is applied to

the extreme class, using the ATES parameter sliding window size (WIN) to determine the smoothing

effect. A WIN size of 1 will impact the data, while higher values for WIN will increase the smoothing

effect; the autoATES default is 5. 

The next step involves merging the PRA and forest information with the preliminary ATES classes. This

is done by summing the preliminary ATES class value with the reclassified PRA and forest layers.

Subsequently, the raw ATES map is created using a rule-based classification approach. For example, if a

forest is present, the preliminary ATES class is downgraded to a lower class. In the case of no PRA,

moderate forest, and a preliminary ATES class of 3, the ATES class is reassigned as 1. Conversely, if

there is PRA and open forest, along with a preliminary ATES class of 4, the ATES class remains 4

(Schumacher  et  al.,  2022).  In  the  subsequent  step,  the  binary  Glacier  Layer  is  incorporated.  A

reclassification step assigns all raster values which are covered by glaciated areas at leased as challenging

terrain. 

In the final step of the ATES classifier, a smoothing algorithm is utilized to remove small isolated islands

of equal classes. These isolated islands are determined based on the ATES classifier parameter ISL SIZE

in square meters. In this step, the algorithm utilizes a label function (Fiorio & Gustedt, 1996; Wu et al.,

2005), incorporating the connectivity information. The configuration allows for identifying neighboring

pixels  as  connected,  considering  only  the  edges  (connectivity  = 1)  or  both  the  edges  and vertices

(connectivity = 2; auto ATES default).
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Figure  23: Workflow of the ATES classifier (third step of the model chain) based on Schumacher et al.  and ongoing
developments. The raster data formats are represented by the objects with rounded edges, such as input raster layers, the
reclassification layers, preliminary ATES classes, raw ATES, and the final ATES map. Objects with sharp edges in blue
represent  thresholds  for  reclassification  (regarding  the  less  conservative  alpha  scenario).  Additionally,  white  objects
represent operations such as calculation, merging, reclassification, and smoothing applied to different layers. The Glacier
Cover data and reclassification is incorporated in this study. 
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4.3.1 ATES parameterization

The parameterization process is described in detail below. As depicted in  Figure 23, the classification

step involves the integration of the 10m DEM, the forest layer, represented in the percentage of canopy

cover (PCC Forest Layer), the results from the PRA model and the avalanche mobility model, as well as

a newly introduced layer to incorporate glacier (Glacier Layer).

The availability of the 10m DEM is detailed in Section 3.1. The source of the Glacier Layer is provided

in Section  3.3. The PCC Forest Layer is obtained through the difference between 1m DTM and 1m

DSM, as demonstrated in Section 4.1.2. The PRA layer is determined in Section 4.1.3. Subsequently, the

Flow-Py simulation results are obtained in Section 4.2.4. 

The parameterization of the ATES classifier is discussed in the following:

(1) Slope angle threshold

The angle threshold forms with the alpha angle thresholds and the overhead exposure the primarily

ATES classes. The following Table 18 states an overview about the slope angle thresholds in previous

ATES studies.

Table  18:  Summary  of  slope  angle  thresholds  for  ATES  classification  in  previous  studies  and  the  current  study

(* regarding open slopes)

Literature Approach Simple Challenging Complex Extreme

Statham et al. 

(2006)
Qualitative generally < 30º

Mostly low angle, 

isolated slopes 

> 35º

Variable with 

large % > 35º
-

Larsen et al. (2020) Quantitative ≤ 25° > 25° & ≤ 40° > 40° -

Schumacher et al. 

(2022)
Quantitative ≤ 25° > 25° & ≤ 31° > 37° -

AAA (2023)

Statham (2020)
Qualitative < 20°

< 30°; or some 

slopes > 35°

< 35°; with large 

proportions > 35°

> 35°; with a large 

proportion > 45°

This study Quantitative < 28° > 28° & ≤ 39° > 39° &  45°≤ > 45º

The alpha angle threshold for the simple-challenging boundary is set to 28°, which is less conservative as

stated by previous studies (Larsen et al., 2020; Schumacher et al., 2022) but still aligns with the original

ATES (Statham et al., 2006). Furthermore, 28° corresponds to the lower slope angle range for PRAs, as
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stated in Section  2.5.1. The upper limit for the challenging terrain is set to 39°, which seems to be a

plausible balance among the stated values in Table 18. Moreover, 39° corresponds to the median slope

angle of the avalanche release, as described in Section 2.1. The boundary between complex and extreme

terrain is established at 45°. This threshold is derived from the qualitative description of the extreme

class (AAA, 2023; Statham, 2020).

(2) Alpha angle threshold

To counter the challenge outlined in Section 4.2.4, aimed at establishing two alpha angle thresholds for

the ATES classifier, an examination of the CH SPOT6 Avalanche Reference Dataset (Toft et al., 2023) is

contextualized with the previous findings. This dataset comprises over 18,000 documented avalanches

and includes parameters like affected area, travel length, and alpha angle.

Figure  24 illustrates  the  alpha  angle  distribution  for  observed  avalanches  and  their  corresponding

avalanche size classifications (Toft et al., 2023). The plots illustrate two size classifications: firstly, based

on the travel length range used in this study, and secondly, based on the affected area (Bühler et al.,

2019). The plots reveal a weak correlation between the alpha angle and avalanche size, regardless of

whether it is based on travel length or affected area. This observation aligns with the findings of the

assessment of the avalanche mobility model in Section 4.2.4. 

Concerning the ATES terrain classification, this indicates that establishing a distinct alpha angle that

directly corresponds to a single-size class is challenging in a regional model scenario across multiple

avalanche paths. Considering the variability of simulation results with a single alpha angle spanning

various size classes (Figure 20, Figure 19, Figure 22) and the limited correlation between the alpha angle

and size class as shown in Figure 24, an alternative approach is explored. This approach considers the

empirical cumulative distribution function (ECDF) of the CH SPOT6 Avalanche Reference Dataset, as

depicted  in  Figure  25.  Notably,  the  data  from  the  large-scale  analysis  approximates  a  normal

distribution. The method entails matching reasonable alpha angles from OA s 2 and 3 with the ECDF

and discussing the associated percentiles in the context of the ATES classification step.
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Figure 24: The distribution of alpha angles for avalanche size classes from the CH SPOT6 Avalanche Reference Dataset
based on the classification after the travel length (Etl) is shown in blue, while the classification after the affected area (Baa)
is represented in orange (EAWS, 2023; Heim, 1932; Jang et al., 1997; Lied & Bakkehøi, 1980; 2022; Statham et al., 2006; Toft et
al., 2023).

In OA 2 (Section 4.2.2) and 3 (Section 4.2.3), alpha angles ranging from 26° to 32° demonstrate plausible

outcomes, evidenced by their low RMSE for the travel length and range fit LT (> 57%) of modeled

avalanches within the travel length size 3 class. In addition, the alpha angle 26° revealed the lowest a

RMSE of 0.85° to the mean alpha angle of the AUT AWS Avalanche Reference Dataset. Regarding the

ECDF analysis,  the  15th percentile  approximately  corresponds  to  an  alpha  angle  of  26°.  The  50 th

percentile aligns with an alpha angle of around 32°. Moreover, a less conservative percentile is set to the

75th, which aligns with an alpha angle of 36°. In the context of OA 3, the less conservative alpha angle of

36°  still  accounts  for  over  50%  of  modeled  travel  lengths  classified  as  size  3  avalanches.   When

establishing the alpha angle threshold for the ATES classification, these percentiles offer valuable insights

for improving the interpretation of the integration of the avalanche runout model. In this context, the

lower  percentile  serves  as  the  threshold  for  the  lower boundary of  the  challenging terrain class.  In

comparison, the higher percentile acts as the threshold for the lower boundary of the complex class.
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Consequently,  terrain falling between these two percentiles  is  designated as  challenging.  The terrain

unaffected by the modeled avalanche runout is categorized as simple. Additionally, terrain exceeding the

higher percentile is classified as complex. Notably, the extreme class lies outside the thresholds for the

avalanche runout, implying that any potential avalanches are anticipated to traverse this class without

stopping.

The more and the less conservative alpha angle for the challenging-complex terrain boundary are being

considered for the ongoing assessment and testing of the model chain.

Figure 25: The ECDF (black) of CH SPOT6 Avalanche Reference Dataset (Toft et al., 2023), showing the 15th percentile
(white point) and the 50th (left) and 75th (right)  percentiles  (gray point).  The corresponding ATES classes (simple,
challenging, complex) are indicated based on the percentile thresholds.

(3) Overhead hazard threshold

The overhead exposure parameter in the ATES classifier is derived from two Flow-Py outputs: the cell

count  and the z  delta  layer.  The cell  count  represents  the  number of  avalanche paths  propagating

through a raster cell (D’Amboise, Neuhauser, et al., 2022). In addition, the z delta layer represents the

energy height or intensity of  potential  avalanches,  which are associated with higher kinetic  energies

(D’Amboise, Neuhauser, et al., 2022) and, consequently, higher impact pressures. The cell count values

are transformed using a logarithmic function and scaled to a percentage range. The z delta values are

linearly scaled to match this percentage range. The scaled and normalized values of the cell count and z

delta layers are added to calculate the overhead exposure parameter. This combination yields an overall
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measure  of  the  level  of  overhead exposure  in  the  terrain.  A visual  assessment of  the  layer  reveals

plausible  results  (Figure  29).  However,  a  more  in-depth  investigation  is  required  to  evaluate  the

plausibility and integration into the ATES classification thoroughly. One prospective approach could

incorporate routing flux information, as it can correlate with a theoretical mass assumption (D’Amboise,

Teich, et al., 2022). Due to these uncertainties, the overhead exposure will be excluded from the primary

ATES class delineation but will be added as an experimental additional layer in Section 4.3.2.

(4) Forest threshold

The PCC Forest Layer, which serves as a percentage of canopy cover, is derived and discussed in Section

4.1.2.  and 4.3 of the PRA model and ATES classification. However, an issue arises when merging the

avalanche mobility in the ATES classifier with the forestation. When an avalanche encounters a forested

area, the ATES classifier lowers the classification based on the PCC Forest Layer density. If no forest is

present, no reclassification occurs. This can lead to complex terrain classifications in valley bottoms but

simple slopes classification above, which is not coherent, as shown in in the Forest reclass detail in Figure

26. To address this inconsistency, it becomes apparent that incorporating the mitigating effects of forests

into the avalanche mobility model is crucial. As a temporary cartographic solution, areas below 1,500 m

a.s.l. are disabled. 

Moreover, a comprehensive evaluation of the forest density thresholds and the derivation of the PCC

Forest Layer itself  for the ATES classier is suggested as it is  beyond the scope of  this thesis.  The

parameterization for the ATES classifier, as presented in Table 19, follows Schumacher et al. (2022).

(5) Isl size

The smoothing step employs an isl size parameter set to 1,000 m², corresponding to the lower range of

size 2 avalanches based on the Bühler et al.  (2019) size classification in relation to the affected area.

Furthermore, the small island size is interpreted as a means to account for the high diversity in the study

area's mountainous topography.

A label function is incorporated to identify the islands in the raw ATES raster. To only detect connected

pixels over the edges rather than edges and vertices, the connectivity of the label function  (Fiorio &

Gustedt, 1996; Wu et al., 2005) is set to 1. With this setting a smoother visual appearance is achieved.
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Figure 26: The map visually represents the less conservative alpha angle thresholds used for the ATES classification. The
reclassification of forests (Forest reclass detail) highlights the challenges posed by reclassified avalanche paths in forested
areas and non-reclassified avalanche runouts in areas lacking forestation. The Glacier Layer reclassification is showcased,
showing  glacier-covered  areas  at  at  least  challenging  terrain,  along  with  the  corresponding  Glacier  Layer  and  the
reclassified simple terrain (Glacier reclass).

(6) Sliding window

The sliding window parameter is set to 1 to avoid smoothing for class 4. This ensures that class 4 is

solely  smoothed by the Isl  size parameter,  taking into account the  study area's  highly diverse and

complex morphology, ensuring that even small areas covered by the extreme class are represented.

The parameterization of the ATES classifier is presented in Table 19.
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Table 19: Parameterization of the  ATES classifier applied on the study area

Input parameter Class Range Parameter

Slope angle threshold

Simple (1)

Challenging (2)

Complex (3)

Extreme (4)

≤ 28°

> 28° & ≤ 39°

> 39° & ≤ 45°

> 45° 

SAT12 = 28°

SAT23 = 39°

SAT34 = 45°

Alpha angle threshold

(conservative)

Simple (1)

Challenging (2)

Complex (3)

≤ 26°

> 26° & ≤ 32°

> 32°

AAT12 = 26°

AAT23 = 32°

Alpha angle threshold

(less conservative)

Simple (1)

Challenging (2)

Complex (3)

≤ 26°

> 26° & ≤ 36°

> 32°

AAT12 = 26°

AAT23 = 36°

Forest density threshold

Open

Sparse

Moderate

Dense

≤ 10

> 10 & ≤ 25

> 25 & ≤ 65

> 65 

TREE1 = 10

TREE2 = 25

TREE3 = 65

Isl size ISLS = 1,000

Sliding window WIN = 1
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4.3.2 Discussion of the model chain results

The application and adaptation of the ATES classifier (Larsen et al., 2020; Schumacher et al., 2022) for

size 3 avalanches in the study area is stated in Section 4.3 and discussed in the following. The derivation

of the PRA layer is discussed in Section 4.1.3. The parameterization of the avalanche mobility model is

discussed in Section 4.2.4. The workflow and the parameterization of the ATES classifier are described in

Section 4.3.

In the following, the alpha angle thresholds, the integration of an additional Glacier Layer, and the

overhead hazard are discussed.

The subsequent section discusses the conservative alpha angle threshold of 32° and the less conservative

alpha angle threshold of 36° (as shown in Table 19) for delineating the boundary between challenging

and complex terrain. Within both scenarios, the lower threshold remains consistent at 26°, serving as the

alpha angle parameter for regional runout modeling using Flow-Py (D’Amboise, Neuhauser, et al., 2022).

The area between the runout, determined by the two alpha angles, is considered challenging terrain,

while terrain below this range is classified as simple terrain, and terrain above the range is classified as

complex or extreme. 

Regarding the analysis of large-scale avalanche data (CH SPOT6 Avalanche Reference Dataset, Section

3.2.3, the conservative thresholds (26° and 32°) align with the 15th and 50th percentiles of the ECDF

(Figure 25). On the other hand, the less conservative thresholds (26° and 36°) correspond to the 15 th and

75th percentiles. Table 20 summarizes of the runout reach likelihood for specific terrain classes.

The comparison between the conservative and less conservative scenarios demonstrates a difference in the

percentage of area covered by the ATES classes due to the alpha angle thresholds shifting from 32° to

36°, especially the challenging and complex areal coverage is affected. The less conservative scenario

covers 12.1% fewer complex areas but experiences a 12.6% increase in the challenging class and a 0.5%

increase in the simple class, as depicted in Figure 27. 

Given  the  pronounced  variability  of  the  high  alpine  geomorphology  of  the  study  area,  especially

considering narrow valleys and steep inhomogeneous slopes, the less conservative scenario leads to a more

differentiated and balanced classification, given in the larger amount of the challenging terrain class, in

total 28.3% on the study area. In contrast, the more conservative scenario leads to extensive complex

terrain classification affecting 53% of the total area, where entire valleys and slopes are classified as

complex, as shown in Figure 28.
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Table 20: Correlation of the alpha angle thresholds for the ATES classification with the percentiles derived from ECDF of

the CH SPOT6 Avalanche Reference Dataset (Toft et al., 2023)

ATES scenario Class Alpha angle Percentile (ECDF)

Alpha angle threshold

(conservative)

Simple (1)

Challenging (2)

Complex (3)

Extreme (4)

≤ 26°

> 26° & ≤ 32°

> 32°

-

≤ 15th

> 15th & ≤ 50th 

> 50th

-

Alpha angle threshold

(less conservative)

Simple (1)

Challenging (2)

Complex (3)

Extreme (4)

≤ 26°

> 26° & ≤ 36°

> 32°

-

≤ 15th

> 15th & ≤ 75th 

> 75th

-

Figure 27: Comparison of the areal coverage of the conservative and less conservative alpha angle scenarios of the ATES
classification, presented as percentages relative to the total study area
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In the subsequent section, the conservative alpha angle threshold of 32° and the less conservative alpha

angle threshold of 36° (as shown in Table 19 and 20) are discussed in the context of the AUT SPOT6

Avalanche Reference Dataset. The discussion involves a qualitative assessment by overlaying over 500

mapped avalanche runouts based on satellite imagery. The imagery was derived after an avalanche cycle

in February 2023 (Section 3.2.3). The dataset includes an expert size estimation in the scope of travel

length based on the EAWS (2023) classification scheme. It is important to note that due to the recent

completion of this mapping, the data could not be included in earlier assessments for the PRA and

avalanche mobility models. However, this data opens up possibilities for enhancing the parameterizations

of the individual model chain components. 

Figure  28: The provided visual  exemplifies the comparison between conservative (32-01, 32-02, and 32-03) and less
conservative (36-01, 36-02, and 36-03) alpha angle scenarios within the ATES classification. It also includes mapped
avalanche runouts from the AUT SPOT6 Avalanche Reference Dataset, along with their corresponding size classification
determined based on the EAWS travel length.
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Figure 28 presents three representative comparison sets: The conservative scenario is depicted in sub-

figures 32-01, 32-02, and 32-03, while the less conservative scenario is illustrated in sub-figures 36-01, 36-

02, and 36-03. Upon qualitative assessment, it becomes evident that nearly all size 2 and 3 avalanches

are encompassed within the extensively covered complex areas (sub-figure sets 01, 02, and 03). However,

the less conservative scenario reveals that avalanches of size 2 are predominantly situated within the

complex class or at least near the boundary of the complex-challenging class (sub-figure sets 01 and 02).

Moreover, size 3 avalanches are observed to reach the challenging class in the less conservative scenario

(sub-figure sets 02 and 03).

The  correlation  between  the  mapped  avalanche  runouts  and  size  estimation  further  enhances  the

aforementioned differentiated and balanced classifications. This enhancement stems from the recognition

that a substantial proportion of size 2 avalanches align with the complex class, while size 3 avalanches

extend into the challenging class. For this reason, the less conservative scenario is interpreted as more

reasonable. Figure 30 shows the less conservative scenario applied on the total study area. However, since

avalanches are a very dynamic phenomena that are difficult to define in static classes, as underscored by

this  study,  there  will  be  scenarios  where  the  conservative  scenario  is  more  realistic  regarding  the

prevailing avalanche problem or danger level.

Within the study area, approximately 5% (34.3 km²) of the total land area is covered by glaciers (Buckel

& Otto, 2018). Despite the occurrence of low slope angles, these areas would potential delineated as

simple terrain class. However, glaciers are excluded from the simple terrain class as defined by Statham

et al. (2006). Therefore, it is imperative that glaciers in the simple terrain are also excluded in the ATES

classification of the study area. The ATES classifier is modified to designate glaciated areas at least as

challenging terrain (Figure 23).  Nevertheless,  the dataset is not up to date; it represents the latest

available data. In addition to that, the Glacier Layer does not cover crevasses. However, it is deemed

valuable for its inclusion in the ATES classification. This is particularly important since the presence of a

simple terrain class on a glacier might lead to misinterpretations.

The overhead hazard layer yields an overall measure of the level of exposure in the terrain. A visual

assessment of the layer reveals plausible results (Figure 29). However, a more in-depth investigation is

required  to  thoroughly  evaluate  the  plausibility  and  integration  into  the  ATES  classification.  One

prospective  approach  could  incorporate  routing  flux  information,  as  it  can  correlate  with  a  mass

assumption (D’Amboise, Teich, et al., 2022). This information could pertain to the intensity of avalanche

burial. Combined with z delta, which indicates avalanche impact intensity, the alpha angle offers insight

into the frequency, which could be additional information to the ATES classification.
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Given these uncertainties, the overhead exposure is omitted from the primary ATES class delineation.

However, it can be implemented as additional continuous raster information to further enhance the

challenging and complex classes. The overhead hazard range spans from low to high, depicted in shades

of blue for the challenging class and shades of red for the complex class. The layer information low

corresponds to the ATES class definition as stated in  Figure 23. The indication of a high overhead

hazard indicates higher values calculated for the overhead hazard and serves as additional information

for the challenging or the complex class. This novel approach goes beyond the original ATES concept of

desecrated classes.

77



Figure 29: The first map visualizes the calculated overhead hazard, ranging from low to high. The second map represents
the less conservative alpha angle thresholds used for the ATES classification. The third map, despite the overhead hazard
as an overlay for the ATES classes challenging and complex.
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Figure  30: Final ATES map produced with the less conservative alpha angle thresholds for the ATES classifier. Areas
situated below 1,500 m a.s.l. are devoid of ATES classification.
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4.3.3 Alternative avalanche terrain classification approaches

ATES terrain classification is just one of the applications of the model chain data. The results can be

merged to generate alternative cartographic outputs depending on the specific context and requirements.

Similar to the methodology used by Harvey et al.  (2018), specific focus maps can be developed by

integrating  various  parameters,  such as  PRAs associated  with  alpha  angles  or  the  travel  length of

modeled avalanches. For example, Figure 31 demonstrates the combination of PRAs and alpha angles of

modeled avalanches. Regarding the ECDF analysis, the map can also help assess the likelihood of areas

being affected by avalanches of different sizes.

Figure  31: Avalanche release and runout indication map, displaying the PRA model results and the avalanche mobility
results as runout angles.
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5 Conclusion and outlook
The classification and delineation of avalanche-prone terrain is a valuable safety tool for individuals and

organizations.  It  facilitates  efficient  communication,  planning,  and  execution  of  recreational  or

professional activities in alpine environments (McClung & Schaerer, 2006). Over the past two decades,

several classification schemes and resulting map products have been published. The focus of these maps

is  the  classification  of  avalanche  terrain  to  improve  and  contribute  to  more  safe  navigation  in  the

backcountry (Campbell & Gould, 2013; Harvey et al., 2018; Larsen et al., 2020; Schmudlach & Köhler,

2016; Schumacher et al., 2022; Statham et al., 2006). However, these products are either unavailable for

Austria (Harvey et al., 2018; Larsen et al., 2020; Schumacher et al., 2022) or their workflow, or certain

components made off, are not openly accessible (Harvey et al., 2018; Schmudlach & Köhler, 2016). The

limitation  of  accessibility  hinders  the  thorough  application  and  investigation  of  these  products  for

Austria. Therefore, the open-source approach developed by Larsen et al.  (2020) has been assessed and

applied to a study area in Austria in this study. The model chain encompasses three sequential steps,

each progressively building upon the preceding one. Each model step has been subjected to individual

testing and discussion in alignment with its respective sub-objectives. The discussed model chain steps

involve and reveal the following:

(1) PRA delineation

The sub-objective for the PRA delineation is the parameterization of the PRA model  (Sharp, 2018;

Sykes et al., 2022; Veitinger et al., 2016) to realistically delineate PRAs in the study area (Section 4.1).

The study compared three PRA models against the CH ORA Dataset and determined that the binary-

rugg and no-rugg models outperform the fuzzy-rugg model, utilizing statistical skill scores (HSS and

TSS). The application of both the no-rugg and binary-rugg models to the study area reveal two key

insights: 

Firstly, when applied to the study area, it highlights the potential advantages of incorporating a PCC

Forest Layer; however, a more comprehensive analysis is suggested. The derivation of this layer from the

1m DTM and 1m DSM is based on the assumption that differences greater than 5 m between the two

layers  indicate  the  presence  of  forests.  However,  this  approach  may  not  accurately  reflect  current

conditions, as it captures only a specific moment of exploration data. Since forests undergo dynamic

changes over time, this method may only partially capture their variability. Additionally, it is worth

mentioning that this derivation does not account for distinctions between forest type, such as deciduous

and evergreen trees. 
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Secondly, incorporating a binary ruggedness mask is considered plausible, as it excludes rugged terrain

features that are less susceptible to avalanche release. 

As a result, the binary-rugg model with the PCC Forest Layer is selected for integration into the model

chain. A PRA a threshold of 0.3 is determined to represent a well-balanced choice, given the inability to

identify a discrete threshold. The total area of delineated PRAs covers 33.31% of the study area.

(2) Avalanche mobility model

The assessment of the data-based avalanche mobility model Flow-Py (D’Amboise, Neuhauser,  et al.,

2022)  for  regional  runout  modeling  size  3  avalanches  for  the  ATES terrain  classification  has  been

conducted in Section 4.2.

In  summary,  the  assessment  of  back-calculated  avalanches  from  the  AUT AWS Reference  Dataset

highlights the impact of slope morphologies on Flow-Py results.  An exponent value of 8 provides a

balanced outcome for various slope forms.  The selection of  the  alpha angle for the model  chain is

anchored at 26°. This choice corresponds to a very low RMSE, encompassing 57% of modeled avalanches

within the size 3 classification range for travel length, and is consistent with the mean alpha angle of the

AUT AWS avalanche reference data.

Valuable improvements could arise from identifying avalanche paths within Flow-Py simulations. This

path identification could facilitate the subsequent segmentation of PRAs, which, once refined, might

serve  as  input  for  process-based  simulation  tools  rather  than  the  data-based  Flow-Py  model.

Furthermore, the identification of avalanche paths paves the way for the implementation of an alpha-beta

model.  Introducing  an  alpha-beta  model  has  the  potential  to  enhance  the  reliability  of  simulation

outcomes across various slope shapes. As this model includes an additional topographical parameter, the

beta angle,  which is recognized for its increased correlation in predicting avalanche runout  (Lied &

Bakkehøi, 1980; Toft et al., 2023).

A consistent pattern emerges in the comparison between modeled affected area and impact pressure:

overestimations in impact pressure and affected area counts are roughly double those in travel length

counts across varying alpha angles. These discrepancies can be attributed to several limitations:

The challenges in selecting size 3 avalanches involve determining their release size and deriving volume

by multiplying an average release height to align with the EAWS size range. Additionally, this selection

approach overlooks potential entrainment processes.

Compared to travel length, a persistent trend of overestimation in impact pressure is observed. This

could relate to the calculation of impact pressure. The calculation of the impact pressure is based on the

82



velocity.  The  velocity is  derived from the kinetic  energy height  (z  delta)  after  Körner  (1980).  The

frictional dissipation is determined by geometric relations of the alpha angle concept (Heim, 1932; Lied

&  Bakkehøi,  1980) based  on  the  law  of  conservation  of  energy  and  Coulomb  friction  of  a  block

movement. This friction term can also be replaced or enhanced by other friction models, for instance, the

Voellmy friction (Voellmy, 1955). Furthermore, an assumed density of 200 kg m ³ has been applied for⁻
calculating  the  impact  pressure,  which  correlates  to  the  average  release  density  for  slab  avalanches

(McClung & Schaerer, 2006). This could deviate from actual circumstances. Moreover, the current size

classification for impact pressure considers the 99th percentile across the entire avalanche path, while an

alternative method could involve relative assessment at specific sections like the runout zone, as it is

common for  general  avalanche hazard mapping for settlements and infrastructural  facilities  (Rudolf-

Miklau & Sauermoser, 2011).

In conclusion, determining a suitable parameterization for the Flow-Py avalanche mobility model to fit

avalanche size 3 is a challenge that is not straightforward. By evaluating three OA, a conservative alpha

angle of 26° is determined. This alpha angle serves a dual purpose: as a parameterization for the Flow-

Py model within the model chain and a threshold for distinguishing between simple and challenging

terrain.  Furthermore,  the  assessment  highlighted  the  complexity  of  classifying  avalanches  into  size

classes. The same modeled avalanche could fall into several size classes based on different factors such as

travel length, impact pressure, and affected area.

(3) ATES classification

The objective for the last model chain step, the ATES classifier (Larsen et al., 2020; Schumacher et al.,

2022), is the application and adaptation for size 3 avalanches in the study area (Section 4.3). The ATES

classifier is the last step of the model chain. It incorporates the results of the PRA model (Veitinger et

al., 2016) and the avalanche mobility model, Flow-Py (D’Amboise, Neuhauser, et al., 2022). In addition,

the PCC Forest Layer, derived in Section 4.1.2, and a Glacier Layer, derived in Section 3.3 have been

incorporated into the ATES terrain classification. 

The PCC Forest Layer (percentage per canopy cover) is based on the approach presented by Schumacher

et al. (2022). The derivation of this layer from the 1m DTM and 1m DSM is based on an assumption

and  may  not  accurately  reflect  current  conditions,  as  mentioned  above.  Regarding  the  ATES

classification, the inclusion of forests in the ATES classification highlights the necessity to integrate

forests into the avalanche mobility model. The mitigating effects of forests on slopes or runouts below

forests are not considered and, therefore, not reclassified, which is inconsistent.
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In the study area, around 5% (34.3 km²) is glacier-covered. Due to their prevailing gentle slopes, glaciers

are often classified as simple terrain. However, glaciers are excluded from the simple terrain class, as per

Statham et al.  (2006). To avoid misinterpretations, the ATES classifier designates glacier-covered areas

as at least challenging terrain. Although the Glacier Layer lacks crevasse data and uses slightly dated

information from 2015 (Buckel & Otto, 2018), it is still valuable for ATES classification.

The overhead hazard layer shows plausible results in its first  visual assessment but requires further

investigation  for  integration  into  the  ATES  classification.  The  potential  inclusion  of  the  layer  as

experimental continuous raster data could provide valuable insights into the challenging and complex

classes. For further investigation, the routing flux could be considered instead of cell count, as it can be

correlated to a mass assumption (D’Amboise, Teich, et al., 2022). This information could pertain to the

intensity of avalanche burial. Combined with z delta, which indicates avalanche impact intensity, the

alpha  angle  offers  insight  into  the  frequency,  which  could  be  additional  information  to  the  ATES

classification.

Addressing the challenge of setting alpha angle thresholds for the ATES classifier, an analysis of over

18,000 avalanches from the CH SPOT6 Avalanche Reference Dataset has been conducted, concerning

previous findings of the avalanche mobility model. The dataset reveals a weak correlation between the

alpha angle and avalanche size. This led to an enlarged interpretation of the alpha angle thresholds for

the ATES classifier, utilizing the empirical cumulative distribution function (ECDF). In correlation with

the findings of the assessment of the avalanche mobility model, more conservative and less conservative

alpha angle thresholds were determined. The 15th percentile of the ECDF aligns with approximately 26°

and the 50th percentile with around 32°. The less conservative alpha angle of 36° aligns with the 75th

percentile. These percentiles aid in the interpretation of the thresholds for the ATES classification. The

two alpha angle thresholds establish the range for the challenging terrain class. The area between the

runout, determined by the two alpha angles, is considered challenging terrain, while terrain below this

range is classified as simple terrain, and terrain above the range is classified as complex or extreme.

The qualitative comparison between the conservative and less conservative scenario highlights notable

differences in the area distribution of ATES classes due to the modification of the alpha angle thresholds.

Using the less conservative approach results in a more differentiated and balanced classification that is

particularly valuable when dealing with the pronounced variability of the inhomogeneous high alpine

geomorphology  of  the  study  area.  The  less  conservative  scenario  expands  the  representation  of

challenging terrain while limiting the complex areas. The comparison of mapped avalanche runout and

size estimates (AUT SPOT6 Avalanche Reference Dataset) emphasizes this differentiated and balanced

classification  and  demonstrates  the  suitability  of  the  less  conservative  approach.  Although  the  less
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conservative scenario proves more reasonable overall, the dynamic nature of avalanches underscores that

both scenarios have their place in addressing varying avalanche problems and danger levels.

In addition,  the applied model  chain illustrates the versatility of  the resulting data.  Similar  to the

methodology used by Harvey et al. (2018), specific focus maps can be developed by integrating various

parameters, such as PRAs associated with alpha angles or the travel length of modeled avalanches. 

In conclusion, the application and testing of the autoATES terrain classification to a study area in

Austria  are  successfully  demonstrated.  The  individual  sub-steps  of  the  model  chain  yield  plausible

outcomes  yet  highlight  certain  aspects  that  warrant  further  discussion  or  suggest  the  potential  for

additional research for improvement. Furthermore, it is essential to emphasize that ATES terrain maps,

despite their static nature, are confronted with a profoundly dynamic phenomenon - avalanches, which

present  challenges in precise  spatial  and temporal  classification.  Future  enhancements could include

dynamic mapping that considers prevailing avalanche problems or the avalanche danger level to further

improve terrain classification and compensate the dynamic nature of avalanches.
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