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Abstract

This work presents optimal sampling schemes for forest inventory. The sampling

procedures are optimal in the sense that they minimize the anticipated variance for

given costs or conversely. The anticipated variance is de�ned as the average of the

design-based variance under a simple stochastic model for the location of the trees.

This location model, the local Poisson Forest, assumes that trees are uniformly

and independently distributed within a given number of strata. It is then possible

to derive analytically the optimal inclusion rules for all possible combinations of

sampling schemes involving one-phase or two-phase procedures, likewise one-stage

or two-stage, and this for both simple random sampling as well as cluster random

sampling. The optimal inclusion rules are either probability proportional to size,

in one-stage procedures, or a combination of probability proportional to prediction

and probability proportional to error, in two-stage procedures. Optimal feasible

approximations of the exact optimal sampling schemes are also given as well as the

relative eÆciencies of all optimal schemes.

Zusammenfassung

Diese Arbeit stellt optimale Stichprobenpl�ane f�ur die Waldinventur dar. Op-

timal bedeutet, dass die antizipierte Varianz bei vorgegebenen Kosten minimiert

wird, oder umgekehrt. Die antizipierte Varianz is das Mittel der klassischen Stich-

probenvarianz unter einem stochastischem Modell, welches die r�aumliche Lage der

B�aume erzeugt. In diesem r�aumlichen Modell, das lokale Poisson Modell, sind die

B�aume unabh�angig und uniform innerhalb Straten verteilt. Die optimalen Auf-

nahmewahrscheinlichkeiten k�onnen analytisch abgeleitet werden, und zwar f�ur alle

Kombinationen von einphasigen, zweiphasigen, einstu�gen und zweistu�gen Ver-

fahren, sowohl f�ur einfache als auch f�ur Traktstichproben. Die optimalen Pl�ane

beruhen auf Aufnahmewahrscheinlichkeiten, welche, bei einstu�gen Verfahren, di-

rekt proportional zur Zielgr�osse sind, oder, bei zweistu�gen Verfahren, proportional

zu einer Prognose der Zielgr�osse und zum Prognosefehler. Optimale praktisch

durchf�uhrbare Approximationen der exakt optimalen Verfahren werden ebenfalls

gegeben, wie auch deren relativen EÆzienz.

R�esum�e

Ce travail pr�esente des plans d'�echantillonnage optimaux pour l'inventaire des

forêts, au sens que la variance anticip�ee est minimale pour un coût donn�e, ou in-

vers�ement. La variance anticip�ee est la moyenne de la variance sous le plan de

sondage par rapport �a un mod�ele stochastique pour la distribution spatiale des ar-

bres. Ce mod�ele, le mod�ele poissonien local, suppose que les arbre sont r�epartis

ind�ependamment et uniform�ement �a l'int�erieur de strates. Il est alors possible de

calculer analytiquement les probabilit�e d'inclusion optimales pour toutes les com-

binaisons d'inventaires �a une ou deux phases, un ou deux degr�es, ainsi que pour les

�echantillonnage simples ou en satellites. Les plans optimaux conduisent �a des prob-

abilit�es d'inclusion proportionnelles, soit directement �a la grandeur cible, dans les

plans �a un degr�e, soit, dans les plans �a deux degr�es, conjointement proportionnelles

�a une pr�evision de la grandeur cible et �a l'erreur de cette pr�evision. Il est possible

de donner les approximations optimales et r�ealisables des plans optimaux exacts et

de calculer les eÆcacit�es relatives.
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Chapter 1

Introduction

1.1 Historical background and scope

Inventories are the bases for forest management planning, which itself can be

de�ned as the optimal utilization, under given constraints, of forest resources. Man-

agement requires therefore to collect, summarize and interpret information, i.e. to

perform statistical work. The development and improvement of forest management,

which began towards the end of the Middle Ages, is consequently strongly depen-

dent on the parallel evolution of inventory techniques and statistical methodology,

in particular sampling techniques, to the degree that today forest inventory is simply

unthinkable without them.

Over the last 80 years, the number of techniques, their complexity, the demand

for more and better information and �nally the mere complexity of the required

investigations seem all to have followed an exponential growth rate. This has led

to a large number of specialized procedures, scattered over an immense literature,

and also some uncertainties at the conceptual level. There was therefore a need to

clarify and summarize the fundamental statistical concepts and tools required to

perform inventories. The books of H.T. Schreuder et al [20] and of de Vries [26]

were in this respect highly welcome. At a more theoretical level D. Mandallaz [10],

considered design-based and model-based inference in a framework tailored to forest

inventory, as well as geostatistical techniques [12].

If there is now a wide choice of forest inventory techniques to provide the in-

formation required by forest management planning, the diÆculty has moved to a

higher level: how do we plan forest inventories? More precisely, which techniques

should we use and when to provide the required information in the most cost eÆ-

cient way. Of course, this problem has received much attention in classical sampling

theory, as used primarily in socio-economical studies, from J. Neyman [17], F. Yates

[27], W.G. Cochran [3] and C.E. Saerndal's et al monumental work [21], and also in

the forest sampling literature but in a less sytematic way and at a rather elemen-

tary mathematical level. In view of the tighter economical constraints imposed on

government spending in general and forest services in particular, forest inventorists

should whenever possible choose the most eÆcient sampling techniques available.

The purpose of this technical report is to present a simple and yet fairly general

statistical framework for the optimization of forest inventories, which rests upon

the concept of anticipated variance. This concept has played a key role in modern

sampling theory, but so far seems to have been ignored from forest inventorists.

The main idea is to minimize the anticipated variance for given expected costs or

to minimize the expected costs for a given anticipated variance. The anticipated
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variance is taken with respect to a simple stochastic model for the location of the

trees: it is assumed that the forest is partitioned in strata, in which the trees are

independently and uniformly distributed. This model allows for relatively simple

analytical rules with a clear intuitive and plausible background. The resulting

optimal rules are always a combination of probability proportional to either size,

prediction or error. The prior information required for designing an optimal scheme

is surprisingly simple. Preliminary results based on the anticipated variance were

brie
y outlined by the author in his inaugural lecture [13]; this work gives now a

detailed and rigourous treatment.

It can be expected that the mathematically optimal sampling schemes are prob-

ably good solutions, and certainly better than sampling schemes departing strongly

from them. It must be emphasized, however, that the optimality is only asymptotic

and therefore approximately reached only for forest inventories carried out on large

surface areas. Validation of the theory by simulations and illustration by cases

studies are currently under way and will be presented in a further report.

This work deals with sampling schemes with known inclusion probabili-

ties, having one or two phases and one or two stages, either with simple

random sampling or cluster random sampling. It addresses primarily forest

inventories performed in one single time point.

Given time, the reader with an intermediate background in probability theory

and calculus should be able to fully understand most of the concepts and results

which are presented in an almost completely self-contained manner. For a �rst

reading we recommend to concentrate on the chapters dealing with simple random

sampling, since cluster random sampling is technically more diÆcult, though the

main concepts remain the same. We assume that the reader is familiar with the

standard notation of elementary set theory.

1.2 Terminology and formulation of the inventory

problem

We now proceed to de�ne the terminology and notation which will be used through-

out this work.

We consider a forest area F , which is assumed to be a subset of the Euclidean

plane <2. In practice this implies that F is already the suitable projection of a

real forest, e.g. parallel projection whenever the earth curvature can be neglected;

we shall not deal with the approximate practical solutions, like slope correction, to

achieve this. The surface area of F is denoted by �(F ), usually in ha.

We consider a well de�ned population P of N trees lying in F ; the trees are

identi�ed by their labels i = 1; 2 : : :N . The position vectors of the trees are denoted

by ui 2 <2 ; i = 1 : : : N . To simplify the notation we shall write i 2 G instead of

ui 2 G � F , the surface area of an arbitrary set G is always denoted by �(G).

The response variables of interest measured or observed at a given time point

on each tree in P are denoted by Y
(m)
i ;m = 1; : : : p, and are assumed to be error-

free. Whenever confusion can be excluded from the context we shall drop the upper

index (m). The response Y
(m)
i can be a real or integer number in the usual sense,

e.g. the timber volume, the basal area, Yi � 1 for the number of stem, or a set of

binary 0; 1 variables coding categorical variables like species, state of health etc., or

any variable de�ned with the previous ones. We take here obviously the abstract

view that trees are dimensionless points in the plane in which the response variables

Y
(m)

i are de�ned. Though we shall only deal, as already mentioned, with inventories

performed in one time point, it is instructive to note that the response variable, say

Y
(2)

i , can be the change of another variable, say Y
(1)

i over a given time period: this
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is particularly useful in the context of continuous forest inventories with permanent

plots.

Given any set G � F the objectives of forest inventory, in the restricted sense,

is to get information on densities, totals or ratios, de�ned according to:

�Y
(m)

G =
1

�(G)

X
i2G

Y
(m)
i

Y
(m)

G =
X
i2G

Y
(m)

i

Rl;m =
�Y
(l)

G

�Y
(m)

G

=
Y
(l)

G

Y
(m)

G

(1.1)

possibly for many di�erent sets G and in several time points.

If the set G is small a full census is feasible and is often to be preferred to a

sample survey. However, in most instances a full census is not feasible for several

G's, and almost never for the complete forest area F . Hence, one must use sampling

techniques, which generally perform well in F but not necessarily so for smallG � F ,

which is known as the problem of small area estimation.

In this work we shall have primarily in mind the optimization of forest inventory

for large F . Actually the results have a simple analytical form only when �(F )!1.

We shall restrict the discussion to the optimal estimation of densities, because it

essentially implies the optimal estimation of total and also because ratios are usually

not the quantities of primary interest. For an easier intuitive understanding it is

best to have in mind the overall timber volume per unit area as the main objective

of the inventory.
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Chapter 2

De�nition of Sampling

Schemes

2.1 Generalities

In this chapter we shall present the most important concepts and tools of forest

sampling in a framework general enough to cover the majority of the situations

encountered in practice. The terminology being unfortunately not uniform the

reader should carefully look at the various de�nitions used in the literature.

Most modern forest inventories are so called combined forest inventories, i.e.

combining information obtained directly in the forest, by means of terrestrial plots,

and auxiliary information obtained by remote sensing, i.e. aerial photographs or

satellites images, or any other sources, like thematic maps or previous inventories.

In short and in this work, the auxiliary information is collected in the �rst phase,

usually with a very large sample (formally even in�nite when thematic maps are

used). The second phase collects the terrestrial information on a subsample

of the �rst phase sample.The terrestrial information itself is collected either by

one-stage procedures, in which trees are selected to obtain directly the response

variable of interest, or by two-stage procedures, in which the �rst-stage trees are

selected to obtain an approximation of the response variable and a subsample of the

�rst-stage trees, the second-stage trees, is drawn to obtain the exact response. For

each of the above 4 possibilities one can use simple random sampling, in which

the information is collected in single points uniformly and independently distributed

in the forest area, or cluster random sampling, in which the information is

collected in clusters (set of point with a �xed geometrical structure), whose origins

are drawn by simple random sampling; the number of points per cluster falling into

the forest area is also a random variable. The theory of cluster sampling presented

here di�ers from the existing literature, we believe it is both simpler and better.

In practice random sampling is rarely if ever used, and most inventories rely on

systematic grids, eventually with random start or orientation. Most forest inven-

torists treat points lying on systematic grids as if they were random. This is to

a large extent acceptable for point estimates, less so for variance estimates, par-

ticularly in small area estimation. When the size of the domain under study is

much larger than the range of the spatial correlation, geostatistical variance esti-

mates are generally close to their design-based counterparts, see [12] for theoretical

and empirical evidence. Unfortunately the optimization of sampling schemes in the

geostatistical framework is, because of mathematical complexity, up to now by and

large an open problem. Since this work addresses primarily the optimization of

large forest inventories, it can be reasonably assumed that the resulting guidelines
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are also valid for systematic grids and therefore for practical work.

The next sections of this chapter will give rigorous de�nitions and results in a

modern framework, inspired primarily from [10], which in turn adapted to forest

inventory the pioneer work of C.E. Saerndal, now available in the excellent book

[21]. It di�ers from the standard books of H.T Schreuder et al [20] and de Vries [26],

which for the most part rest upon the classical sampling theory for �nite populations

as formulated in the famous and paradigmatic book of W.G. Cochran [3].

2.2 One-phase one-stage simple random sampling

scheme

Throughout this work we shall use the symbols P , E, V , COV for probability,

expectation, variance and covariance. To have a better intuitive understanding of

the general procedure let us consider the most simple case �rst.

We draw a random point x uniformly in F , which means that for any set B � <2

the probability that the point x falls into B is given by

P (x 2 B) = � (B \ F )
�(F )

(2.1)

Trees are selected if they are within the circle Kr(x) with �xed radius r centered

in x. We now de�ne the random indicator variables:

Ii(x) =

(
1 if i 2 Kr(x)

0 if i 62 Kr(x)

and the N circles Ki(r) with constant radius r centered on the trees. By symmetry

the ith tree is in the circle Kr(x) if and only if the random point x is in the ith

circle Ki(r), hence we have

Ii(x) = 1, x 2 Ki(r)

The inclusion probability of the ith tree is consequently given by

�i = P (Ii(x) = 1) = Ex (Ii(x)) =
� (Ki(r) \ F )

�(F )

Up to boundary e�ects at the forest edges this inclusion probability is constant. For

a given variable Y , and neglecting boundary e�ects, it is natural to de�ne the local

density Y (x) at the point x as the sum of the Yi over the trees selected, divided

by the constant surface area of the circle Kr(x) that is to set

Y (x) =
1

�(F )

NX
i=1

Ii(x)Yi

�i

This dual consideration leads immediately to a far reaching generalization.We can

assign to each tree its circle Ki, whose radius depends on the label i and therefore

eventually on the Y
(m)
i and ui; for instance it might depend on diameter and species.

As a matter of facts, circles are convenient but not compulsory: squares, rectangles

or any shape with �xed orientation will do. The famous angle count technique with

limit angle � assigns to each tree with diameter (in cm) at breast height Di a circle

with radius (in m)
Di

2
p
k
; where k = 104 sin2(

�

2
)
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In �eld work the tree is included in the sample if its apparent diameter viewed from

the point x (angle �i) is larger than the limit angle �. The widely used concentric

circles techniques can be viewed as a discrete approximation of the angle count:

trees are included in the sample if they lie in the corresponding circles centered

on the point x and their diameters are larger than the corresponding thresholds.

Usually the radii of the circles take 1; 2, eventually 3 but rarely if ever more values.

We therefore de�ne in a general manner the inclusion indicator variables as

Ii(x) =

(
1 if x 2 Ki

0 if x 62 Ki

(2.2)

and the inclusion probabilities for a single tree as well as for any pair of trees

according to:

�i = P (Ii(x) = 1) = Ex (Ii(x)) =
� (Ki \ F )
�(F )

�ij = P (Ii(x)Ij(x) = 1) = Ex (Ii(x)Ij(x)) =
� (Ki \Kj \ F )

�(F )

(2.3)

In this context the local density is the random variable de�ned by:

Y (x) =
1

�(F )

NX
i=1

Ii(x)Yi

�i
(2.4)

Note that Y (x) is, but for the constant �(F ), the Horwitz-Thompson estimate

[3, 10, 20, 21].

Remark:

� The surface area of the forest �(F ) appears only formally in formula 2.4.

For e�ective calculation we need only to know �(F )�i, which by 2.3 is equal

to the surface area of the circle, eventually corrected for boundary e�ects,

i.e. �(Ki \ F ). We prefer to work with probabilities instead of surface areas

because of the clear probabilistic background of the problem and the link with

the mathematical statistical literature.

Given the �i the local density Y (x) is a function Y (:) x 2 F 7! Y (x) which by

construction satis�es

Ex (Y (x)) =
1

�(F )

Z
F

Y (x)dx =
1

�(F )

NX
i=1

Yi = �YF (2.5)

In other words, the spatial average of the local density is equal to the true density

of the response variable. The above formulation transforms the problem of

estimating a sum over a �nite population P of trees into the problem of

estimating the integral of a function over a domain; in other words, one

can view Y (x); x 2 F as an in�nite population Y . The in�nite population

framework is, in my opinion, simpler and better suited for forest inventory than

the other approaches based on various �nite populations; this is particularly true

for cluster sampling as de�ned in section 2.3 and unavoidable for model-dependent

and geostatistical techniques, see [10, 12]; further justi�cations have been given by

Eriksson in [5, 6]. Given the inclusion circles Ki, the function Y (:) is well de�ned

and suÆces to construct all the statistical quantities required for the estimation of
�YF , and the trees can vanish behind the scene. On the other hand, if the question

is which function Y (:) should be used and when, then we have to go back to the Ki
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and therefore to the trees, which we shall do in chapters 3, 4 and 5. It is unfortunate

that standard sampling theory has been, up to a certain degree, misused, and still

is, as a corset for forest inventory: �nite populations are simply not well tailored

for the intrinsically geometrical nature of the problem.

The crucial di�erence between the design-based and the model-dependent

approaches is the following: in the design-based approach Y (x) is a random variable

because the point x is random, while the forest is �xed, i.e. N; Y
(m)
i ; ui are �xed,

whereas in the model-dependent framework, including geostatistics, x is given and

the actual forest is considered as the realization of a complex stochastic process;

Y (x) is then random because the N; Y
(m)

i ; ui are random.

One important advantage of the sampling schemes discussed in this work and of

the Horwitz-Thompson estimator 2.4 is that the inclusion probabilities are known

for the units (trees) drawn, and that we do not have to know them for the units

not drawn. Other sampling schemes do not have this property, for instance all

those relying on nearest neighbors methods (one would need actually a full census

to known the inclusion probabilities, which completely defeats the point of forest

sampling). In my opinion these techniques, though popular, should only be used in

very special situations, for instance when the interest is focused on rare events.

Up to now the individual inclusion probabilities �i are completely arbitrary,

whereas the �ij depend on the �i and by 2.3 on the geometry of the forest. The

number of trees drawn from the point x is the random variable:

n(x) =

NX
i=1

Ii(x) Ex(n(x)) =

NX
i=1

�i (2.6)

For future use we give the following identities which follow directly from the de�ni-

tions

Ex(n
2(x)) =

NX
i=1;j=1

�ij ; �ii := �i

NX
j=1;j 6=i

�ij = �i (Ex(n(x)jIi(x) = 1)� 1)

(2.7)

We now consider a set s2 of n2 points drawn uniformly and independently of

each other in the forest area F . The one-phase one-stage estimate for simple

random sampling is de�ned by:

bY =
1

n2

X
x2s2

Y (x) (2.8)

By 2.3 the design-based variance is easily found to be

V (bY ) = 1

n2�2(F )

n NX
i=1

Y 2
i (1� �i)

�i
+

NX
i6=j

YiYj(�ij � �i�j)

�i�j

o
=

1

n2
Vs (2.9)

where

Vs =
1

�(F )

Z
F

�
Y (x) � �Y

�2
dx

is the variance of the local density under simple random sampling. In the above

equation and thereafter all sums written as

KX
i6=j

aiaj

7



are always to be understood as

X
1�i;j�K

aiaj �
KX
i=1

a2i

unless explicitly stated otherwise.

Since the Y (x) are identically and independently distributed we obtain by �rst

principles immediately the following unbiased estimate of variance

bV (bY ) = 1

n2

1

n2 � 1

X
x2s2

�
Y (x) � bY �2 (2.10)

In the de�nition of the local density Y (x) the inclusion probabilities �i do already

take into account boundary e�ects. An alternative approach [10] is to draw the

random point x uniformly in a domain eF � F such that 8i Ki � eF . There are

then no boundary e�ects, but we get instead

E
x2eF (Y (x)) =

1

�( eF )
Z
eF
Y (x)dx =

1

�( eF )
NX
i=1

Yi

The theoretical variance 2.9 depends via the �ij on the spatial structure of

the forest: i.e. all other things being equal, displacing the trees will change the

variance, which, as we shall see, is the source of great diÆculties, and is one of the

main reasons to introduce the concept of anticipated variance.

For completeness we brie
y outline the standard set-up of sampling theory and

its relation to forest sampling.

Given a population P of N individuals ui; i 2 f1; 2 : : : ; Ng a sampling design p

is a probability function de�ned on all 2N subsets of P . Obviously, in practice,

p(s) = 0 for most subsets s and the empty set has probability zero in this set-up,

i.e. p(;) = 0. In forest sampling, however, it may well happen that from a point

x no tree is drawn. Formally we have drawn the empty set ;, and this happens

with probability p(;) = PfIi(x) = 0;8ig, in such a case Y (x) = 0. Note also that

in standard sampling theory N is known (most sampling schemes used rests upon

a complete list of the individuals), whereas it is generally unknown, but �xed, in

forest sampling. Let us denote by C(i) the set of all samples s containing the unit

ui, and by C(i; j) the set of all samples s containing the pair fui; ujg. Since only
one sample s is drawn, the inclusion probabilities can also be de�ned as

�i =
X

s2C(i)
p(s)

and

�ij =
X

s2C(i;j)
p(s)

Most sampling design used in standard sampling theory are non-informative, i.e.

p(s) does not depend explicitly on the response variable Yi for i 2 s if p(s) > 0 (more

generally, given a set of auxiliary variables Z
(k)
i then, conditionally on the values

taken by the Z
(k)
i , the Ii and Yi are independent, see [2]). This concept is important

when expectations with respect to model and design probabilities are required (for

non-informative designs the order of the expectations is irrelevant). In this sense

the angle count method described above is an example of an informative design,

at the tree level, for the basal area. In the in�nite population set-up, however,

we are sampling the function Y (x) with uniform sampling and the design is non-

informative at the plot level (the design-probability density function dx
�(F )

does not
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depend on the value Y (x)). In contrast to classical sampling theory where one draws

a unique and suÆciently large sample of units for which the �i; �ij are usually known

prior to sampling (list sampling), forest sampling draws a suÆciently large number

of independents points x 2 s2, each of them selecting a relatively small random

number of trees , for which the �i can be exactly determined a posteriori; �ij could

be in principle calculated; this is however not necessary since, as we have seen, one

can obtain an unbiased estimate of the theoretical variance by �rst principles.

Having de�ned the main concepts we can now proceed further to cluster sam-

pling.

2.3 One-phase one-stage cluster random sampling

scheme

A cluster of (nominal) sizeM is determined by a �xed set ofM vectors el 2 <2; l =

1; : : :M . Without loss of generality we shall assume that one of the el, say e1 is the

null vector.

A correct de�nition of cluster sampling requires some technical details (which

are crucial when designing simulations!). For any set A � <2 let us denote by Al

the set A+ el = fxj9a 2 A; x = a+ elg. We make the key assumption that the set

A is large enough to ensure F � Al l = 1; : : :M . For instance one could take any

set A containing the set [Ml=1fF � elg.
We now draw a random point x uniformly in A. The points xl = x + el are

obviously uniformly distributed in Al. With the above convention the origin x

of the cluster is always the point x1. We �rst note that given xl 2 F , xl is

uniformly distributed in F . Indeed, for any set B 2 <2 we have, as F � Al and

�(Al) = �(A) 8l

P (xl 2 Bjxl 2 F ) = P (xl 2 B \ F )
P (xl 2 F ) =

�(B\F\Al)

�(Al)

�(F\Al)

�(Al)

=
� (B \ F )
� (F )

(2.11)

by 2.5 and the above we also getEx (Y (xl)jxl 2 F ) = �Y . We introduce the indicator

variable of the set F (the de�nition is obviously valid for any set) as

IF (x) =

(
1 if x 2 F
0 if x 62 F

The number of points per cluster falling into the forest area is the random variable

de�ned by

M(x) =

MX
l=1

IF (xl) (2.12)

whereas the local density de�ned at the cluster level is given by

Yc(x) =

PM

l=1 IF (xl)Y (xl)

M(x)
(2.13)

By using 2.11 and 2.5 we get the following important relations:

ExM(x) =

MX
l=1

P (xl 2 F ) =
MX
l=1

� (F \ Al)

� (Al)
=M

�(F )

� (A)
(2.14)
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Ex

 
MX
l=1

IF (xl)Y (xl)

!
=

MX
l=1

P (IF (xl) = 1)Exl (Y (xl)jxl 2 F )

=

MX
l=1

� (F \ Al)

� (Al)
�Y =M

�(F )

� (A)
�Y

(2.15)

If we now draw n2 points x 2 s2 independently and uniformly in the set A we

generate n2 clusters of e�ective sizes M(x). The one-phase one-stage estimate

for cluster random sampling is de�ned by

bYc = P
x2s2 M(x)Yc(x)P

x2s2 M(x)
(2.16)

Note that 2.16 is formally the average of all Y (xl) ignoring the cluster structure and

that it is the ratio of two random variables, which explains why cluster sampling is

technically slightly more complicated than random sampling. Dividing numerator

and denominator of 2.16 by n2 we have by 2.15 and 2.14

lim
n2!1

Ex2A( bYc) = Ex

�PM

l=1 IF (xl)Y (xl)
�

ExM(x)
= �Y

At this point it is important to realize that Yc(x) does not yield in general an

unbiased estimate, not even asymptotically, i.e.

lim
n2!1

Ex2A
1

n2

X
x2s2

Yc(x) 6= �Y

More precisely one can show [10] that the cluster sampling point estimate 2.16 is

asymptotically unbiased in the sense that

Ex2A bYc = �Y +O
�
n�12

�
(2.17)

and that its theoretical asymptotic variance is given by

V ( bYc) = 1

n2

ExM
2(x)(Yc(x) � �Y )2

E2
xM(x)

+O
�
n�22

�
(2.18)

According to [10] the variance can be estimated asymptotically with a bias of order

O(n�22 ) by bV ( bYc) = 1

n2(n2 � 1)

X
x2s2

�
M(x)
�M2

�2 �
Yc(x)� bYc�2 (2.19)

where �M2 =
1
n2

P
x2s2 M(x) is the average number of points per cluster falling into

the forest area. Note that void clusters, i.e. M(x) = 0, do not contribute to the

point estimate, nor to the variance.

For a better intuitive understanding we quote a result given in [10], which ex-

presses the variance under cluster sampling as a function of the variance under

simple random sampling Vs, the intra-cluster correlation coeÆcient � and a term

describing the topological characteristics of the forest, namely:

V ( bYc) = 1

n2ExM(x)
Vs

�
1 + � (ExM(x)� 1) + �

VxM(x)

ExM(x)

�
+ O(n�22 ) (2.20)

where

� =
Ex
PM

l6=m IF (xl)IF (xm)
�
Y (xl)� �Y

� �
Y (xm)� �Y

�
VsExM(x) (M(x)� 1)

(2.21)
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One can estimate � by equating a sample version of 2.20 and 2.19.

In general the intra-cluster correlation coeÆcient � is positive and the variance

under cluster sampling is larger than under simple random sampling, obviously

while keeping constant the function Y (:) as well as the total number of points, i.e.

n2;simple = n2;clusterExM(x). The in
ation factor is given by 2.20. Formula 2.20

generalizes a classical result, in which the cluster size is kept constant [3], which is

of course not suitable for forest inventory. The reason for using cluster sampling

is the reduction of transport costs, a matter we shall discuss later. Finally, let us

note that one can view the points of a systematic grid falling into the forest area

as a single very large cluster, which explains why one cannot estimate the design-

based variance with systematic grids as used in forest inventory. This also implies

that density estimates are only asymptotically unbiased, in contrast to estimates

of totals, see [10] for more details; in practice the �nite sample bias seems to be

negligible.

2.4 One-phase two-stage simple random sampling

In many applications the costs of measuring the response variable Yi are high, for

instance a good determination of the volume may require to measure the diameter

at breast height, the diameter at 7m above the ground and the height of the tree in

order to use a three-way yield table. On the other hand, one could use a coarser but

cheaper approximation of the volume based only on the diameter at breast height.

It appears therefore natural to get the three measurements only on a subsample

of the trees. We now formalize this simple idea. For each point x 2 s2 trees are

drawn with probabilities �i. The set of selected trees is denoted by s2(x). On each

of the selected trees i 2 s2(x) one gets an approximation Y �i of the exact value Yi.

In the �nite set s2(x) one draws a subsample s3(x) � s2(x) of trees. For each tree

i 2 s3(x) one measures the exact variable Yi. Let us now de�ne the second stage

indicator variable:

Ji(x) =

(
1 if i 2 s3(x)
0 if i 62 s3(x)

(2.22)

Note that by construction Ii(x)Ji(x) = Ji(x). Before going further we must in-

troduce some notation for expectations and variances . In our general context the

subindex 1 refers to the �rst phase (which collects the auxiliary information in the

large sample s1 and which will be thoroughly de�ned later on), the subindex 2

refers to the second phase, which collects the terrestrial information on the �rst

stage trees, and �nally the subindex 3, which refers to the second stage trees.

We need three sub-indexes since in general three random selections are involved.

According to standard notation in probability theory we shall use the notation

E2;3(:); V2;3(:); E3j2(:); V3j2(:) for the overall expectation and variance under the

random selections (2; 3) and for the conditional expectation and variance of the

second stage procedure given the second-phase �rst-stage selection. We recall the

following important rules for the calculation of expected value and variance of an

arbitrary random variable Z depending on the random selection (2; 3).

E2;3(Z) = E2

�
E3j2(Z)

�
V2;3(Z) = E2

�
V3j2(Z)

�
+ V2

�
E3j2(Z)

� (2.23)

Hence we have

E2;3(Ji(x)) = E2E3j2(Ji(x)Ii(x))

= E2Ii(x)E3j2(Ji(x)jIi(x))
= P (Ji(x) = 1jIi(x) = 1)P (Ii(x) = 1) := pi�i

(2.24)
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where we have introduced the second-stage conditional inclusion probability pi =

P (Ji(x) = 1jIi(x) = 1) which so far depends on the label i and is therefore com-

pletely arbitrary.

We now assume that trees in s2(x) are sampled independently of each other,

so that pij = P (Ji(x)Jj(x) = 1jIi(x)Ij(x) = 1) = pipj , i.e. we have binomial sam-

pling with possibly unequal probability at the second stage. The advantage of the

proposed scheme is that the �eld crew collects the required information on the �rst

stage trees one by one, enters the data in the portable computer, which according

to a random number tells then immediately whether to take further measurements

or not. Other schemes are of course possible, but not so easy to implement (one

needs a list of all �rst stage trees at the point x and possibly also other points) and

not necessarily better.

To construct a good point estimate we need the residual Ri = Yi � Y �i which

is known only for trees i 2 s3(x). The generalized local density Y �(x) is de�ned
according to

Y �(x) =
1

�(F )

 
NX
i=1

Ii(x)Y
�
i

�i
+

NX
i=1

Ii(x)Ji(x)Ri

�ipi

!

=
1

�(F )

0@ X
i2s2(x)

Y �i
�i

+
X

i2s3(x)

Ri

�ipi

1A (2.25)

2.25 is an adaptation of an estimate �rst proposed by Saerndal [22] in classical

sampling theory.

We assume here that the prediction Y �i of Yi is based on an external model,

i.e. that the corresponding model is not adjusted with the data collected by the

inventory sample. In practice, one may have to use an internal model, where

model �tting is performed with the same inventory data; this renders the exact

calculation of bias and variance almost impossible in general. However, there is some

theoretical and empirical evidence that internal model can be treated as external

model in large samples, see [21, 10].

Since Yi = Y �i +Ri and E3j2Ji(x) = pi we have

E2;3(Y
�(x)) = E2(Y (x)) = �Y (2.26)

so that 2.25 is also unbiased. Since the second stage trees are drawn independently

of each other we have

V (x) = V3j2(Y
�(x)) = V3j2

0@ 1

�(F )

X
i2s3(x)

Ri

�ipi

1A
=

1

�2(F )

0@ X
i2s2(x)

R2
i (1� pi)

�2i pi

1A
E2V3j2(Y

�(x)) = ExV (x) =
1

�2(F )

 
NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

!
(2.27)

The one-phase two-stage estimate for simple random sampling is de�ned

by: bY � = 1

n2

X
x2s2

Y �(x) (2.28)

Its theoretical variance is by 2.23 easily found to be

V (bY �) = 1

n2
Vx(Y (x)) +

1

n2
ExV (x) (2.29)
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and using 2.9, 2.27 this is equivalent to

V (bY �) = 1

n2�2(F )

n NX
i=1

Y 2
i (1� �i)

�i
+

NX
i6=j

YiYj(�ij � �i�j)

�i�j

o

+
1

n2�2(F )

n NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

o (2.30)

It is in some sense remarkable that the usual variance estimate can also be used in

this case, more precisely one has

bV (bY �) = 1

n2(n2 � 1)

X
x2s2

(Y �(x)� bY �)2
Ex(bV (bY �)) = V (bY �) (2.31)

Proof:

n2(n2 � 1)bV (bY �) = X
x2s2

Y �(x)2 �
�P

x2s2 Y
�(x)

�2
n2

=
X
x2s2

Y �(x)2 � 1

n2

0@X
x2s2

Y �(x)2 +
X

x6=y2s2
Y �(x)Y �(y)

1A
Taking the expectation according to 2.23 and using 2.26 and the independence of

Y �(x); Y �(y) for x 6= y we obtain

n2(n2 � 1)E2;3(bV (bY �)) = n2 � 1

n2
E2

 X
x2s2

(V3j2Y
�(x) + Y 2(x))

!

� 1

n2
E2

X
x6=y2s2

Y (x)Y (y)

and therefore

n2(n2 � 1)E2;3(bV (bY �)) = (n2 � 1)
�
ExV (x) + VxY (x) + �Y 2

�� n2(n2 � 1)

n2
�Y 2

= (n2 � 1) (ExV (x) + VxY (x))

and the result.

In some instances one may want to know the variance of the exact density Y (x)

when only Y �(x) is available. To this end let us note �rst that

bV (x) = 1

�2(F )

X
i2s3(x)

R2
i (1� pi)

�2i p
2
i

is an unbiased estimate of V (x), in the sense that

E3j2 bV (x) = V (x)

hence by 2.29 we get an unbiased estimate of V (bY ) through
bV (Y (x)) = n2 bV (bY �)� 1

n2

X
x2s2

bV (x) (2.32)
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The one-phase two-stage sampling scheme has been implemented as de�ned here

in the second Swiss National Inventory. Based on data from the �rst Swiss National

Inventory, which selected roughly 120'000 �rst stage trees with 10'000 points and

40'000 second stage trees with constant probability pi � 1
3
, it was found that one

could reduce the number of second stage trees to 10'000 while ensuring the same

accuracy, and even decreasing the bias in small areas, simply by optimizing the pi,

a topic we shall discuss later, and using the point estimate 2.25, which explicitly

takes into account the residuals. Quoting Einstein: there is nothing more practical

than a good theory!

2.5 One-phase two-stage cluster random sampling

We use the same concepts and notation as in section 2.3. Assuming that the

second-stage trees are drawn independently of each other in each point

of each cluster, we can generalize 2.13 in a straightforward way, i.e.

Y �c (x) =

PM

l=1 IF (xl)Y
�(xl)

M(x)
(2.33)

where Y �(xl) is the generalized local density at point xl = x+ el. Note that

E3j2Y
�
c (x) = Yc(x)

The one-phase two-stage point estimate for cluster sampling is then de�ned

in perfect analogy to 2.16 as:

bY �c =

P
x2s2 M(x)Y �c (x)P

x2s2 M(x)
(2.34)

Because of 2.17 and the above remark, it is clear that 2.34 is asymptotically unbi-

ased, i.e.

Ex2A bY �c = �Y +O
�
n�12

�
(2.35)

To calculate the theoretical variance we use the decomposition 2.23. The second

term is simply the variance of the one-phase one-stage estimate. The �rst is given

by

E2V3j2(bY �c ) = E2

 
V3j2

P
x2s2

PM

l=1 IF (xl)Y
�(xl)P

x2s2 M(x)

!

= E2

 P
x2s2

PM

l=1 IF (xl)V (xl)

(
P

x2s2 M(x))2

!

=

P
x2s2

PM

l=1E2(V (xl)jxl 2 F )P (xl 2 F )
n22E

2
2M(x)

+O(n�22 )

=
n2Ex2FV (x)Ex2AM(x)

n22E
2
x2AM(x)

+O(n�22 )

=
Ex2FV (x)

n2Ex2AM(x)
+O(n�22 )

where we have used 2.11. Hence, by using the above result, 2.23 and 2.18 the

asymptotic theoretical variance of the one-phase two-stage point estimate under

cluster sampling is given by

V (bY �c ) = 1

n2

Ex2AM2(x)(Yc(x) � �Y )2

E2
x2AM(x)

+
Ex2FV (x)

n2Ex2AM(x)
+O(n�22 ) (2.36)
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In analogy with the result 2.31 for one-phase two-stage simple random sampling

one can construct an asymptotically unbiased estimate of variance according to

bV (bY �c ) = 1

n2(n2 � 1)

X
x2s2

�
M(x)
�M2

�2 �
Y �c (x) � cY �c �2

E2;3(bV (bY �c )) = V (bY �c ) +O(n�22 )

(2.37)

We give only the 
avour of the proof, which can be made rigourous, by using the

weak law of large numbers (convergence in probability), which implies here conver-

gence in the mean as all random variables are bounded in practice.

Proof:

Asymptotically, one can replace �M2 and bY �c by their true values, likewise n2� 1 by

n2; multiplying then both sides of 2.37 by n22
�M2
2 it remains to show that

E2;3

X
x2s2

M2(x)(Yc(x)
� � �Y )2 = n2Ex2AM

2(x)(Yc(x)� �Y )2

+ n2Ex2AM(x)Ex2FV (x)

Setting Vc(x) = V3j2Y
�
c (x) and using the decomposition 2.23 we see �rst that the

left hand side is equal to

n2E2;3

�
M2(x)Y �c (x)

2 � 2M2(x)Y �c (x) �Y +M2(x) �Y 2
�

and then equal to

n2(E2M
2(x)(Y 2

c (x) + Vc(x)) + n2(�2M2(x)Yc(x) �Y +M2(x) �Y 2)

to �nally obtain

n2Ex2AM
2(x)(Yc(x)� �Y )2 + n2Ex2A

MX
l=1

IF (xl)V (xl)

Using 2.11 the second term can be rewritten as

n2

MX
l=1

Ex2AV (xljxl 2 F )P (xl 2 F ) = n2Ex2FV (x)Ex2AM(x)

which ends the proof.

From a theoretical design-based point of view this is essentially all there is to

know about pure terrestrial inventories performed at one time point. We now turn

to combined forest inventories.

2.6 Two-phase one-stage simple random sampling

The �rst phase draws a large sample s1 of n1 points xi 2 s1 independently and uni-
formly distributed in the forest area F . In each of these points auxiliary information

is collected, very often of purely qualitative nature, for instance after interpreta-

tion of aerial photographs. The second phase draws a small sample s2 � s1 of

n2 points according to equal probability sampling without replacement. In

each point x 2 s2 the terrestrial inventory provides the local density Y (x). For

points x 2 s1 n s2, i.e. in the large but not in the small sample, only the auxiliary
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information is available, which nevertheless allows one to make a prediction bY (x)
of the true local density Y (x) in the forest. Strictly speaking, we shall assume that

this prediction is given by an external model, i.e. not adjusted with the data

of the actual inventory. Let us give the probably most important example: the

stand structure is determined by interpretation of aerial photographs in s1, which

by means of pre-existing yield tables allows the inventorist to make a reasonable

prediction of timber volume per ha or number of stems per ha. However, if an

external model is not available, an internal model has to be �tted �rst. Usu-

ally this is done in the following way: the auxiliary information at the point x is

coded into a vector Z(x) 2 <m and the prediction is obtained via a linear model,

i.e. bY (x) = Z(x)t� (the upper index t meaning transposition of the vector). The

estimation of the unknown parameter vector � can be done in several ways, in par-

ticular by ignoring completely sampling theory and using standard statistical tools,

like analysis of variance or multiple regression. Alternatively, one can estimate �

within the framework of sampling theory. There is some evidence that the choice

of the estimation procedures is of secondary importance and that internal models

can be treated as external models if n2 is suÆciently large; see [10] for more details.

Predictions based on models, particularly external models, should not, however,

be blindly trusted and it is intuitively clear that deviations between model and

reality should be taken into account. This is done by considering the residual

R(x) = Y (x)� bY (x). The two-phase one-stage estimate for simple random

sampling is de�ned by:

bYreg = 1

n1

X
x2s1

bY (x) + 1

n2

X
x2s2

R(x) (2.38)

Before going further let us transpose the rules 2.23 to the present set-up

E1;2(Z) = E1

�
E2j1(Z)

�
V1;2(Z) = E1

�
V2j1(Z)

�
+ V1

�
E2j1(Z)

� (2.39)

Given s1 the properties of 2.38 are governed by standard sampling theory of �nite

population, see [3, 20], hence one immediately has

E2j1
1

n2

X
x2s2

R(x) =
1

n1

X
x2s1

R(x)

Since Y (x) = bY (x) +R(x) we have by 2.39

E1;2(bYreg) = E1

1

n1

X
x2s1

Y (x) = �Y

and therefore unbiasedness. Furthermore

V2j1
1

n2

X
x2s2

R(x) =

�
1� n2

n1

�
1

n2

1

n1 � 1

X
x2s1

(R(x)� �R1)
2

where we set �Ri =
1
ni

P
x2si R(x) for i = 1; 2. Consequently we have

E1V2j1(bYreg) = �1� n2

n1

�
1

n2

1

�(F )

Z
F

(R(x)� �R)2dx

where

�R =
1

�(F )

Z
F

R(x)dx
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According to 2.39 we can state the main result

E1;2(bYreg) = �Y

V1;2(bYreg) = �1� n2

n1

�
1

n2

1

�(F )

Z
F

(R(x)� �R)2dx

+
1

n1�(F )

Z
F

(Y (x)� �Y )2dx

(2.40)

It is clear that the variance can be estimated by

bV1;2(bYreg) = �1� n2

n1

�
1

n2

1

n2 � 1

X
x2s2

(R(x) � �R2)
2

+
1

n1

1

n2 � 1

X
x2s2

(Y (x)� �Y2)
2

E1;2
bV1;2(bYreg) = V1;2(bYreg)

(2.41)

Remarks:

� The lower index reg indicates that most internal prediction models rely on re-

gression techniques, which contain the post-strati�ed estimates as a particular

case, see sections 2.9 and 2.10.

� We have implicitly assumed that points x 2 s2 are error-free, in the sense

that the prediction bY (x) and the observation Y (x) corresponds exactly to the

same point; this, of course, is only approximately true in practice.

� In practice the vector Z(x) and hence the prediction bY (x) is often based on

stand or stratum characteristics. The point x determines the stratum. If the

point is near stand boundaries it may be wise to rede�ne Y (x) by treating

the area outside the stand of x as non-forest area. We shall come back to this

diÆculty in chapter 3 (revised Horwitz-Thompson estimator).

2.7 Two-phase one-stage cluster random sampling

This is a straightforward generalization of the previous section. The �rst phase

draws a large sample of n1 clusters whose origins x 2 s1 are uniformly and inde-

pendently distributed in A � F ; the geometry of the clusters is determined as usual

by the M vectors el 2 <2. In each point xl = x+ el of a given cluster one collects

the auxiliary information required to make a prediction bY (xl). The second phase

draws a subsample of n2 clusters out of the n1, with origin x 2 s2 � s1 according to

equal probability sampling without replacement. For any given cluster with x 2 s2
the local density Y (xl) is determined in each point xl of the cluster. We use the

same notation as in one phase cluster sampling.

The two-phase one-stage estimate for cluster random sampling is de-

�ned by:

bYc;reg = P
x2s1 M(x)bYc(x)P

x2s1 M(x)
+

P
x2s2 M(x)Rc(x)P

x2s2 M(x)
(2.42)

where the residuals at the cluster level are de�ned according to

Rc(x) =

PM

l=1 IF (xl)(Y (xl)� bY (xl))PM

l=1 IF (xl)
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Using 2.39 and the results obtained for one-phase cluster sampling as well as two-

phase one-stage simple random sampling it is not diÆcult to show (details are given

in [10]) that

E1;2
bYc;reg = �Y +O(n�12 )

V1;2 bYc;reg = 1

n1

ExM
2(x)(Yc(x) � �Y )2

E2
xM(x)

+

�
1� n2

n1

�
1

n2

ExM
2(x)(Rc(x)� �R)2

E2
xM(x)

+ O(n�22 )

(2.43)

Likewise, an asymptotically unbiased estimate of the variance is given by

bV1;2 bYc;reg = 1

n1

1

n2 � 1

X
x2s2

�
M(x)
�M2

�2
(Yc(x) � bY2)2

+

�
1� n2

n1

�
1

n2

1

n2 � 1

X
x2s2

�
M(x)
�M2

�2

(Rc(x)� bR2)
2

(2.44)

where

�M2 =

P
x2s2 M(x)

n2
; bR2 =

P
x2s2 M(x)Rc(x)P

x2s2 M(x)

We emphasize the fact that so far we have not assumed that the mean value of

the residuals is zero, which is particularly relevant when using external models.

2.8 Two-phase two-stage simple random sampling

In this procedure all three random selections (1; 2; 3) are involved. The idea is

exactly as in two-phase one-stage simple random sampling, but for the fact that the

unknown true local density Y (x) at the point x is replaced by its estimate, i.e. the

generalized local density Y �(x) de�ned in 2.25.

The two-phase two-stage estimate for simple random sampling is de-

�ned by: bY �reg = 1

n1

X
x2s1

bY (x) + 1

n2

X
x2s2

R�(x) (2.45)

where we have set R�(x) = Y �(x)� bY (x).
Using 2.23 and 2.39 we have

E1;2;3
bY �reg = E1E2j1E3j1;2 bY �reg = �Y

so that the estimate is design-unbiased. Likewise, we obtain

V2;3j1 bY �reg = E2j1V3j1;2 bY �reg + V2j1E3j1;2 bY �reg
We obtain after some elementary algebra and using the notation of sections 2.4 and

2.6 the main result

E1;2;3
bY �reg = �Y

V1;2;3(bY �reg) = 1

n1
VxY (x) +

�
1� n2

n1

�
1

n2
VxR(x)

+
1

n2
ExV (x)

(2.46)
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In this formula the true residual R(x) = Y (x) � bY (x) is of course not observable.
The overall variance is therefore essentially the sum of, �rst, the variance of the

exact local density as if we had observed it in the large sample, second, of the resid-

ual variance of the true residuals, due to replacing at the plot level observations by

predictions, and, third, of the second-stage variance, due to replacing at the tree

level exact measurements by predictions: a very intuitive result indeed.

Remarks

� One can rewrite the variance in 2.46 in terms of the following coeÆcients of

determination

R�2 =
Vx(bY (x))
Vx(Y �(x))

< R2 =
Vx(bY (x))
Vx(Y (x))

Provided that residuals and predictions are uncorrelated (this is the case for

adequate external models and, according to section 2.10, also for internal

linear models) one has by simple algebra

V (bY �reg) = V (bY (x)�1�R�2

R�2
1

n2
+

1

n1

�

V (bY �reg) = V (bY (x)�1�R2

R2

1

n2
+

1

n1

�
+

1

n2
ExV (x)

One should therefore look for prediction models with high coeÆcients of de-

termination (R-squared values) in order to substantially reduce the variance

with two-phase sampling.

Using exactly the same arguments as in the proof of 2.31 it is easy to see that

E1;2;3

1

n2 � 1

X
x2s2

(bY �(x) � �Y �2 )
2 = ExV (x) + VxY (x)

and that

E1;2;3

1

n2 � 1

X
x2s2

( bR�(x)� �R�2)
2 = ExV (x) + VxR(x)

so that again the usual variance estimate holds, i.e.

bV (bY �reg) = �1� n2

n1

�
1

n2

1

n2 � 1

X
x2s2

(R�(x) � �R�2)
2

+
1

n1

1

n2 � 1

X
x2s2

(Y �(x)� �Y �2 )
2

E1;2;3
bV (bY �reg) = V1;2;3(bY �reg)

(2.47)

We shall see in section 2.10 on internal linear models that the above formulae hold

when predictions and residuals are obtained via standard least squares regression

of the Y �(x) on explanatory variables.

To illustrate the general theory we consider the important special case of post-

strati�cation. We omit most of the tedious but elementary algebraic manipulations.

The forest area F is partitioned into L disjoined strata F = [Lk=1Fk . The ideal

prediction bY (x) for x 2 Fk would be the true mean �Yk of the kth stratum. Since it

is unknown, we estimate it by the corresponding internal linear model (section 2.10

gives the necessary tools to do that), which in this case is a simple one-way analysis

19



of variance. The result is intuitively obvious and bY (x) is simply the empirical mean

of the stratum, that is bY (x) = �Y �2;k for x 2 Fk, where

�Y �2;k =
1

n2;k

X
x2Fk\s2

Y �(x)

n2;k is the number of points in s2 falling into the kth stratum. In this case, like

for almost all internal linear models (see section 2.10), the residuals add up to 0,P
x2Fk\s2 R

�(x) = 0, and we �nally get

bY �reg = 1

n1

LX
k=1

n1;k �Y
�
2;k

where n1;k is the number of points of the large sample falling into the kth stratum.

Obviously, bY �reg is the standard post-strati�ed estimate since
n1;k
n1

�(F ) is the esti-

mate of the surface area of the kth stratum. The usual variance estimate within

the kth stratum is de�ned as

bV �k =
1

n2;k � 1

X
x2Fk\s2

(Y �(x)� �Y �2;k)
2

Simple algebra shows that in this case formula 2.47 yields

bV (bY �reg) = 1

n2

LX
k=1

�
n2;k � 1

n2 � 1

� bV �k +
1

n1

LX
k=1

�
n2;k

n2 � 1

�
( �Y �2;k � �Y �2 )

2 (2.48)

where we have set
�Y �2 =

1

n2

X
x2s2

Y �(x)

We have a simple analytical expression for the point estimate so that we can cal-

culate directly the variance. All there is to do is to use repeatedly 2.23 and 2.39

(conditioning on given n2;k) and the following straightforward relations

pk =
�(Fk)

�(F )

V (n1;k) = n1pk(1� pk)

COV (n1;k; n1;l) = �n1pkpl

E(n�12;kjn1;k) =
�
n1;k

n2

n1

��1
+O(n�22 )

Vk = V (Y (x)jx 2 Fk)
Then one has

V (bY �reg) = 1

n2

LX
k=1

pkVk +
1

n1

LX
j=1

pj( �Yj � �Y )2 +
1

n2
ExV (x) +O(n�22 ) (2.49)

The variance of the unstrati�ed estimate bY � = 1
n2

P
x2s2 Y

�(x) is given approxi-

mately by

V (bY �) � 1

n2

LX
j=1

pjVj +
1

n2

LX
j=1

pj( �Yj � �Y )2 +
1

n2
ExV (x)
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This follows at once by using the decompositionZ
F

(Y (x)� �Y )2dx =

LX
j=1

Z
Fj

(Y (x)� �Yj + �Yj � �Y )2dx

and neglecting edge e�ects at the strata boundaries (Y (x) is not exactly unbiased

within each Fk since a point x 2 Fk may sample trees from an adjacent stratum, see

sections 3.2, 3.3). Nevertheless, we see that post-strati�cation can reduce substan-

tially the variance when the between-strata variance, i.e. the term
PL

j=1 pj(
�Yj� �Y )2,

is large.

Let us now calculate the expected value of the variance estimate 2.48. Condi-

tioning �rst on given n2;k, by using then E2;3(V
�
k jn2;k) = Vk + Ex2FkV (x) (which

follows by the same arguments as in the proof of 2.31), n2;kn
�1
2 ! pk, and �nally

by replacing in the last squared term the random variables by their expected values

one gets

E1;2;3
bV (bY �reg) � 1

n2

LX
j=1

pjVj +
1

n1

LX
j=1

pj( �Yj � �Y )2 +
1

n2
ExV (x) (2.50)

so that, as announced, formula 2.48 and consequently also 2.47 yield indeed asymp-

totically unbiased estimates of variance. In this case, we have therefore shown that

we can treat the internal model bY (x) = �Y �2;k for x 2 Fk as the external modelbY (x) = �Yk; x 2 Fk . This result holds for a large class of linear models (see [12] for

details).

More generally, if we assume that residuals and predicted values are uncorre-

lated, which is the case for internal linear models adjusted by ordinary least squares

(see section 2.10), then Vx(Y (x)) = Vx(R(x)) + Vx(bY (x)) and we can rewrite 2.46

as

V (bY �reg) = 1

n2
Vx(Y (x)) +

1

n2
ExV (x)� 1

n2

�
1� n2

n1

�
Vx(bY (x)) (2.51)

For post-strati�cation one has to interpret, in the above formula, the predictionsbY (x) as constant and equal to the true mean of the stratum, so that Vx(bY (x)) =PL

j=1 pj(
�Yj � �Y )2. Asymptotically, one can therefore do as if the predictions were

exact when calculating the variance (but not for the point estimate since we must

use the residuals in order to ensure unbiasedness); this requires, of course, that the

prediction model yields asymptotically the true means in each stratum, a condition

which will play an important role when calculating the anticipated variance.

2.9 Two-phase two-stage cluster random sampling

This sampling scheme is an immediate combination of sections 2.7 and 2.8. The

�rst phase yield the predictions bY (xl); bYc(x) and the second phase the generalized

densities Y �(xl); Y �c (x).
The two-phase two-stage estimate for cluster random sampling is de-

�ned by: bY �c;reg = P
x2s1 M(x)bYc(x)P

x2s1 M(x)
+

P
x2s2 M(x)R�c (x)P

x2s2 M(x)
(2.52)

where the generalized residuals at the cluster level are de�ned in the usual way as

R�c(x) =

PM

l=1 IF (xl)(Y
�(xl)� bY (xl))PM

l=1 IF (xl)
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Using 2.23, 2.39 and the results obtained in sections 2.3, 2.5, 2.7, 2.8 one can show

that

Ex2A bY �c;reg = �Y +O(n�12 )

V (bY �c;reg) = �1� n2

n1

�
1

n2

Ex2AM2(x)(Rc(x)� �R)2

E2
x2AM(x)

+
1

n1

Ex2AM2(x)(Yc(x)� �Y )2

E2
x2AM(x)

+
1

n2

Ex2FV (x)

Ex2AM(x)
+O(n�22 )

(2.53)

Again tedious but elementary algebra (like in the proof of 2.37) shows that the usual

estimate gives the correct answer, i.e.

bV (bY �c;reg) = �1� n2

n1

�
1

n2

1

n2 � 1

X
x2s2

�
M(x)
�M2

�2
(R�c(x)� bR�2)2

+
1

n1

1

n2 � 1

X
x2s2

�
M(x)
�M2

�2
(Y �c (x)� bY �2 )2

E1;2;3
bV (bY �c;reg) = V (bY �c;reg) +O(n�22 )

(2.54)

If the model is unbiased and if the predictions and residuals are uncorrelated then,

as in simple random sampling, it is possible to rewrite 2.53 as

V (bY �c;reg) � 1

n2

Ex2AM2(x)(Yc(x) � �Y )2

E2
x2AM(x)

� 1

n2

�
1� n2

n1

�
Ex2AM2(x)(bYc(x)� �Y )2

E2
x2AM(x)

+
1

n2

Ex2FV (x)

Ex2AM(x)

(2.55)

The above equations holds for the de�nitions of predictions and residuals as given in

the next section on internal linear models, which outlines some aspects particularly

useful in applications. Again, as in simple random sampling, one can consider

asymptotically internal model as external models.

2.10 Internal linear models in two-phase sampling

At the point level the theoretical predictions are obtained via a design-based

linear model (see [10]) of the form

bY�(x) = �Y + �t(Z(x)� �Z); � 2 <p; Z(x) 2 <p

At the cluster level we set consequently

bY�;c(x) = �Y + �t(Zc(x) � �Z); � 2 <p; Z(x) 2 <p

These predictions are purely theoretical since �y, �Z are unknown and � is, for the

time being, arbitrary. These de�nitions ensure by 2.14 and 2.15 that

Ex2AM(x)bY�;c(x)
Ex2AM(x)

= �Y 8�

The theoretical residuals are de�ned as

R�;c(x) = Yc(x) � bY�;c(x)
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By construction the theoretical residuals have zero mean, more precisely

�R� =
Ex2AM(x)Rc(x)

Ex2AM(x)
= 0

We shall assume that the model has an intercept term, which is nearly always the

case in practice. This means that one component of Z(x), say the �rst Z1(x), is

constant equal to 1. We therefore partition the vectors as Z(x)t = (1; Z�(x)t) and
�t = (�1; �

�t). The optimal choice of the unknown parameter vector � is determined

by minimizing the residual variance term, i.e.

min
�
ExM

2(x)(Yc(x)� �Y � �t(Zc(x)� �Z))2

Di�erentiating with respect to � leads to the normal equations for the optimal

theoretical choice �0

ExM
2(x)(Zc(x)� �Z)(Zc(x)� �Z)t�0 = ExM

2(x)(Yc(x)� �Y )(Zc(x)� �Z)

It follows by simple algebra from the normal equations that the optimal theoretical

residuals and predictions are uncorrelated in the sense that

Ex2AM
2(x)(R�0;c(x) � �R)(bY�o;c(x)� �Y ) = 0

The (p; p) matrix on the left hand side is singular for models with an intercept term,

since in this case the �rst row and the �rst column are identically zero. An elegant

solution is to use generalized inverses, see [10], which unfortunately is not always a

suitable procedure when using standard statistical software packages. We therefore

give here an alternative approach. Rewriting the normal equations in terms of the

reduced vectors Z�c (x); �
� we see that the general solution of the original normal

equations is given by:

�t0 = (�1; �
�t
0 )

ExM
2(x)(Z�c (x) � �Z�)(Z�c (x) � �Z�)t��0 = ExM

2(x)(Yc(x) � �Y )(Z�c (x)� �Z�)

where �1 is arbitrary.

In practice the theoretical normal equations are obviously not available and we

solve instead their sample versions, i.e.X
x2s2

M2(x)(Z�c (x) � bZ�2 )(Z�c (x)� bZ�2 )t b��0 = X
x2s2

M2(x)(Yc(x)� bY2)(Z�c (x) � bZ�2 )
In other words, b��0 is obtained by linear regression with weights M2(x) of the cen-

tered response variable Yc(x) � bY2 on the centered explanatory variables without

the intercept term, i.e. on Z�c (x) � bZ�2 .
The empirical predictions are given bybYc(x) = bY2 + b��t0 (Z�c (x) � bZ�2 )
Most software packages will give directly the predictions, say Pc(x), of bYc(x) � bY2,
so that one can also write bYc(x) = bY2 + Pc(x).

The empirical residuals are then given by

Rc(x) = Yc(x) � bYc(x) = (Yc(x)� bY2)� b��t(Z�c (x)� bZ�2 )
which by construction satisfy

bR2 =

P
x2s2

M(x)Rc(x)P
x2s2 M(x)

= 0
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Hence, the point estimate is �nally given by

bYc;reg = bY2 + b��t0 ( bZ�1 � bZ�2 ) = bY2 + b�t0( bZ1 � bZ2)
where b�t0 = (�1; b��t0 )

and �1 is arbitrary. Note that the �rst component of bZ1 � bZ2 is zero and that all

statistically relevant quantities are independent of the arbitrary choice of �1.

In short the optimal design-based point estimate and its estimated vari-

ance can be obtained by standard regression procedures.

It is also worthwhile to note that direct regression of the Yc(x) on the Zc(x)

with weight M2(x) leads to residuals satisfying
P

x2s2 M
2(x)Rc(x) = 0 instead

of
P

x2s2 M(x)Rc(x) = 0 which intuitively is more appealing. In simple cluster

sampling M(x) � 1, so that one could in this case also use ordinary least squares.

Further modi�cations are possible by estimating the matrix

ExM
2(x)(Z�c (x)� �Z�)(Z�c (x) � �Z�)t

in the large sample, see [10] for details.

It is clear by 2.54 that all the previous results are also valid in two-phase two-

stage sampling, it suÆces to replace everywhere Yc(x) by Y
�
c (x).

The reader can verify that the post-strati�ed estimate discussed in section 2.8 can

be obtained by setting Z1(x) � 1, Zi(x) = 1 if x 2 Fi�1 and Zi(x) = 0 if x 62 Fi�1
for i = 1; 2 : : : L.

In the so called model-based approach, the parameter � is estimated by direct

regression of Yc(x) on Zc(x) with weights M(x) instead of M2(x) . The resulting

estimate b�m leads to the model-based regression estimate

bYc;reg;m = bY2 + b�tm( bZ1 � bZ2)
Its estimated variance can be approximated by the usual formula with the residuals

de�ned as

Rc(x) = Yc(x)� b�tmZc(x)
The interested reader can consult [10] for rigorous results. Finally, one can also use

standard unweighted least squares of the Y (xl) on the Z(xl), that is, by ignoring

the cluster structure of the data, and then de�ne in the usual way the predictions

and residuals at the cluster level. As already mentioned there is some theoretical

and empirical evidence that the various point estimates as well as their variance

estimates will usually be close to each other.

In the next section we brie
y mention how one could further generalize two-phase

sampling schemes.

2.11 Generalized two-phase sampling schemes

Instead of selecting the points x 2 s2 � s1 by equal probability sampling, one

could choose these points independently of each other according to a probability

function p(x). We consider only two-phase one-stage simple random sampling. The

adaptation to the other schemes is obvious.

The generalized two-phase one-stage estimate is de�ned as

bYg;reg = 1

n1

 X
x2s1

bY (x) + X
x2s2

R(x)

p(x)

!
(2.56)
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It is easily seen that, under the condition �R = 0

Ex2F bYg;reg = �Y

V (bYg;reg) = 1

n1
Vx2FY (x) +

1

n1�(F )

Z
F

R2(x)(1� p(x))

p(x)
dx

(2.57)

It can be shown that in some sense generalized two-phase sampling generalizes stan-

dard two-phase sampling in much the same way as optimal strati�cation generalizes

strati�cation with proportional allocation. It turns out that the gain in eÆciency

is usually small. The interested reader can �nd more details in [11].

2.12 Remarks on simulation procedures

Let us start with simple random sampling �rst. Drawing a random point uniformly

distributed in F is not directly possible if F has a complicated shape. Instead one

draws random points uniformly distributed in a convenient larger set B � F , say

B rectangular, and check whether the points lie in F or not; there are eÆcient

algorithms to do that when the boundary of F is given by a set of polygons. We

have seen that given x 2 F , x is uniformly distributed. Hence, to simulate n2 points

independently uniformly distributed in F we simulate a random number of points

T until n2 points are in F . T has a negative binomial distribution.

The idea is the same for cluster sampling but for some intricacies which, for

completeness, we brie
y outline. We know that we have to draw the origin x of the

cluster in a domain A such that Al = A + el � F 8l; this can be diÆcult since A

has usually a complicated shape which depends on the particular geometry of the

cluster and of the forest (one would need, for the same forest, di�erent maps for

di�erent cluster geometries, which is too costly). It is much easier to draw a random

point in a set B � A of simple shape (it is straightforward by looking at the forest

map to �nd such a rectangular set B ful�lling the conditions for a wide range of

cluster geometries), and simulate T points x uniformly in B until n2 clusters with

M(x) > 0 are obtained. In general the sets A and G = fxjM(x) > 0g are not equal
and G+el 6� F 8l, so that caution is needed. n2 is �xed and T is a random variable

whose probability distribution function is the negative binomial, which means that:

P (T = t) =

�
t� 1

t� n2

�
pn2(1� p)t�n2

where p = P (M(x) > 0) =
�(G)

�(B)
. For this reason we shall call this sampling scheme

"negative binomial sampling".

By taking the expectations in 2.16, 2.18 and 2.19 for given T = t and after

conditioning on the events fM(x) > 0g and fM(x) = 0g it can be checked that

all formulae remain valid; this is straightforward for the point estimate since the

P (M(x) > 0) cancel out. For the variance note that formulae 2.18 is certainly valid

in B given T = t and that it can be rewritten as

V (bYcjT = t) =
1

t

Ex2BfM2(x)(Yc(x) � �Y )2jM(x) > 0g
E2
x2B(M(x)jM(x) > 0)P (M(x) > 0)

Now, P (M(x) > 0) is unknown, but the maximum likelihood estimate of p is easily

found to be bp = n2
t
. It is also clear that �M2 and

1

n2 � 1

X
x2s2\G

M2(x)(Yc(x) � bYc)2
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are unbiased estimates of Ex2BfM(x)jM(x) > 0g and

Ex2BfM2(x)(Yc(x)� �Y )2jM(x) > 0g

respectively. Since tbp = n2 we see that 2.19 is an unbiased estimated of the variance.

Hence, we can use all the formulae derived under the assumption "x uniform in A",

which is more convenient from the mathematical point of view, also under the neg-

ative binomial sampling procedure, which is much easier to implement. Obviously

one can use the same procedure in two-phase and two-stage sampling.

Simulating systematic grids with random origin and eventually also random

orientation is straightforward. One retains only points falling into F and clusters

hitting F , i.e. M(x) > 0. Obviously n2 is then always a random variable.

So far we have considered sampling schemes with a given design, more precisely

for given inclusion probabilities �i. We have not discussed the choice of the point

estimates, nor the choice of the inclusion probabilities. We have already mentioned

the fact that the pairwise inclusion probabilities �ij depend on the relative position

of the trees in the forest, which, loosely speaking, makes each forest in some sense

unique, and render the task of optimization so diÆcult. In the next chapter we

shall see that the Horwitz-Thompson point estimates we have proposed are not a

bad choice after all, and that it is possible to get rid of the troublesome �ij by

considering the so called anticipated variance.
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Chapter 3

Criteria for optimal

strategies

3.1 General Background

Statistical inference for �nite populations seemed to be an accomplished body of

knowledge after the famous 1934 paper of Neyman [17], in much the same way as

Newtonian mechanics: it was only a matter of time to work out the details for par-

ticular cases, and main stream mathematical statisticians preferred to concentrate

their e�orts on more challenging tasks. Doubts began to arise after the fundamen-

tal 1952 paper of Horwitz and Thompson [9] on variable probability sampling, in

which the concept of linear estimation did not appear to be as straightforward as

thought. The real foundations crisis was yet to come. In 1955 Godambe showed the

non-existence of a uniformly least variance estimate [7], an astounding result, which

led mathematical statisticians to investigate the intricacies of sampling theory and

provide new approaches. The whole subject is rather subtle and, almost 50 years

later, still controversial. We refer the interested reader to [25] for an overview and

to [2] for a thorough exposition. However, due to the theoretical importance of the

subject we brie
y give the gist of the idea according to an enlightening argument

of Basu [1].

Consider a �nite population P of N individuals identi�ed by their labels ui; i 2
f1; 2; : : : ; Ng and a real function (attribute) Y : P 7! <, for convenience set

Yi = Y (ui), so that the function Y is completely speci�ed by the vector Y =

(Y1; Y2; : : : ; YN ). Let Y denote the set of all possible Y de�ned on P (for instance,

imagine all the possible numerical quantities associated to the trees of a forest).

We consider a given survey design p, i.e. a given probability function p(s), s 2 S,

where S is the set of all subsets of P . The Horwitz-Thompson estimator of the total

TY =
PN

i=1 Yi based on the sample s is de�ned as bY (s) = P
i2s

Yi
�i

(the inclusion

probabilities �i have been de�ned in chapter two). Let bTY (s) be any unbiased esti-

mator of the total TY based on the sample s, that is
P

s2S p(s)TY (s) = TY for all

Y . Consider an arbitrarily chosen function Yo say, with total TYo . Let
bTYo(s) be the

unbiased estimator of TYo . The following new estimator is obviously also unbiased

bT �Y (s) = bTY (s) + TYo � bTYo(s)
Now when Y = Yo, that is when the attribute being sampled and the arbitrarily

chosen attribute are identical, then

bT �Y (s) � TYo
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and bT �Y (s) has zero variance since it is constant. Hence, for an estimator to be

uniformly best for all Y 2 Y it must have zero variance everywhere since Yo was

chosen arbitrarily. This is impossible (unless the sampling design is a full census),

so that no uniformly best unbiased estimator exists.

The problem of a lack of best estimators arises because of the generality of Ney-

man's design-based formulation of the solution to the inference problem. Inferences

are made with respect to the sampling distribution for any function Y , regardless of

its structure on the population P . For instance, Yi may be the weight of individuals

belonging to a population consisting of mice, elephants and trees. But this is too

much freedom for a satisfactory theory of inference and no optimum properties can

be found for all functions de�ned on a population.

One important consequence of this non-existence theorem is that no empirical

comparison can ever be conclusive, since in any particular case somebody may be

able to construct a better estimator.

If the very best is not available in this world, we may still have hope to �nd es-

timators which are not that bad after all. Fortunately, Godambe and Yoshi showed

in 1965, see [8], that the Horwitz-Thompson estimator, that is 2.4 in the forestry

context, is admissible in the class of all unbiased estimates, meaning that no other

estimator in this class has a smaller variance for all functions Y (and strictly smaller

for at least one Y ). Furthermore, the Horwitz-Thompson estimator remains ad-

missible in some restricted class of functions, for instance like binary attributes

Y (u) 2 f0; 1g. Note also, that the non-existence of a uniformly least variance unbi-

ased estimator follows from the admissibility of the Horwitz-Thompson estimator.

It can also be shown that the Horwitz-Thompson estimator is essentially the only

hyper-admissible estimator in the class of all unbiased estimators, which means that

it is admissible for all possible subpopulations ( for each Y , a subpopulation is de-

�ned by setting some of Yi to zero, which can be done in 2N ways); however, this

concept is rather controversial (again see [2] for details).

The previous arguments are taken from standard sampling theory and ignore

completely the intrinsic geometrical structure of forest sampling. For instance, it

would be interesting to known whether the Horwitz-Thompson estimator is admis-

sible when instead of considering a set of attributes we consider a set of locations

of the trees. By sampling in A � F we can eliminate boundary e�ects and de�ne

a sampling scheme with given inclusion probabilities �i; however the �ij are not

under control and di�erent locations thus yield di�erent sampling schemes in the

classical sense (i.e. the set of all possible subsets of trees which can be sampled from

a point x will depend on the particular location of the trees, even if the random

point x is always uniformly distributed in F ).

Let us consider the same forest in two di�erent locations within the same area

F , that is the vector Y is the same, but the corresponding trees have locations

u
(k)

i ; k = 1; 2 for the spatial pattern (1) and (2). As we have seen in chapter two

this generates two di�erent sampling schemes p1 and p2 with inclusion probabilities

�
(k)
i ; �

(k)
ij (the two sets of samples s � P with p1(s) 6= 0; p2(s) 6= 0 are di�erent). We

consider the Horwitz-Thompson estimator Y (x) under the second pattern and an

arbitrary unbiased estimator TY (x) under the �rst pattern. The following lemma

is important (for a proof see lemma 3.2 p. 60 of [2]):

if
NX
i=1

�
(1)
i =

NX
i=1

�
(2)
i

and

Vp1 (TY (x)) � Vp2(Y (x)) 8Y 2 <N
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then

�
(1)

i = �
(2)

i ; �
(1)

ij = �
(2)

ij

Hence, if we can �nd an unbiased estimator for pattern (1) which has a smaller

variance for all functions Y than the Horwitz-Thompson estimator under pattern

(2) and under the natural condition that the expected number of trees drawn is the

same, then it follows that the inclusion probabilities are the same (in practice we

would have kept the �i constant anyway). From this one derives (see [2] p. 62) the

admissibility of any Horwitz-Thompson based strategy (p; Y (x)), in the sense that

it is impossible to �nd a sampling scheme (i.e. pattern in the the present context)

p� and an unbiased estimator TY (x) such that Vp�(TY (x)) � Vp(Y (x)) 8Y with

strict equality for at least one Y . When sampling is performed by using arbitrary

circles it is straightforward to give a geometrical interpretation of the above lemma,

namely that two pattern having the same �ij are essentially the same with respect

to the spatial structure of the forest. Trees isolated in one pattern, i.e. i is isolated

if �ij = 0; j 6= i, are isolated in the second, trees forming a chain in one pattern, e.g.

�12�23�34 6= 0, form a chain of the same length in the second pattern, and, last not

least, trees forming a triangle in one pattern, e.g. �12�13�23 6= 0 form a congruent

triangle in the second pattern. With some geometric insight it is clear that the two

forests have essentially the same spatial structure up to local or global translations

and rotations.

We can summarize the above �ndings by saying that if we know nothing about

the response functions of potential interest and nothing about the spatial structure

of the forest, then using the Horwitz-Thompson estimator is not the worst thing

to do. From a practical point of view this result is of limited use, but this is

essentially all what can be said within the Neyman's framework. Another, and

probably the most important reason for using the Horwitz-Thompson estimate in

forest inventory is its simplicity and clear physical interpretation as a local density.

Beside, it is extremely diÆcult to exhibit other estimators without using auxiliary

information. It is well known in standard sampling theory that , in practice, the

Horwitz-Thompson estimators performs well if the �i are roughly proportional to

the Yi, and that it can perform poorly otherwise. As we shall see, the optimal forest

sampling schemes belong to the �rst category.

Out of the many approaches developed in standard sampling (nearly always

within the class of non-informative designs, see section 2.2) to obtain meaningful

optimality criteria, the super-population model has received much attention. The

basic idea is to consider the vector Y as the realization of a stochastic process (usu-

ally assuming a linear model with error structure known up to a scale constant) and

to calculate the expected value, under the super-population model, of the design-

based variance of the estimator, which is called the anticipated variance; see

[25, 2] for the general theory and [13] for some straightforward applications to for-

est inventory. According to this approach one would consider a given forest as the

realization of a complex stochastic process in the plane generating the locations ui
of the trees and the values Yi of the variable of interest. The adequate mathematical

tool for such a modelization is the so called theory of marked point process, see e.g.

[4] for a excellent overview and Penttinen [16] for an application to forestry. The

drawbacks of this sophisticated approach are at least threefold: �rst the mathe-

matical complexity, second the diÆcult task of model �tting (which requires exten-

sive data generally not available without thorough pilot studies), third it addresses

more the modelization of forest structures than the down to earth problem of forest

inventory, i.e. the estimation of some simple quantities for a given forest. Our

objective being to provide simple and yet realistic guidelines the super-population

model retained is very simple. The forest is partitioned into strata within which

the locations ui of the trees are assumed to be independently uniformly distributed
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while, in contrast to standard sampling theory, the Yi are kept constant.

We shall call this model the local Poisson forest. This, of course, is a crude

approximation of any real forest, since concurrence mechanisms are not taken into

account, and is certainly wrong in special cases like regular plantations (though

thinning procedures may render a regular network to look fairly random after some

time) or forest consisting of more or less isolated clusters of trees. However, this is

certainly a good starting point for approximation. Another justi�cation is that this

simple model yields interesting results under systematic sampling (see section 3.5).

A further justi�cation, as we shall see, is that everything can be easily calculated

and the resulting optimal schemes have a clear intuitive appeal.

The �rst step of our program is therefore to calculate the anticipated variance

of the Horwitz-Thompson estimator under the model of a local Poisson forest. The

second step is to determine the optimal choice of inclusion probabilities by look-

ing at the resulting anticipated variance as well as the resulting costs. However,

before doing that, we have to give rigorous de�nitions and analyse some technical

diÆculties.

3.2 De�nition of the anticipated variance

We �rst consider the case of the global Poisson Forest, that is, we assume that

the coordinates ui; i = 1; : : : ; N are uniformly and independently distributed in

the forest area F ; we shall write ui(!) to emphasize the fact that the coordinates

depend on the random event !, which generates the uniform random pattern of

the forest. This terminology is due to the fact that if the trees in F are generated

by a spatially homogenous Poisson process then, conditionally on the number of

trees, the locations of the trees are independently and uniformly distributed in F .

The indicator functions 2.2 now depend also on !, which we write as Ii(x; !). The

circle centered at the origin with radius ri is denoted by Ki, whereas the same

circle centered at x is denoted by Ki(x). Thus, the circle associated with the i-th

tree under the random location ! is denoted by Ki(ui(!)). We need the following

notation

�i(!) = Exj!Ii(x; !); �ij(!) = Exj!Ii(x; !)Ij(x; !); �i(x) = E!jxIi(x; !)

Since ui(!) and x are uniformly distributed in F we have

E!�i(!) = Ex�i(x) = ~�i

For a given pattern !, the Horwitz-Thompson estimator is then

Y (x; !) =
1

�(F )

NX
i=1

Yi

�i(!)
Ii(x; !)

Clearly, Y (x; !) is design unbiased for each pattern !.

The overall variance can be obtained via 2.23 and is given by

Vx;!Y (x; !) = E!Vxj!Y (x; !) + V!Exj!Y (x; !) = E!Vxj!Y (x; !)

The term E!Vxj!Y (x; !) is called the anticipated variance; it is the average

variance, under all uniform random spatial pattern, of the design-based variance.

Note that keeping the Yi constant allows one to interchange the order of expectations

Exj!; E!jx even when the design is informative (as we shall see the exact optimal

designs of forest inventory are informative at the tree level).

According to 2.9, we need to calculate E!�i(!) and E!�ij(!) to obtain a �rst

order approximation of the anticipated variance.
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Let us now consider the local Poisson model. We assume that the forest F can

be partitioned in L strata Fk; k = 1; : : : ; L, i.e. F =
SL

k=1 Fk; 8k 6= l; Fk
T
Fl = ;;

and that the locations vectors ui(!) are independently uniformly distributed in Fk
for trees belonging to the k-th stratum. This model is a good approximation for

instance in the presence of a clear stand structure according to development stages,

in contrast to selection forests or virgin forests, for which the global Poisson model

appears to be more appropriate. Note that we do not assume the strata to be simply

connected sets (i.e. a stratum can be spread over several domains of the plane). We

need the following notation

�Yk =
1

�(Fk)

X
i2Fk

Yi

pk =
�(Fk)

�(F )

To obtain unbiased estimates for each stratum and to simplify the mathematics we

rede�ne, for a given pattern !, the indicator variables as

Ii(x; !) =

(
1 if x 2 Ki(ui(!)) \ Fk and i 2 Fk
0 otherwise

(3.1)

That is, when the point x falls in Fk only the trees of the same k-th stratum

are included. The conditional inclusion are de�ned as

�
(k)
i (!) =

(
�(Ki(ui(!))\Fk)

�(Fk)
if i 2 Fk and x 2 Fk

0 otherwise
(3.2)

likewise for the pairwise inclusion probabilities

�
(k)
ij (!) =

(
�(Ki(ui(!))\Kj(uj(!))\Fk)

�(Fk)
if i 2 Fk; j 2 Fk and x 2 Fk

0 otherwise
(3.3)

The unconditional inclusion probabilities �i(!); �ij(!) satisfy by de�nition the re-

lations
�i(!) = �

(k)
i (!)pk

�ij(!) = �
(k)
ij (!)pk

(3.4)

The revised Horwitz-Thompson estimator is de�ned as usual as

Y (x; !) =
1

�(F )

NX
i=1

Yi

�i(!)
Ii(x; !) (3.5)

By construction the revised estimator has the important property that if x 2 Fk
then

Y (x; !) =
1

�(Fk)

X
i2Fk

Yi

�
(k)
i

Ii(x; !)

which implies at once ExfY (x; !)jx 2 Fkg = �Yk. The revised estimator yields

therefore unbiased estimates for each stratum Fk . The revised estimate is also

unbiased for F since

Exj!Y (x) =
LX
j=1

Exj!(Y (x; !)jx 2 Fj)P (x 2 Fj) =
LX
j=1

pj �Yj = �Y
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Remarks

� The adjective "revised" is somewhat super
uous since 3.4 is by de�nition

an Horwitz-Thompson estimate. The sampling scheme has been "revised"

to allow for unbiased estimates in each stratum, which can be a practical

requirement depending on the context, and to simplify the mathematics.

� The inclusion probabilities of the standard and revised sampling schemes are

the same for interior trees, they di�er only at strata boundaries. It is clear

that the revised procedure leads to a smaller number of sampled trees per

point.

� The revised scheme simpli�es the mathematics of all procedures under the

local Poisson model. Both schemes are the same under the global Poisson

model. In practice, one would use the revised estimate only in two-phase

sampling.

� Since we are primarily interested in the local Poisson model we shall use

from now on the revised estimate, with the same notation as for the standard

estimate.

To calculate the anticipated variance let us note �rst that the true means �Yk; �Y do

not depend on ! and that we can decompose the design-based variance as

Vxj!Y (x; !) =
1

�(F )

Z
F

(Y (x; !)� �Y )2dx =
1

�(F )

LX
j=1

Z
Fj

(Y (x)� �Yj + �Yj � �Y )2dx

=

LX
j=1

pjVxj!(Y (x; !)jx 2 Fj) +
LX
j=1

pj( �Yj � �Y )2

(3.6)

Hence, we can calculate the anticipated variance under the local Poisson model if

we can do it under the global Poisson model which applies within each stratum. To

this end, we have to analyse the conditions under which the impact of boundary

e�ects can be neglected. The main idea is very simple: the troublesome terms of

the variance are the �ij(!). By taking the anticipated variance the expectation

E!�ij(!) can be rewritten �rst as E!Exj!Ii(x; !)Ij(x; !), then, by changing the

order of expectations, as ExE!jxIi(x; !)Ij(x; !) and therefore, since the trees are

independently distributed in F , also as Ex�i(x)�j(x) � ~�i ~�j if one neglects the

boundary e�ects. Hence, the anticipated variance will depend only on the individual

inclusion probabilities and no longer on the pairwise inclusion probabilities, i.e. on

the spatial structure of the forest. Intuitively speaking, this is legitimate if the

inclusion circles are small with respect to the forest area. Let us emphasize the

fact that this is not the classical problem of adjustment at the forest edge,

for instance by the well-known re
ection method of Schmid-Haas or other methods

(see [23]). In this work we have assumed from the very beginning that one has the

correct inclusion probabilities, i.e. one knows precisely the �(F \Ki(ui(!))) and the

�(F \Ki(ui(!)) \Kj(uj(!))) for all trees included in the sample. This, of course,

assumes that the forest boundary and the location of the trees are recorded, which is

becoming a standard procedure with the on-growing use of geographical information

systems. The next section gives a modern and qualitatively rigorous mathematical

treatment for the impact of boundary e�ects on the anticipated variance. It is clear

that exact and universal results (i.e. valid for any forest, no matter how complicated

its shape is) are illusory.
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3.3 The mathematics of boundary e�ects

We have seen that it suÆces to consider the case of an homogenous Poisson

forest, that is to assume that the coordinates ui(!); i = 1; : : : ; N are uniformly

and independently distributed in the forest area F ; The dilatation of the forest

area F by the circle Ki is the Minkowski sum

F �Ki = fxjKi(x) \ F 6= ;g =
[
x2F

Ki(x) (3.7)

whereas the erosion of the forest area F by the circle Ki is de�ned as

F 	Ki = fxjKi(x) � Fg (3.8)

Dilatation and erosion play a key role in integral geometry and mathematical mor-

phology, see for instance [24]. One obviously has the inclusions

F 	Ki � F � F �Ki

We shall see that boundary e�ects are negligible if the sets F 	 Ki and F � Ki

are close to the set F for all circles Ki. We need a simple but important result of

integral geometry, which states thatZ
<2
�(F \Ki(x))dx =

Z
F�Ki

�(F \Ki(x))dx = �(F )�(Ki) (3.9)

Proof:Z
<2
�(F \Ki(x))dx =

Z
<2
dx

Z
<2
IF (y)IKi(x)(y)dy =

Z
<2
dx

Z
<2
IF (y)IKi(y)(x)dy

which is equal toZ
<2
dyIF (y)

Z
<2
IKi(y)(x)dx = �(Ki)

Z
<2
IF (y)dy = �(F )�(Ki)

This result can be found e.g. in [15] under the condition that F is convex. This,

however, is not necessary since the above proof requires only Fubinis's theorem to

interchange the order of integration, and the obvious fact that x is in Ki(y) if and

only if y is in Ki(x). The �rst equality in 3.8 follows from the de�nition of the

dilatation.

Using the above result twice by beginning with F \Ki(x) we get at onceZ
<2�<2

�(F \Ki(x) \Kj(y))dxdy =

Z
F�Ki�F�Kj

�(F \Ki(x) \Kj(y))dxdy

= �(F )�(Ki)�(Kj)

(3.10)

To calculate the average inclusion probabilities ~�i we shall assume that the forest

boundary @F is given by a set of polygons. We consider now a point x 2 F near the

boundary and we assume that Ki(x)\@F 6= ; in one edge only. These conditions

are ful�lled if the boundary consists of fairly long edges and not to many vertices

(corners), narrow forest strips are also excluded. Let us denote by � = �(x) the

distance of the point x 2 F n F 	Ki to the nearest edge. Then one can use the

well known formula

�(F \Ki(x)) = �r2i �
�
r2i arccos(

�

ri
)� �

q
r2i � �2

�
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Straightforward integration yields then

1

ri

Z ri

o

�(F \Ki(x))d� = (1� 2

3�
)�(Ki)

Hence, up to boundary e�ects in the vertices, we have


1;i =
1

�(Ki)
Ex2Fn(F	Ki)�(F \Ki(x)) �

�
1� 2

3�

�
With the same arguments one obtains


2;i =
1

�(Ki)
Ex2(F�Ki)nF�(F \Ki(x)) � 2

3�

Up to boundary e�ects at the vertices of the boundary polygons we have


1;i


2;i
=

3�

2
� 1 (3.11)

According to 3.8 we can write

Ex2F�Ki
�(F \Ki(x)) = �(Ki)

�(F )

�(F �Ki)

which is equal to

�(Ki)

�
�(F 	Ki)

�(F �Ki)
+
�(F n (F 	Ki))

�(F �Ki)

1;i +

�((F �Ki) n F )
�(F �Ki)


2;i

�
Using 3.10 we obtain


1;i =
1� 2

3�

1 + 2
3�
(�i � 1)

where we have set

�i =
�(F �Ki)� �(F )

�(F ) � �(F 	Ki)

For non-pathological forest shapes �i will usually be greater than 1 and will tend to

1 if the surface area �(F ) tends to in�nity while the circle Ki remains bounded. Of

course, things can go wrong with fractal-like forest, for which it is quite possible that

any circle Ki(x) will always intersect the forest and the non-forest area. Therefore,

we can say that 
1;i will usually be smaller than 1 � 2
3�

but very close to it. For

completeness we give some results pertaining to the dilated and eroded forest areas.

First, when F is convex the famous Steiner's formula (see [19]) states that

�(F �Ki) = �(F ) + L(F )ri + �r2i

where L(F ) is the length of the boundary of F (i.e. the perimeter). More generally,

for non-convex F satisfying the following regularity conditions: 9 ~F F = ~F�K;K =S
iKi (K is simply the largest circle), and F is closed and open with respect to

K, i.e. F = (F 	K) �K = (F �K) 	K, then one has the following generalized

Steiner's formulae (see [24] p.143, where the term 2L(F )r is a misprint and should

read L(F )r)

�(F �Ki) = �(F ) + L(F )ri + �r2i �(F )

�(F 	Ki) = �(F )� L(F )ri + �r2i �(F )

where �(F ) is the Euler-Poincar�e characteristic of the forest area F , which is de�ned

as the number of components minus the number of holes; for instance �(F ) is equal
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to 1 when F is convex, and �(F ) is 0 when F is a circular ring. The technical

condition requiring F to be open and close with respect to K is violated at the

vertices of a polygons. Corners have to be smoothed. The reader can verify that

the above Steiner's formulae hold exactly when F is a large circle or a large circular

ring; as a counter-example, consider a square for which it is easy to see that �r2i
must be replaced by 4r2i in the second formula. In any case, the above formulae

show that for well behaved shapes of F , the coeÆcient �i is very close to 1 (exactly

1 if the Steiner's formulae hold).

Summarizing the previous results we can state that

Ex2F�(F \Ki(x)) =
�(F 	Ki)

�(F )
�(Ki) +

�(F ) � �(F 	Ki)

�(F )

1;i�(Ki)

which is exactly equal to

�(Ki) (1� (1� 
1;i)�i)

where we have set �i =
�(F )��(F	Ki)

�(F )
. By the Steiner's formulae �i is of order

ri
L(F )

�(F )
. Neglecting the boundary e�ects at the vertices we can use the previous

result on straight line boundaries to get

�(Ki)

�
1� 2

3�
�i

�
and we can state that under regularity conditions the average inclusion probabilities

satisfy the following relations

�(Ki)

�(F �Ki)
� ~�i � �(Ki)

�(F )

�
1� 2

3�
�i

�
� �(Ki)

�(F )
(3.12)

where �i ! 0 as
�(Ki)

�(F )
! 0. Note that the �rst inequality is intuitively obvious

(increasing the boundary area by dilatation will decrease the average intersection

areaKi(x)\F ), though it may be violated in pathological situations. Furthermore,

one also has

�i(!) � �(Ki)

�(F )
8ui(!) 2 F 	Ki

�i(x) � �(Ki)

�(F )
8x 2 F 	Ki

Boundary e�ects are consequently negligible when

�(F 	Ki)

�(F )
! 1

and the boundary is regular enough.

We now investigate the pairwise inclusion probabilities �ij(!). We have

E!�ij(!) = E!
1

�(F )
�(F \Ki(ui(!)) \Kj(uj(!)))

which is equal to

1

�(F )

1

�2(F )

Z
F�F

�(F \Ki(x) \Kj(y))dxdy

According to the previous arguments the last expression will, for regular F , be

larger than

1

�(F )

1

�(F �Ki)

1

�(K �Kj)

Z
F�Ki�F�Kj

�(F \Ki(x) \Kj(y))dxdy
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since sampling outside F will usually decrease the surface area of the intersections.

By 3.9 we get

E!�ij(!) � �(Ki)

�(F �Ki)

�(Kj)

�(F �Kj)

On the other hand, since the trees are independently distributed, we also have

E!�ij(!) = ExE!jxIi(x; !)Ij(x; !) = Ex
�(F \Ki(x))

�(F )

�(F \Kj(x))

�(F )

Hence we have

�(Ki)

�(F �Ki)

�(Kj)

�(F �Kj)
� E!�ij(!) � �(Ki)

�(F )

�(Kj)

�(F )

so that under the same regularity conditions as for 3.11 we can state that

E!�ij(!) � ~�i ~�j (3.13)

Since for non-pathological F the random variables �(F \Ki(x)) and �(F \Kj(x))

will be positively correlated we usually will have convergence from above, i.e.

E!�ij(!) # ~�i ~�j

Taking the expectation of Vxj!Y (x; !) with respect to ! we see that, to the �rst

order (an exact analytical treatment is impossible since we have to calculate the

expectations of ratios of random variables in !), all the cross-products terms vanish

and we obtain the following result:

Under the regularity conditions ensuring that boundary e�ects are neg-

ligible, the �rst order approximation of the anticipated variance of the

Horwitz-Thompson estimate under the global Poisson forest is given by

E!Vxj!Y (x; !) =
1

�2(F )

NX
i=1

Y 2
i

~�i
� 1

�2(F )

NX
i=1

Y 2
i (3.14)

The �rst term, say �(F ) with 0 < �(F ) = 1
�(F )

PN

i=1

Y 2

i

�(Ki)
<1 , remains bounded

as �(F ) ! 1, whereas the second term can be written as 1
�(F )

�(F ), with �(F ) =

1
�(F )

PN

i=1

Y 2

i

�(Ki)
. This second term will tend to zero for �(F ) ! 1, since 0 <

�(F ) <1. Hence, for large areas one can write

E!Vxj!Y (x; !) �
1

�2(F )

NX
i=1

Y 2
i

~�i
(3.15)

This is the version we shall use for optimization since the neglected term does

not depend on the inclusion probabilities (which are the variables to be optimized)

and because we are primarily interested in forest inventories performed on large

areas.

Another, perhaps mathematically more elegant, justi�cation to use 3.13 is given

by considering the pseudo Horwitz-Thompson estimator

~Y (x; !) =
1

�(F )

NX
i=1

Yi

~�i

which is model-design and design-model unbiased, i.e.

E!Exj! ~Y (x; !) = ExE!jx ~Y (x; !) = �Y
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though it is neither exactly design nor model unbiased. It is easily veri�ed that the

overall variance of ~Y (x; !), i.e Vx;! ~Y (x; !), is precisely given by 3.13. The overall

variance is equal to the anticipated variance for design-unbiased estimator and is

the natural generalization for estimators which are only model-design unbiased. It

is intuitively clear that ~Y (x; !) is very close to Y (x; !) when boundary e�ects are

negligible. Yet another, more pragmatic reason, to use 3.13 is that it contains

only the terms of the variance which depend solely on the individual inclusion

probabilities, up to boundary e�ects independent of the locations of the trees, and

not on the pairwise inclusion probabilities, which depend on the forest structure

and which we cannot control.

For future use we now investigate the model bias at the boundary. We have

E!jxY (x; !) =
1

�(F )

NX
i=1

YiE!jx
Ii(x; !)

�i(!)
=

1

�(F )

NX
i=1

Yi i(x)

where we have set

 i(x) =

Z
F\Ki(x)

du

�(F \Ki(u))

Clearly, if Ki(u) � F 8u 2 F \Ki(x) then  i(x) = 1, which is the case whenever

x 2 F 	 (Ki �Ki). Furthermore, since Exj!Y (x; !) = �Y we have by interchanging

the order of expectation Ex i(x) = 1. As a �rst approximation we can replace

�(F \ Ki(u)) by �(F \ Ki(x)) to obtain  i(x) � 1. To get further insight we

consider an in�nite straight line boundary. Let � = �(x) denote the distance of the

point x 2 F to the boundary line, likewise � = �(u) will denote the distance of the

point u 2 F \Ki(x). One has

�(F \Ki(u)) = �(Ki)

0@1� 1

�
arccos(

�

ri
) +

�

�ri

s
1�

�
�

ri

�21A
Note that � 2 [0; 2ri] and � 2 [� � ri; � + ri] \ [0;1]. Since for given � the length of

the chord in Ki(u) parallel to the boundary is given by 2
p
r2i � (� � �)2, we have

 i(x) =

Z ri+�

max(0;��ri)

2
p
r2i � (� � �)2d�

�r2i

 
1� 1

�
arccos( �

ri
) + �

�ri

r
1�

�
�

ri

�2!
Setting �(x) =

�(x)

ri
2 [0; 2] and changing the variable to w = �

ri
we obtain

 i(x) =
2

�

Z 1+�(x)

max(0;�(x)�1)

p
1� (�(x) � w)2dw

�(w)

where the function �(w) is de�ned as

�(w) =

(
1� 1

�
arccos(w) + w

�

p
1� w2 if � 1

1 if w > 1

Numerical integration shows that minx2@F  i(x) = 0:69 at �(x) = 0 and that

maxx2@F  i(x) = 1:13 at �(x) = 1. However, the average of  i(x) in the boundary

strip � 2 [0; 2] is Ex2@F i(x) = 0:9964, whereas it is 1:0146 in the boundary strip

[0:1; 1:9]. Consequently, we can say that the average model bias in the boundary

zone is negligible and we shall therefore write

E!jxY (x; !) � �Y 8x 2 F (3.16)

We are now ready to calculate the anticipated variance under the sampling schemes

de�ned in chapter 2. To simplify the notation we shall write �i instead of ~�i, since

we assume that boundary e�ects are negligible.
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3.4 The anticipated variances

Let us �rst recall in a qualitative way the validity assumptions under the local Pois-

son model derived in the previous section : The strata are large in comparison

with the inclusion circles, the strata and forest boundaries are de�ned

by polygons with edges much larger than the diameters of the inclusion

circles and the number of vertices (corners) is not too large. Otherwise,

the structure of the forest can be fairly complex, i.e. consisting of several

components, convex or not, simply connected or not, i.e. zones of non-

forest area can lie within the strata ("holes"). Small strata components

with very jagged boundaries, i.e. fractal-like forests will violate these

assumptions.

3.4.1 One-phase one-stage simple random sampling

We consider the local Poisson model. According to 3.5 the variance of the revised

Horwitz-Thompson estimator is given by

Vxj!Y (x; !) =
LX
j=1

pjVxj!(Y (x; !)jx 2 Fk) +
LX
j=1

pj( �Yj � �Y )2

Using 3.13 within each strata and the de�nitions of the inclusion probabilities 3.2

and 3.3 we get after some simple algebra:

The anticipated variance of the revised Horwitz-Thompson estimator

bY (!) = 1

n2

X
x2s2

Y (x; !)

under the local Poisson model is given by

E!Vxj! bY (!) = 1

n2�2(F )

NX
i=1

Y 2
i

�i
+

1

n2

LX
j=1

pj( �Yj � �Y )2

� 1

n2

1

�(F )

LX
j=1

1

�(Fj)

X
i2Fj

Y 2
i

(3.17)

Remarks

� The global Poisson model, i.e. L = 1, is a special case of the local Poisson

model

� The anticipated variance is a decreasing function of the inclusion probabilities.

� By the proof of 3.14 we see that the �rst two terms are of order n�12 and that

the last term is of smaller order when �(F )!1, namely 1
n2�(F )

.

� The anticipated variance under the local Poisson model is essentially equal to

the anticipated variance under the global Poisson model augmented by the

between-strata variance (which is independent of !)

� If a stratum k consists of several disjoined components with the same averages
�Yk, we obtain the same anticipated variance by considering each component

as a stratum on its own.
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Since we are primarily interested in large areas we shall use from now on the fol-

lowing expression for the anticipated variance of the one-phase one-stage

Horwitz-Thompson estimator under simple random sampling and local

Poisson model

E!Vxj! bY (!) = 1

n2�2(F )

NX
i=1

Y 2
i

�i
+

1

n2

LX
j=1

pj( �Yj � �Y )2 (3.18)

We can now proceed to calculate the anticipated variance under cluster random

sampling. Though the main ideas have been already outlined, the computations

are, as expected, more cumbersome.

3.4.2 One-phase one-stage cluster random sampling

We use the same terminology and notation as in section 2.3, but for the fact that

we now work with the revised Horwitz-Thompson estimator Y (xl) at each point

xl = x + el of the cluster with origin x (see 3.4). For ease of notation we shall

usually omit the symbol ! standing for the random pattern of the trees according

to the local Poisson model.

According to 2.18 we calculate

ExM
2(x)(Yc(x) � �Y )2 = Ex

 
MX
l=1

IF (xl)(Y (xl)� �Y )

!2

which is equal to

Ex

0@ MX
l=1

IF (xl)(Y (xl)� �Y )2 +

MX
l6=k

IF (xl)IF (xk)(Y (xl)� �Y )(Y (xk � �Y )

1A
and hence to

MX
l=1

P (xl 2 F )V (Y (xl)jxl 2 F )

+

MX
l6=k

P (xl 2 F; xk 2 F )Exf(Y (xl)� �Y )(Y (xk)� �Y )jxl 2 F; xk 2 Fg

According to 2.11 we know that, given xl 2 F , xl is uniformly distributed in F so

that the �rst term is the anticipated variance under simple random sampling, which

is given by 3.17. The extra-term is due to cluster sampling and is more tricky. We

need to calculate

E!Exf(Y (xl)� �Y )(Y (xk)� �Y )jxl 2 F; xk 2 Fg

First we decompose the event

fxk 2 Fg \ fxl 2 Fg

into the disjoined events0@ L[
j=1

fxk 2 Fjg \ fxl 2 Fjg
1A[0@ L[

i6=j
fxk 2 Fig \ fxl 2 Fjg

1A
39



and use the decomposition rule for conditional expectation on disjoined As

E(Zj [s As) =

P
sE(ZjAs)P (As)P

s P (As)

Hence we must calculate the following terms

1. E!Exj!f(Y (xl)� �Y )(Y (xk)� �Y )jxk 2 Fi; xl 2 Fig
2. E!Exj!f(Y (xl)� �Y )(Y (xk)� �Y )jxk 2 Fi; xl 2 Fjg i 6= j

To calculate the �rst expression we add � �Yi + �Yi, expand the product, interchange

the order of expectation, use 3.15 so that E!Y (x) = �Yi 8x 2 Fi to �nally obtain

ExE!jxY (xk)Y (xl)� �Y 2
i + (�Yi � �Y )2

At this point we make the assumption that the same tree cannot be sampled

from two di�erent points of the cluster, which is nearly always the case in

practice, excepted may be for the angle count method and very large trees. That

is, we assume that

Ii(xk ; !)Ii(xl; !) = 0 8i 8k 6= l (3.19)

Taking the expectation and after some algebra we see that term (1) is equal to

( �Yi � �Y )2 � 1

�2(Fi)

X
k2Fi

Y 2
k

and therefore for large areas asymptotically equal to ( �Yi � �Y )2 (by the same ar-

guments given in 3.14 applied to each stratum). Let us now tackle term (2). By

adding � �Yi + �Yi and � �Yj + �Yj and using the same arguments as above we get

( �Yi � �Y )( �Yj � �Y )

Putting the pieces together we �nally obtain the following intermediate result for

the extra term of the anticipated variance

LX
i=1

MX
l 6=k

( �Yi � �Y )2P (xk 2 Fi; xl 2 Fi) +
LX
i6=j

MX
l6=k

( �Yi � �Y )( �Yj � �Y )P (xk 2 Fi; xl 2 Fj)

To go further we introduce the random variables associated with the number of

points of a cluster falling into a given stratum, i.e. we set

Mj(x) =

MX
l=1

IFj (xl)

It is then straightforward to see that the various sums of the P (xk 2 Fi; xl 2 Fj)

-like terms can be expressed as expectation, variances and covariances of the Mj .

Using 3.17 we get the following result:

The anticipated variance of the one-phase one-stage estimate under clus-

ter sampling and local Poisson model is given by

E!Vxj! bYc(!) = 1

n2ExM(x)

0@ 1

�2(F )

NX
i=1

Y 2
i

�i
+

LX
j=1

pj( �Yj � �Y )2

1A
+

1

n2ExM(x)

LX
j=1

�
ExMj(x)(Mj(x) � 1)

ExM(x)

�
( �Yj � �Y )2

+
1

n2ExM(x)

LX
i6=j

�
ExMj(x)Mi(x)

ExM(x)

�
( �Yi � �Y )( �Yj � �Y )

(3.20)
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Since
ExMj(x)

ExM(x)
= pj and

PL

j=1 pj(
�Yj � �Y ) = 0 we get after some simple algebra the

following equivalent expression

E!Vxj! bYc(!) = 1

n2ExM(x)

 
1

�2(F )

NX
i=1

Y 2
i

�i

!

+
1

n2
Vx

0@ LX
j=1

Mj(x)

ExM(x)
( �Yj � �Y )

1A (3.21)

The above formulae look impressive at �rst sight, the following remarks are a help

for interpretation.

Remarks

1. If we have only one single stratum (global Poisson forest) then, for the same

total number of points, cluster random sampling leads formally to the same

anticipated variance as simple random sampling, which is intuitively reason-

able.

2. If we assume, formally, that givenM(x) the Mj(x) have a multinomial distri-

bution, then by conditioning onM(x) and using 2.23 in 3.19 we see that in this

case also cluster random sampling and simple random sampling have the same

anticipated variance since the extra term is found to be (
PL

j=1 pj(
�Yj� �Y ))2 =

0, because
PL

j=1 pj
�Yj = �Y . Of course, the multinomial distribution cannot

hold, since the points of a cluster are not independent: if they were, we would

have simple random sampling, which the above argument simply con�rms.

The physical interpretation of this result is the following: if the distances

between the cluster points are comparable to the size of the components of

the strata, then the intra-cluster correlation is small, since points of the same

cluster are likely to be spread over several strata, and cluster sampling is close

to random sampling.

3. The other extreme case is that all the points of a cluster will be usually in

the same stratum. An approximate model is therefore to set Mj(x) = M(x)

with probability pj and Mj(x) = 0 with probability 1� pj , together with the

condition thatMi(x)Mj(x) = 0 whenever i 6= j. In such a case the anticipated

variance can be easily rewritten as

E!Vxj! bYc(!) � 1

n2ExM(x)

0@ 1

�2(F )

NX
i=1

Y 2
i

�i
+

LX
j=1

pj( �Yj � �Y )2

1A
+

1

n2ExM(x)

�
(ExM(x)� 1) +

VxM(x)

ExM(x)

� LX
j=1

pj( �Yj � �Y )2

Comparing this with formula 2.20 we can reinterpret the intra-cluster corre-

lation coeÆcient as

� �
PL

j=1 pj(
�Yj � �Y )2

E!VxY (x; !)

Hence, if the strata are much larger than the dimension of the cluster, the

intra-cluster correlation will increase with the between-strata variance and

cluster sampling leads to a higher anticipated variance than simple random

sampling. It can be expected that, in practice, this case gives the upper bound

for the extra-term due to cluster sampling (mathematically it seems possible
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that a speci�c stand structure combined with an ad-hoc cluster geometry may

give higher values).

4. It is theoretically possible that the anticipated variance under cluster sampling

is smaller than under simple sampling, for instance when Mj(x) is always

close to 1 for all j. In such a case, the strata can consist of many small

connected components and the assumption of negligible boundary e�ects is

questionable anyway, or the dimension of the cluster is much larger than the

components of the strata and we are back to the second case with zero intra-

cluster correlation.

For future use and also to simplify the complicated expression 3.20 we introduce

the following notation

�2 =

LX
j=1

pj( �Yj � �Y )2 (3.22)

�2 is the between-strata variance, which depends only on the structure of the forest

and not on the sampling scheme.

� = ExM(x)� 1 +
VxM(x)

ExM(x)
(3.23)

� depends only on the geometry of the cluster and of the geometry of the forest

area but not on the inclusion probabilities.

Æ =

PL

j=1 ExMj(x)(Mj(x) � 1)( �Yj � �Y )2

ExM(x)��2

+

PL

i6=j Ex(Mj(x)Mi(x))( �Yi � �Y )( �Yj � �Y )

ExM(x)��2

(3.24)

Æ depends on the geometry of the cluster and the structure of the forest, but not on

the inclusion probabilities. It can be expected to lie between 0 and 1 in practice.

Values near 1 indicate that most clusters are likely to have all their points within

the forest area in the same stratum, whereas values near zero indicate that most

clusters will be spread over several di�erent strata. Theoretically, values below 0

and above 1 are possible, but unlikely to occur in standard cases. It is interesting to

compare directly the anticipated variance obtained for simple and cluster random

sampling:

� Simple random sampling

E!Vxj! bY (!) = 1

n2�2(F )

NX
i=1

Y 2
i

�i
+

1

n2
�2

� Cluster random sampling

E!Vxj! bYc(!) = 1

n2;cExM(x)

1

�2(F )

NX
i=1

Y 2
i

�i
+

1

n2;cExM(x)
(1 + �)�2

where � = �Æ and, for the comparison to be meaningful, n2 = n2;cExM(x)

(so that the overall number of points is the same). The in
ation factor �

can be expected to lie between 0 (when the Mj are independent multinomial)

and ExM(x) � 1 +
VxM(x)

ExM(x)
(when most clusters lie entirely within one single

stratum).

We are now able to generalize these results to the other sampling schemes.
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3.4.3 One-phase two-stage simple random sampling

This is straightforward. By using 2.29, 2.30 and 3.17 we obtain immediately the

following result:

The anticipated variance of the one-phase two-stage Horwitz-Thompson

estimator under simple random sampling and the local Poisson model is

given by

E!Vxj! bY �(!) = 1

n2�2(F )

NX
i=1

Y 2
i

�i
+

1

n2

LX
k=1

pk( �Yk � �Y )2

+
1

n2�2(F )

 
NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

! (3.25)

It is natural that the contribution to the variance of the second-stage procedure

is una�ected by the forest structure, since it samples trees independently of each

other.

3.4.4 One-phase two-stage cluster random sampling

Again, this is straightforward. By using 2.36, 2.30 and 3.19 we obtain the following

result:

The anticipated variance of the one-phase two-stage Horwitz-Thompson

estimator under cluster random sampling and local Poisson model is

given by

E!Vxj! bY �c (!) = 1

n2ExM(x)

 
1

�2(F )

NX
i=1

Y 2
i

�i
+

LX
k=1

pk( �Yk � �Y )2

!

+
1

n2ExM(x)

LX
j=1

�
ExMj(x)(Mj(x)� 1)

ExM(x)

�
( �Yj � �Y )2

+
1

n2ExM(x)

LX
i6=j

�
Ex(Mj(x)Mi(x)

ExM(x)

�
( �Yi � �Y )( �Yj � �Y )

+
1

n2ExM(x)

1

�2(F )

 
NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

!
(3.26)

3.4.5 Two-phase one/two-stage simple random sampling

The calculation of the anticipated variance under two-phase sampling schemes seems

to be beyond exact analytical treatment in the general case. However, by considering

the special case of strati�cation it is possible to get at least a qualitative insight.

The main idea is to assume that the external prediction model used is a

post-strati�cation model with the same strata as the local Poisson model

for the random location of the trees. Indeed, it does make sense to believe

that the best post-strati�cation characteristic has something to do with the stand

structure. We already know (see 2.49 and 2.51) that the design-based variance of

the post-strati�ed estimate can be written as

V (bY �reg) = 1

n2

LX
j=1

pjVj +
1

n1

LX
j=1

pj( �Yj � �Y )2 +
1

n2
ExV (x)
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or, more generally, as

V (bY �reg) = 1

n2
Vx(Y (x)) +

1

n2
ExV (x) � 1

n2

�
1� n2

n1

�
Vx(bY (x))

In contrast to section 2.8, we are using the revised Horwitz-Thompson estimate,

which is unbiased also within each stratum. According to the asymptotic ar-

guments given in section 2.8 one can identify Vx(Y (x)) with
PL

j=1 pj(
�Yj � �Y )2.

To calculate the anticipated variance by the �rst formula it suÆces to note thatPL

j=1 pjVj = Vx(Y (x))�
PL

j=1 pj(
�Yj � �Y )2 and to use 3.16 to obtain the following

result:

The anticipated variance of the two-phase two-stage post-strati�ed esti-

mate is given by

E!Vxj! bY �reg(!) = 1

n2�2(F )

NX
i=1

Y 2
i

�i
+

1

n1

LX
j=1

pj( �Yj � �Y )2

+
1

n2�2(F )

 
NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

!

� 1

n2

1

�(F )

LX
k=1

1

�(Fk)

X
i2Fk

Y 2
i

(3.27)

For large areas we neglect as usual the last term, and we have

E!Vxj! bY �reg(!) = 1

n2�2(F )

NX
i=1

Y 2
i

�i
+

1

n1

LX
j=1

pj( �Yj � �Y )2

+
1

n2�2(F )

 
NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

! (3.28)

One sets formally pi � 1 in the above formula for the two-phase one-stage case, so

that the last term vanishes.

The most interesting feature of this result is revealed by letting n1 tend to

in�nity in the one-stage case: in practice this is the case when thematic maps are

available and the surface areas of each stratum are known. Indeed, one obtains

lim
n1!1

E!Vxj! bY �reg(!) = 1

n2�2(F )

NX
i=1

Y 2
i

�i

which is the anticipated variance of the one-phase one-stage estimate under the

global Poisson model. In other words, post-strati�cation �lters out the

heterogeneity of the the local Poisson forest by removing the between-

strata variance. This formula explains in an enlightening way why post-strati�ed

estimates are more accurate than unstrati�ed estimates (under the assumption, of

course, that the strati�cation is meaningful).

By analogy and induction we can reasonably pretend that this result holds for

general models by assuming that the predictions bY (x) can be used to stratify the

forest according to some threshold values. In practice, most linear models used

are of the analysis of variance type since the auxiliary information is qualitative

(e.g. stand map). The saturated models correspond to full strati�cation. Very

often full strati�cation is not meaningful since the number of di�erent strata can

become very large, whereas a simple additive ANOVA model, possibly with a few

interactions, may already provide an excellent �t. The prediction model should
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yield asymptotically for each stratum Fk of the local Poisson model bY (x) � �Yk.

Summarizing, and with the previous remark in mind, we can "state" the following

result:

The anticipated variance of two-phase two-stage estimate under simple

random sampling and local Poisson model is given by

E!Vxj! bY �reg(!) = 1

n2�2(F )

NX
i=1

Y 2
i

�i
+

1

n1
Vx(bY (x))

+
1

n2�2(F )

 
NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

! (3.29)

The extension of these results to cluster sampling is intuitively clear.

3.4.6 Two-phase one/two-stage random cluster sampling

The general idea and justi�cations are the same as in simple random sampling.

First, we replace asymptotically each prediction bY (xl) by the true stratum mean �Yj

when xl 2 Fj ; then we use for ExM
2(x)(bYc(x) � �Y )2 (which is independent of !)

the same decomposition as for ExM
2(x)(Yc(x)� �Y )2 (see the beginning of the proof

of 3.19), and, as in simple sampling, we have the same substitution e�ect n2 ! n1
for the terms induced by the strata. This implies the following result:

The anticipated variance of two-phase two-stage post-strati�ed estimate

under cluster random sampling and local Poisson forest is given by

E!Vxj! bY �c;reg(!) = 1

n2ExM(x)

1

�2(F )

NX
i=1

Y 2
i

�i
+

1

n1ExM(x)

LX
j=1

pj( �Yj � �Y )2

+
1

n1ExM(x)

LX
j=1

�
ExMj(x)(Mj(x)� 1)

ExM(x)

�
( �Yj � �Y )2

+
1

n1ExM(x)

LX
i6=j

�
ExMj(x)Mi(x)

ExM(x)

�
( �Yi � �Y )( �Yj � �Y )

+
1

n2ExM(x)

1

�2(F )

 
NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

!
(3.30)

Simple algebra as in the proof of 3.20 yields the equivalent formula

E!Vxj! bY �c;reg(!) = 1

n2ExM(x)

 
1

�2(F )

NX
i=1

Y 2
i

�i

!

+
1

n1
Vx

0@ LX
j=1

Mj(x)

ExM(x)
( �Yj � �Y )

1A
+

1

n2ExM(x)

1

�2(F )

 
NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

!
(3.31)

One sets formally pi � 1 in the above formula for the two-phase one-stage case, so

that the last term vanishes.

We observe the same e�ect as for simple random sampling: post-strati�cation

can substantially reduce the variance if the between-strata variance and hence
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also the intra-cluster correlation are large. In the limiting case limn1 !1 post-

strati�ed cluster sampling yields the same anticipated variance per sample point as

simple random sampling.

Asymptotically we can replace bY (xl) by �Yj whenever xl 2 Fj , which implies

M(x)bYc(x) =PL

j=1
�Yj . Consequently, and under the same conditions as for simple

random sampling, we can "state" the following result:

The anticipated variance of the two-phase two-stage estimate under clus-

ter random sampling and local Poisson model is given by

E!Vxj! bY �c;reg(!) = 1

n2ExM(x)

 
1

�2(F )

NX
i=1

Y 2
i

�i

!

+
1

n1
Vx

 
M(x)(bYc(x)� �Y )

ExM(x)

!

+
1

n2ExM(x)

1

�2(F )

 
NX
i=1

R2
i

�ipi
�

NX
i=1

R2
i

�i

! (3.32)

In the next section we present an heuristic argument justifying the use of the an-

ticipated variance also under systematic sampling.

3.5 The anticipated variance under systematic sam-

pling

All the calculations of the anticipated variance rest upon the fundamental result

3.13, obtained for one-phase one-stage random sampling under the global Poisson

forest. Formally, one can consider a systematic sample as one single huge cluster

with n2;c = 1 and �M = n2, the number of points of the grid falling into the forest

area. We have seen in 3.19 that, in this case, we get the same anticipated variance

as in simple random sampling. This argument, however, is purely formal, since the

formulae given for cluster sampling were only asymptotically valid, i.e. for a large

number of clusters.

We now give a further simple heuristic argument showing that this result is

likely to hold in large areas also under systematic sampling. We consider a global

Poisson forest and a rectangular grid with fundamental cell F0. To simplify the

geometry we assume that F =
Sn2
k=1 Fo;k where all the Fo;k are congruent to F0.

A systematic grid with random origin in e.g. F0;1 and �xed orientation generates

in each F0;k a point xk located up to translation in the same place. Let us now

overlay conceptually all the congruent cells with their trees (recall that in our model

trees are dimensionless points) onto the fundamental cell F0. Drawing a systematic

grid is then equivalent to drawing a single point ~x uniformly in F0. To be

more precise one should also identify the opposite edges of F0 (we transform the

rectangular cell F0 into a torus) and also fold over the edges the circles Ki which hit

the boundary of F0 (since a tree near the boundary of its cell F0;k can be sampled

from a point in an adjacent cell). We neglect the boundary e�ects within each F0;k
so that the inclusion probabilities with respect to ~x are now given by

�i;0 =
�(Ki)

�(F0)
; �ij;0 =

�(Ki \Kj)

�(F0)

Even if the assumption of a global Poisson forest does not hold exactly in F it is

intuitively clear that the arti�cial overlaid forest de�ned in F0 is, for each !, unlikely

to display any structure: local repulsion or aggregation pattern of trees will have
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been destroyed to a great extent by the overlay. We can therefore reasonably expect

that the overlaid trees are independently uniformly distributed in F0, even if this is

not exactly the case in F . Consider now the Horwitz-Thompson estimator on the

torus de�ned as

Y0(~x; !) =
1

�(F0)

NX
i=1

Yi

�i;0
Ii(~x; !)

where the indicator variable Ii(~x; !) is 1 when the i-th tree is sampled from one of

the xk, otherwise 0. By construction Y0(~x; !) is an unbiased estimate of the overlaid

forest, i.e.

E~xj!Y0(~x; !) =
1

�(F0)

NX
i=1

Yi = n2 �Y 8!

and its anticipated variance is given by

E!V~xj!(Y0(~x; !)) =
1

�2(F0)

NX
i=1

Y 2
i

�i;0
� 1

�2(F0)

NX
i=1

Y 2
i

It is easily veri�ed that, by construction, the usual Horwitz-Thompson estimatebY (!) = 1
n2

PN

k=1 Y (xk ; !) and the above Horwitz-Thompson estimate Y0(~x; !) are

linked by

Y0(~x; !) = n2 bY (!) = n2X
k=1

Y (xk ; !)

so that 1
n2
Y0(~x; !) = bY (!) and consequently

E!V (bY (!)) = 1

n22
E!V~xj!(Y0(~x; !))

Since n2�(F0) = �(F ) and �(F0)�i;0 = �(F )�i one �nally obtains

E!V (bY (!)) = 1

n2�2(F )

NX
i=1

Y 2
i

�i
� 1

�2(F )

NX
i=1

Y 2
i

It is interesting to note that one has formally the same result by assuming that the

trees are uniformly and independently distributed within each F0;k and that the xk
are independently uniformly distributed in F0;k (strati�ed random sampling). To

get further insight we write the anticipated variances in terms of the

�(F ) =
1

�(F )

NX
i=1

Y 2
i

�(Ki)
; 0 < �(F ) <1

�(F ) =
1

�(F )

NX
i=1

Y 2
i ; 0 < �(F ) <1

The anticipated variance under simple random sampling (see 3.13) can be rewritten

as

E!Vrandom(bY (!)) = �(F0)

�(F )

�
�(F )� �(F )

�(F )

�
after reinterpreting �(F0) as the mean sampled area per point, i.e. �(F0) =

�(F )

n2
.

The anticipated variance under random cluster sampling with only one single large

cluster of expected size n2 is, formally, given by the same expression, i.e.

E!Vcluster(bY (!)) = �(F0)

�(F )

�
�(F )� �(F )

�(F )

�

47



This result is purely formal since the formulae for cluster sampling are only valid

for a large number of clusters. Note also that in 3.19 we neglected the term

� 1
�2(F )

PN

i=1 Y
2
i which can be added in the �rst part of the proof by using 3.13.

The anticipated variance under systematic sampling is, by the previous arguments,

given by

E!Vsyst(bY (!)) = �(F0)

�(F )

�
�(F )� �(F )

�(F0)

�
The anticipated variance under systematic sampling is therefore smaller than under

random sampling, in agreement with the well known fact that treating a systematic

sample as a random sample usually leads to an overestimation of the variance. Now,

if �(F0) ! 1 and, consequently also �(F ) !1, the three approaches are asymp-

totically equivalent: this is the case for constant sampling density over increasingly

larger areas, but not when n2 !1 over �nite areas, which, however, is unlikely to

occur in practice!

Let us now look at the local Poisson forest. By considering again a systematic

grid formally as a single large cluster of expected size n2 and replacing in 3.19 the

Mj by their expected values, we see that the second and third term add up to

approximately (
PL

j=1 pj(
�Yj � �Y ))2 = 0. This implies that the anticipated variance

is the same as under simple random sampling with n2 points. This is legitimate

if the (random) numbers of points of the grid falling into F and the Fj are all

suÆciently large to be replaced by their expected values and if the bias of the point

estimate based on a single very large cluster is negligible, which is likely to be the

case for inventories performed on large areas. For global and local Poisson forests

we can therefore conjecture that in large samples the anticipated variances under

simple one-phase random and systematic sampling should be close to each other.

According to geostatistical techniques ([12]) the spatial autocorrelation range

within a global Poisson forest is very short (spherical variogram with range shorter

than 2max ri) and the geostatistical variance is very close to the variance under

random sampling. The autocorrelation range is primarily determined by the spatial

stand structure. There is empirical and theoretical evidence that in two-phase sam-

pling schemes the autocorrelation range of the residuals is very small, whereas the

autocorrelation range of the predictions is also determined by the stand structure.

Since, as we have seen, two-phase sampling and the associated estimation techniques

amount essentially to transform a local Poisson forest into a global Poisson forest

one can conjecture that the anticipated variance formulae are more appropriate

under two-phase systematic sampling than under one-phase systematic sampling.

The estimation of variance under systematic sampling is, strictly speaking, im-

possible within classical sampling theory (unless, of course, one has replicates of the

grid, which is rarely if ever the case in forest inventory). One must either treat sys-

tematic samples as random samples (eventually with ad-hoc procedures like paired

di�erences, but this is not satisfactory) or by using geostatistical techniques as in

[12]. We see that the anticipated variance may provide a simple alternative, since

it can be estimated by standard techniques with
Y 2

i

�(Ki)
as a new response variable.

Before going into the proper optimization task we have to discuss the costs

induced by the various procedures.
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Chapter 4

Modelization of costs

4.1 Generalities

The modelization of costs is a diÆcult and up to a certain degree illusory task,

but obviously unavoidable in the context of cost-eÆcient inventory techniques. The

ultimate objective is to design sampling schemes which minimize the variance for

a given budget or which minimize the costs for a given variance. As we have seen,

there is no best estimator for all forests and a sensible strategy is to consider an

admissible estimator which performs well on average for a class of forests. The

anticipated variance under the local Poisson model provides precisely the necessary

tools to do that in the simplest class. Recall that in this model the N values Yi of

the response variable are �xed, whereas the trees are uniformly and independently

distributed within the L strata. Hence, the restricted objective is to determine

the inclusion probabilities �i in order to minimize the anticipated variance of the

Horwitz-Thompson under given costs or conversely to minimize the costs under a

given anticipated variance.

There are of course many diÆculties to de�ne the costs involved in forest inven-

tory and an exhaustive discussion is beyond the scope of this work (and probably

also unnecessary). It is however general practice to distinguish between �xed costs

(e.g. salaries of permanent senior sta�, technical equipment like computers, devices

for the interpretation of aerial photographs and image analysis, software, cars etc)

and variable costs which depend on the inventory procedures (e.g. number of

plots, number of trees measured, number of aerial photographs interpreted, travel-

ling costs etc). Up to a certain degree the inventory technique has little impact on

the �xed overhead costs, but obviously a large impact on the variable costs. We

shall therefore consider in this work only the variable costs. The variable costs can

be split into essentially two components: the costs of measurements (e.g. for

installation of the �eld plots, measuring trees, orientation and interpretation of the

aerial photographs) and travelling costs (time spent to access the �eld plots, gas-

oil, lodging etc). Well conducted pilot studies and past experience allow generally

for a good appraisal of the measurement costs whereas travelling costs are usually

more diÆcult to assess for inventories of large surfaces (the shortest distances from

the plots to the road network and lodging facilities are among other things rather

tricky to estimate or extrapolate from existing data).

The measurement costs are essentially linear in the number of points (�eld plots

or aerial photographs) and the expected number of trees sampled in one point.

With systematic grids the shortest overall distance required to go through all

�eld plots is roughly proportional to the square root of the number of plots (this

is obvious for a quadratic grid while neglecting boundary e�ects). The shape of
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the grid is also important: rectangular grids yield, for the same number of points,

much shorter overall distances than quadratic grids (consider the extreme case of a

grid reduced to one single line). It can be shown that the square root law remains

valid for uniform sampling (see [14]). We have said in the introduction that we

shall consider systematic grids as random samples, which is certainly acceptable

for estimation of large domains. The correct analysis of systematic grids requires

the use of geostatistical methods to calculate the variance. In his pioneer work B.

Mat�ern [14] investigated the impact of the grid shape on the accuracy and on the

overall distance; he recommended to use rectangular grids with ratios "length to

width" of at least three to one as long as the distance between neighboring points

is larger than the range of the spatial correlation. These were however preliminary

results (and, nearly forty years later, unfortunately almost the only ones!), valid for

a special covariance function and an "in�nite square forest without holes". From

a pragmatic point of view, one can say that it is certainly worthwhile considering

rectangular grids as long as the grids cover the entire forest area in a "representative

way" (which is certainly not the case for a single line). In this work �(n2) will denote

the overall travelling costs resulting from having n2 points. We can expect �(n2)

to be roughly proportional to
p
n2, the proportionality constant depending among

many other things also on the shape of the grid. With Geographical Information

Systems (GIS) it is in principle possible to determine �(n2) numerically for a wide

range of n2 and several grid shapes. For this reason we shall give some of the

results in term of �(n2) for given n2. It is however important to keep in mind that

all the calculations are valid only under the assumption that systematic grids can

be treated as random samples, which certainly narrows down the choice of feasible

grids. Furthermore, common sense and experience tell us that complex cost function

resulting in complex calculation are rarely worthwhile. For this reason it is useful to

approximate the function �(n2) by a linear function over an adequate range for n2,

for instance by least square (it is generally very simple to determine such a feasible

range). The main advantage of a linearized �(n2) is that simple analytical results are

available (for instance square root-like �(n2) already lead to cubic equations!) and

that the dual problems minimizing the costs for given anticipated variance

versus minimizing the anticipated variance for given costs lead to the same

solutions (but for constants), which is not the case with non-linear �(n2).

We believe that the cost functions presented here at least capture the main

features and that the reader should have in principle no diÆculty to adapt the results

to his own cost functions (usually the only di�erences are due to minor changes in

the de�nitions of the various coeÆcients, but the mathematical structure remains

the same). Let us now go into the details.

4.2 Cost functions

4.2.1 Simple random sampling

First, we note that by 2.6 the expected number of trees sampled at the �rst stage is

given by
PN

i=1 �i and that, with the same argument, the expected number of trees

sampled at the second stage is given by
PN

i=1 �ipi. We introduce the following

de�nitions for the various costs, expressed preferably in man-time unit (e.g. 10

minutes corresponds to 5 minutes work for a team of two persons, modi�cations to

take wage di�erences into account are obvious):

1. c0 is the mean unit installation cost per second phase point. This entails

for instance the time required to locate exactly the sample point (but not to

access it), to describe it (important for its allocation to a given stratum), to

delimit e.g. concentric circles etc.
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2. c1 is the mean unit cost per �rst phase point to collect the auxiliary infor-

mation. This might entail for instance the mean time required to orientate

and interpret aerial photographs (whether 
ight and development costs are

included depends on the particular circumstances), or the time required to

perform ocular assessment of the timber volume, etc.

3. c2 is the mean unit cost per �rst stage tree to measure the exact response vari-

able Yi. This might entail for instance the time required to measure diameters

at 1.3 and 7 meters as well as the height if Yi is the timber volume.

4. c21 is the mean unit cost per �rst stage tree to obtain the approximate value

Y �i of Yi. This might entail for instance the time required to measure only

the diameter at 1.3 meter.

5. c22 is the mean unit cost per second stage tree to perform the extra measure-

ment required to know the exact response Yi. This might entail for instance

the time required to measure diameter at 7 meter and the height.

Remarks

� When calculating relative eÆciencies of the various inventory schemes we shall

make the reasonable assumption that c2 = c21 + c22

� One can obviously generalize the above frame work by allowing all the unit

costs to depend on the stratum. The mathematics of optimization remain es-

sentially the same but the resulting formulae are obviously more cumbersome.

We are therefore led to the following cost functions:

1. One-phase one-stage simple random sampling

�(n2) + n2c0 + n2c2

NX
i=1

�i (4.1)

2. One-phase two-stage simple random sampling

�(n2) + n2c0 + n2c21

NX
i=1

�i + n2c22

NX
i=1

�ipi (4.2)

3. Two-phase one-stage simple random sampling

�(n2) + n1c1 + n2c0 + n2c2

NX
i=1

�i (4.3)

4. Two-phase two-stage simple random sampling

�(n2) + n1c1 + n2c0 + n2c21

NX
i=1

�i + n2c22

NX
i=1

�ipi (4.4)

By linearizing the travelling cost we get �(n2) � � + �n2 and the slope coeÆcient

� can be added to the installation cost. In this case c0 becomes ~c0 = c0 + �.

Likewise, the available budget C is reduced by the intercept term � and we shall

write ~C = C � �. Let us now look at cluster sampling.
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4.2.2 Cluster random sampling

By 2.6, 2.11 and 2.12 it is clear that all terms in c2; c21; c22 must be multiplied by

ExM(x) to have the expected costs per cluster. This is also approximately the case

for c1 in the case of aerial photographs but for slightly di�erent orientation costs.

For the installation costs this is the case if one ignores the travelling costs between

the points of the same cluster. For these reasons we shall write the installation costs

as ExM(x)cc0 and the �rst-phase costs as ExM(x)cc1. Whether then cc0 � c0 and

cc1 � c1 depends on the particular circumstances.

We therefore assume that the following cost functions hold under cluster random

sampling:

1. One-phase one-stage cluster random sampling

�(n2) + n2ExM(x)cc0 + n2ExM(x)c2

NX
i=1

�i (4.5)

2. One-phase two-stage cluster random sampling

�(n2) + n2ExM(x)cc0 + n2ExM(x)c21

NX
i=1

�i + n2ExM(x)c22

NX
i=1

�ipi (4.6)

3. Two-phase one-stage cluster random sampling

�(n2) + n1ExM(x)cc1 + n2ExM(x)cc0 + n2ExM(x)c2

NX
i=1

�i (4.7)

4. Two-phase two-stage cluster random sampling

�(n2) + n1ExM(x)cc1 + n2ExM(x)cc0 + n2ExM(x)c21

NX
i=1

�i

+ n2ExM(x)c22

NX
i=1

�ipi

(4.8)

As under simple random sampling we shall replace cc0 by ~cc0 and C by ~C after

linearizing the travelling costs �(n2).

4.3 Similarity law for travelling costs

It frequently happens in practice that one knows for an inventory performed in the

area Ap the overall travelling costs Cp and hence the mean travelling cost per point

�cp =
Cp

np
. One would like to extrapolate this knowledge to another area A with the

same characteristics with respect to travelling conditions.

Let us assume that the square root law is a good approximation, hence we can

write

Cp = �
p
np

q
�(Ap)

for some constant �. Since Cp = np�cp we have � =
�cp

p
np
p
�(Ap)

. If the travelling

conditions are the same we can expect that the overall travelling costs for n2 points

in the region A are given by �(n2) = �
p
n2
p
�(A) and consequently by

�(n2) = �cp

s
�(A)

�(Ap)

r
n2

np
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which is useful to investigate the impact of travelling costs for various sampling

densities on the basis of pilot studies.

We are now �nally ready to tackle the main problem of optimization.
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Chapter 5

Optimal sampling schemes

5.1 Overview

We shall now derive optimal sampling schemes by minimizing the anticipated vari-

ance for given costs or conversely. The strategy is the following: for given sample

sizes n1 and n2 we determine the optimal inclusion probabilities �i by using the

Cauchy-Schwartz inequality (which will be explained below). Up to this point

the travelling cost function �(n2) is arbitrary and one could, at least in principle,

minimize numerically the anticipated variance based on the optimal �i with re-

spect to n2; n1 in any given practical case. To go further we linearize �(n2) and

minimize analytically the anticipated variance based on the optimal �i, which de-

pend on n2; n1 by treating the sample sizes as continuous variables. To do that

requires frequently the technique of the Lagrange multipliers. The reader unfa-

miliar with it should maybe have a quick brush-up on that topic by consulting

any standard book on calculus. The technique is essentially as follows: to �nd

the extrema of a function f(x1; x2; : : : ; xn) of n variables subject to K constraints

gi(x1; x2; : : : ; xn) � Ci; i = 1; 2 : : :K it is suÆcient to �nd the extrema of the

so-called Lagrange function

L(x1; : : : ; xn; �1; : : : ; �K) = f(x1; x2; : : : ; xn) +

KX
i=1

�i(gi(x1; : : : ; xn)� Ci)

This is done by solving the system of equations

@L

@xi
= 0;

@L

@�k
= 0; i = 1; 2 : : : n; k = 1; 2 : : :K

Of course the sample sizes are integer and not real numbers, but using more

sophisticated techniques of integer programming is not worthwhile; beside, those

techniques do not provide analytical solutions, which is what we must have in order

to get a qualitative insight. The theoretical results are essentially as follows: the

inclusions probabilities (P) are always either proportional to size (S), prediction

(P) or error (E), which we shall for short refer to as PPS, PPP, PPE. As we shall

see PPS is not always feasible (the grand exception being of course the basal area

with the angle count technique) but can be approximated by two-stage procedures.

Formally one could almost write PPS=PPP+PPE since S=P+E. In two-phase

procedures the sample size n2 should be kept as small as possible, likewise in one-

phase procedures in global Poisson forest. It is generally impossible to implement

in practice the exact optimal schemes. For this reason we give also discrete optimal

approximations (e.g. with 1,2,3,4 concentric circles).
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As announced, and for completeness, let us now state the famous Cauchy-

Schwartz inequality. For any two sets of real numbers ai; bi; i = 1; 2 : : : ; n one

has  
nX
i=1

aibi

!2

�
nX
i=1

a2i

nX
i=1

b2i (5.1)

with equality if and only if 9 � 8i ai = �bi. This extremely useful inequality is an

immediate consequence of the following algebraic equality 
nX
i=1

aibi

!2

=

nX
i=1

a2i

nX
i=1

b2i �
1

2

nX
i=1

nX
j=1

(aibj � ajbi)
2

Setting ai =
jYijp
�i

and bi =
p
�i in 5.1 we obtain

NX
i=1

Y 2
i

�i
�

�PN

i=1 jYij
�2

PN

i=1 �i
(5.2)

and similarly

NX
i=1

R2
i

�ipi
�

�PN

i=1 jRij
�2

PN

i=1 �ipi
(5.3)

Since in practice Yi � 08i we shall write jYij = Yi; for the residuals we must of

course keep the absolute value.

Remarks

� The optimization rests upon the obtained anticipated variances and thefore

on the assumption of negligible boundary e�ects for suÆciently regular forest

and strata shapes. This implies that for a large majority of trees the inclusion

ares �(Ki \ Fk) will be equal or at least roughly proportional to �(Ki). The

resulting selection rules should therefore not be seriously a�ected by boundary

e�ects. Departures from the local Poisson model and non-negligible boundary

e�ects are more likely to a�ect the numerical agreement between the antici-

pated variance and the empirical variance for a given forest.

� If, for any two given sampling schemes and given costs, the ratio of the antic-

ipated variances is close to the ratio of the corresponding empirical variances,

that is, if the anticipated and empirical relative eÆciencies are close, then de-

cision making based on the anticipated variance is valid, even under numerical

discrepancies between anticipated and empirical variances.

We are now ready to proceed with the optimization of the sampling schemes we

have analyzed so far. In order to save space we shall omit most of the trivial but

tedious calculations, like setting derivatives to zero, checking that we have indeed

a minimum and calculating its value.

5.2 One-phase one-stage simple random sampling

We consider the local Poisson model and we want to minimize the anticipated

variance for a given overall budget C. According to 3.17 and 4.1 we have to minimize

E!Vxj! bY (!) = 1

n2�2(F )

NX
i=1

Y 2
i

�i
+

1

n2

LX
k=1

pk( �Yk � �Y )2
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under the constraint

�(n2) + n2c0 + n2c2

NX
i=1

�i � C

It is clear that the inequality can be replaced by an equality since by increasing the

budget we can obviously reduce the variance. For given n2 the lower bound of

1

n2�2(F )

NX
i=1

Y 2
i

�i

is, by 5.2, achieved for �i = �jYij and is equal to

1

n2�2(F )�

NX
i=1

jYij

Replacing �i by �jYij in the constraint we get

� =
C � n2c0 � �(n2)

n2c2

1PN

i=1 jYij

so that we �nally have the solution

�(F )�i =
C � n2c0 � �(n2)

n2c2

jYij
�Y

min
�ijn2

E!Vxj! bY (!) = c2 �Y
2

C � n2c0 � �(n2)
+

1

n2
�2

(5.4)

where we have introduced the between-strata variance

�2 =

LX
k=1

pk( �Yk � �Y )2

To simplify the notation we introduce the symbol MAV to denote the minimum of

the anticipated variance for given n2, i.e. we set

MAV (bY ) = min�ijn2E!Vxj! bY (!)
Clearly 5.4 is a PPS scheme if Yi � 0 which is always the case in practice. Under

the global Poisson model �2 = 0 and we have

@MAV (bY )
@n2

� 0

in the range C � n2c0 � �(n2) � 0 since
@�(n2)

@n2
� 0 for each reasonable travelling

cost function (they have to increase with the number of points). Hence, for a global

Poisson forest the number of points in the one-phase one-stage scheme must be kept

as small as possible (mathematically n2 = 1 is the best choice). What does this

mean? The global Poisson forest is homogenous and, intuitively speaking, looks

much the same everywhere; hence it does not make sense to waste resources, i.e.

travelling expenses, to observe it everywhere. Obviously one has to down weight this

mathematical result in practice. First, small n2 generate very large plots and conse-

quently the assumption of negligible boundary e�ects will be violated. Furthermore,

in practice, very large plots can be awkward to handle because of numerous bound-

ary adjustments and slope corrections; �nally one needs a suÆciently large number
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of points to estimate the variance and eventually to get separate estimates for subar-

eas. The correct interpretation of this mathematical result is therefore to

choose n2 large enough to ful�ll the practical and theoretical constraints

but not much larger.

The situation is totally di�erent in the local Poisson forest. It is easy to see that
@MAV (bY )

@n2
can be negative for small n2 and positive for large n2 so that there exists

a true minimum. For linearized �(n2) the solution is easily found to be

n2;opt =
~C

~c0 +
p
~c0c2

�Y
�

where ~C = C � intercept(�(n2)) and ~co = co + slope(�(n2)). The lower bound of

the anticipated variance is then

min
n2

MAV (bY ) = �p
c2 �Y +

p
~c0�
�2

~C

We now compare the optimal scheme with the equal probability scheme �i � �.

Trivial calculations show that the optimal n2 for this scheme (there is nothing to

optimize with the �i) lead to the following lower bound for the anticipated variance

min
n2;�i��

MAV (bY ) =
�q

c2N
P

N
i=1

Y 2

i

�2(F )
+
p
~c0�

�2
~C

Hence, the PPS scheme is more eÆcient than equal probability sampling if and

only if

N

NX
i=1

Y 2
i �

 
NX
i=1

Yi

!2

By Cauchy-Schwartz inequality ( set ai � 1; bi = Yi) this is always the case, with

equality if Yi is constant. Hence, equal probability sampling is optimal for the

overall number of stems per ha, otherwise not.

Let us now consider the dual problem, i.e.

minimize

�(n2) + n2c2

nX
i=1

�i

under the constraint

1

n2�2(F )

NX
i=1

Y 2
i

�i
+

1

n2
�2 =W

By 5.2 in the reverse order we have

NX
i=1

�i �

�PN

i=1 Yi

�2
PN

i=1

Y 2

i

�i

the lower bound being again achieved with the PPS rule �i = �Yi and is then equal

to �
PN

i=1 Yi. The constraint yields at once

� =
1

�2(F )

PN

i=1 Yi

n2W � �2
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and the cost functions becomes

c(n2) = �(n2) + c2
�Y 2

W � �2

n2

In global Poisson forests this is an increasing function of n2 so that again n2 should

be kept as small as possible. In local Poisson forests there is a true minimum which

for the linearized �(n2) is easily found to be given by

c(n2;opt) =

�p
c2 �Y +

p
~c0�
�2

W

We have neglected, and we shall always do so, the term intercept(�(n2)) in the

above calculation : �rst, it is usually small compared with the other terms, second,

when comparing two sampling schemes the intercept term is the same and can be

considered as a �xed overhead cost. For illustration we consider again the equal

probability sampling scheme �i � � for which the lower bound of the cost at the

optimal value of n2 is given by

1

W

0@sc2N
PN

i=1 Y
2
i

�2(F )

1A2

We note the duality of the formulae for the lower bounds of the costs and anticipated

variances: they are the same but for exchanging the C and W . Hence,

the relative eÆciencies of equal probability sampling with respect to PPS at the

respective optimal sample sizes is the same whether we look at the ratios of the

minimum of the anticipated variances or of the minimum of the expected costs.

This very nice property is fairly general and characteristic of cost function linear

in the sample size n2, as we shall see, but it is no longer true for non-linear cost

functions, in particular for non-linear travelling costs �(n2). Let us denote by

RE(1j2) the relative eÆciency, in the above sense, of the sampling schemes 1 and

2. We have

RE(PPSj�i � �) =

 p
c2 �Y + �

p
~c0

p
c2

p
�NY 2 + �

p
~c0

!2

� 1

where we have set �N = N
�(F )

and Y 2 =
P

N
i=1

Y 2

i

�(F )
. The equality holds by Cauchy-

Schwartz if and only if the Yi are constant.

The above result shows in particular that the angle count method is

optimal for the basal area, with respect to the anticipated variance for

local Poisson forests. The optimality of PPS procedures in standard sampling

theory is usually presented as a consequence of the Yates-Grundy formula valid for

�xed sample sizes. For completeness we give a generalization of this formula valid

also in the inventory context. We �rst note that

1

2

NX
i6=j

(�i�j � �ij)

�
Yi

�i
� Yj

�j

�2
=

NX
i6=j

�j
Y 2
i

�i
�

NX
i6=j

YiYj

+

NX
i6=j

YiYj

�i�j
�ij �

NX
i6=j

Y 2
i

�2i
�ij
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Using 2.7 and comparing with 2.9 we get after some algebra

V (Y (x)) =
1

�2(F )

1

2

NX
i6=j

(�i�j � �ij)

�
Yi

�i
� Yj

�j

�2

+
1

�2(F )

NX
i=1

Y 2
i

�i
(Exfn(x)jIi = 1g �Exn(x))

(5.5)

The �rst term is the Yates-Grundy formula and the second is the correction due to

the fact that the number of trees sampled is a random variable. Hence, using exact

PPS gives zero variance if the sample size is �xed, which is the justi�cation given

in standard sampling. Of course, in practice, one can at best have an approximate

PPS and the variance can be expected to be small. In forest sampling exact PPS

is only possible for the basal area and using the angle count method; however,

in this case, the second term does not vanish. For a global Poisson forest it is

intuitively clear that E!Exfn(x)jIi(x; !) = 1g � 1 + Exn(x) so that 5.5 is, under

PPS essentially the anticipated variance, which is a nice result. A formula similar

to 5.5 has been given by Ramakrishnan in 1975 (see [18]).

In practice, as already mentioned, exactPPS is usually impossible to implement.

For this reason, we shall now present a discrete optimal approximation thereof. The

idea stems of course from the widely used concentric circles technique, which now

receives, to my knowledge for the �rst time, a rigorous mathematical justi�cation.

5.3 Discrete approximation of PPS

PPS means that �i = �Yi. By a discrete approximation we mean that the identity

function i : Yi 7! Yi is replaced by a step function f : Yi 7! f(Yi) taking only

�nitely many values. For instance 2; 3, rarely if ever more with concentric circles.

We consider theN values Yi, not all necessarily di�erent (e.g. diameters are rounded

to cm), to be partitioned in K intervals Cl; l = 1; 2 : : : ;K. Nl is the number of Yi
in Cl. We de�ne the discrete approximation as

f(Yi) = EY fYijYi 2 Clg =
P

Yi2Cl
Yi

Nl

= �l (5.6)

in the sense that if Yi is in the l-th interval, then the approximation f(Yi) is the

conditional expectation �l in this class (EY denotes the expectation with respect

to the �nite population of Yi values). Hence, we have by de�nition

f(Yi) � �l 8Yi 2 Cl
and by construction

NX
i=1

f(Yi) =

NX
i=1

Yi

By Cauchy-Schwartz inequality we get 
NX
i=1

Yi

!2

=

 
NX
i=1

Yip
f(Yi)

p
f(Yi)

!2

�
NX
i=1

Y 2
i

f(Yi)

NX
i=1

f(Yi) =

NX
i=1

Y 2
i

f(Yi)

NX
i=1

Yi

and therefore
NX
i=1

Y 2
i

f(Yi)
�

NX
i=1

Yi
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with equality if and only if f(Yi) = �Yi which implies � = 1 since
PN

i=1 f(Yi) =PN

i=1 Yi. Hence, for any discrete approximation f(Yi) we have


 =

PN

i=1

Y 2

i

f(Yi)PN

i=1 Yi
� 1

the lower bound 
 = 1 being achieved only by the identity f(Yi) = Yi. The problem

is therefore to �nd, for a given number K of classes, i.e. for K discrete values, the

optimal choice of the intervals Cl which minimizes 
. Considering the sum over

the Yi as N times the expectation with respect to the distribution of the Yi we can

write
NX
i=1

Y 2
i

f(Yi)
= NEY

Y 2

f(Y )
= N

KX
l=1

PfY 2 ClgEY f Y 2

f(Y )
jY 2 Clg

Since f(Y ) = �l whenever Y 2 Cl this is equal to

N

KX
l=1

PfY 2 ClgEY fY
2jY 2 Clg
�l

Therefore the intervals must be chosen in order to minimize

KX
l=1

P (Y 2 Cl)EY fY
2jY 2 Clg

EY fY jY 2 Clg � EY (Y ) (5.7)

The lower bound being achieved only when the number of intervals is equal to the

number of di�erent Y values. The value of the discrete function in a given interval is

equal to the conditional expectation of Y in this interval. To do this in practice one

needs to have a rough idea of the distribution of the Yi in the forest. Usually one has

a �nite number, say roughly 100, of di�erent values, and �nding the minimum over

2; 3; 4 classes can easily be done with a computer by checking all the possibilities.

The optimal approximate choice is to set �i = �f(Yi) where the function f(Y )

satis�es the conditions outlined above. The constraint and simple algebra yield the

solution

�(F )�i =
C � n2c0 � �(n2)

n2c2

f(Yi)
�Y

MAV (bY ) = c2 �Y
2


C � n2c0 � �(n2)
+

1

n2
�2

(5.8)

For linearized �(n2) one obtains the optimal sample size

n2;opt =
~C

~c0 +
p
~c0c2


�Y
�

and the lower bound for the anticipated variance

min
n2

MAV (bY ) = �p
c2
 �Y +

p
~c0�
�2

~C

As expected the approximate PPS has a higher lower bound for the anticipated

variance than the exactPPS; furthermore, the lower bound is an increasing function

of the coeÆcient 
 which, roughly speaking, tells us how far away we are from exact

PPS (recall that 
 = 1 is the minimum).
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It is common practice to think in terms of the relative variance instead of the

absolute variance and we therefore de�ne the lower bound, for given n2, of the

relative anticipated variance as MRAV = MAV
�Y 2

. Then

min
n2

MRAV (bY ) = �p
c2
 +

p
~c0�

�2
~C

(5.9)

where we have de�ned the square of the between strata coeÆcient of variation as

�2 =
�2

�Y 2

Hence, in order to have at least a rough idea of the best achievable accuracy in

one-phase one-stage sampling one needs only to know approximately: the between

strata variation �, the distribution of the response variable (which gives 
) and,

obviously, the costs parameters. Let us now generalize this result to one-phase

two-stage sampling.

5.4 One-phase two-stage simple random sampling

According to 3.24 and 4.2 we have to minimize

E!Vxj! bY �(!) = 1

n2�2(F )

NX
i=1

Y 2
i �R2

i

�i
+

1

n2
�2 +

1

n2�2(F )

NX
i=1

R2
i

�ipi

under the constraint

�(n2) + n2c0 + n2c21

NX
i=1

�i + n2c22

NX
i=1

�ipi = C

For given n2 Cauchy-Schwartz inequality tells us immediately that the �i must be

proportional to
p
Y 2
i �R2

i and that the �ipi must be proportional to jRij. We could

write down these theoretically optimal solutions but they are not of great practical

use. However, they lead us to consider the following prediction modelM at the tree

level
Yi = Y �i +Ri

EMRi = 0; VMRi = �2i ; COV M (Ri; Rj) = 0; 8i 6= j
(5.10)

In this standard linear model the external prediction Y �i is �xed and uncorrelated

with Ri so that we have EM (Y 2
i � R2

i ) = (Y �i )
2. For this reason we shall

formally set
p
Y 2
i �R2

i = Y �i , which is approximately correct on average. Fur-

thermore, since the �2i and N
�(F )

are bounded we have also

lim
�(F )!1

EM

 
1

�(F )

NX
i=1

Yi � 1

�(F )

NX
i=1

Y �i

!2

= 0

so that we formally also set

1

�(F )

NX
i=1

Yi =
1

�(F )

NX
i=1

Y �i

Finally, we use the discrete PPS approximation for the prediction Y �i instead of

the true value Yi and we look for the optimal solution in the class

�i = �1f(Y
�
i ) ; �ipi = �2jRij
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The Lagrange function is then given by

L =
1

n2�2(F )

 
1

�1

NX
i=1

Y �2i
f(Y �i )

+
1

�2

NX
i=1

jRij
!

+ �

 
�1n2c21

NX
i=1

f(Y �i ) + �2n2c22

NX
i=1

jRij � (C � n2c0 � �(n2))

!
Solving the equations for the extremum

@L

@�1
=

@L

@�2
=
@L

@�
= 0

yields after some algebra the solution

�(F )�i =
C � n2c0 � �(n2)
�Y (
p
c21
 + "

p
c22)

p



n2
p
c21

f(Y �i )

�(F )�ipi =
C � n2c0 � �(n2)
�Y (
p
c21
 + "

p
c22)

1

n2
p
c22

jRijPN

i=1 �ipiPN

i=1 �i
=

"p



r
c21

c22

MAV (bY �) = �Y 2
�p
c21
 + "

p
c22
�2

C � n2c0 � �(n2)
+

1

n2
�2

(5.11)

where we have set

" =

PN

i=1 jRijPN

i=1 Y
�
i

; 
 =

PN

i=1

Y �2

i

f(Y �

i
)PN

i=1 Y
�
i

" is the relative prediction error, which can be written as " � jRj
Y

with jRj =
1

�(F )

PN

i=1 jRij. Note that the coeÆcient 
 is now de�ned with respect to the Y �i .
As expected, the minimum anticipated variance is an increasing function of 
. For-

mally one can obtain the optimal one-phase one-stage scheme from 5.11 by replacing

Y �i by Yi, c21 by c2 = c21 + c22 and setting Ri = 0; " = 0 (the result �i = 0 sim-

ply means that we do not have to take further measurements at the second stage

since have the exact value already at the �rst stage). 
 = 1 corresponds then to

exact PPS or exact PPP. Hence, as announced, the optimal one-phase two-stage

sampling scheme draws the �rst stage trees with a probability proportional to pre-

diction, PPP, and the second stage trees with a probability proportional to error,

PPE. Again the minimum of the anticipated variance is an increasing function of


.

Linearizing the travelling cost function �(n2) we obtain

n2;opt =
� ~C

(
p
c21
 + "

p
c22)

p
~c0 +�~c0

and the relative anticipated variance at the minimum is then equal to

min
n2

MRAV (bY �) = �p
c21
 + "

p
c22 +

p
~c0�

�2
~C

(5.12)

The relative eÆciency at the optimum of the one-phase one-stage to the one-

phase two-stage is consequently

RE(11j12) =
 p

(c21 + c22)
 +�
p
~c0

(
p
c21
 + "

p
c22) + �

p
~c0

!2

� 1 (5.13)
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and we obtain the important result that one-phase two-stage sampling is more

eÆcient than one-phase one-stage sampling whenever the following relation holdsr
c21

c22
<

 � "2

2"
p



that is, whenever the relative prediction error " is small or the extra measurement

costs to get the exact value of the response variable are high, which is intuitively

reasonable. We consider again the dual optimization problem of minimizing the ex-

pected costs for a given anticipated varianceW . Using Cauchy-Schwartz inequality

in the reverse order and the same techniques as above we obtain �nally the dual

solution

�(F )�i =
�Y (
p
c21
 + "

p
c22)

p

)

n2W � �2
1p
c21

f(Y �i )

�(F )�ipi =
�Y (
p
c21
 + "

p
c22)

n2W � �2
1p
c22

jRijPN

i=1 �ipiPN

i=1 �i
=

"p



r
c21

c22

C(n2) =
�Y 2
�p
c21
 + "

p
c22
�2

n2W � �2
+ n2c0 + �(n2)

(5.14)

Comparing with 5.11 we note that the ratio of the expected number of 2nd to 1st

stage trees at the optimum is the same for both problems. The better the prediction

model and the more expensive the extra-measurements, the smaller the ratio, which

is intuitively clear.

Linearizing the travelling costs and neglecting the intercept term we obtain after

some algebra the optimal sample size

n2;opt =
1

W

� �Y (
p
c21
 + "

p
c22)�p

~c0
+ �2

�
and the minimum expected costs for the anticipated variance W is

min
n2

C(n2jbY �) = �Y 2

�p
c21
 + "

p
c22 +

p
~c0�

�2
W

(5.15)

From this and comparing with 5.13 one sees again that the relative eÆciency RE11j12
is the same whether we look at the ratio of the costs or the ratio of the anticipated

variances at the optimum.

In the next section we derive the optimal two-phase two-stage sampling scheme

and, as a special case, the optimal two-phase one stage sampling scheme.

5.5 Two-phase one/two-stage simple random sam-

pling

We optimize the two-phase two-stage scheme �rst. According to 3.27, 4.4 and the

approximation
p
Y 2
i �R2

i = Y �i we have to minimize

E!Vxj! bY �reg(!) = 1

n2�2(F )

NX
i=1

Y �2i
�i

+
1

n1
�2 +

1

n2�2(F )

NX
i=1

R2
i

�ipi

under the constraint

C = n1c1 + �(n2) + n2c0 + n2c21

NX
i=1

�i + n2c22

NX
i=1

�ipi
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For given n2 and n1 the solutions is obviously given by 5.11 after replacing the

remaining budget C � n2c0 � �(n2) by C � n2c0 � n1c1 � �(n2) and 1
n2
�2 by 1

n1
�2

we obtain

�(F )�i =
C � n1c1 � n2c0 � �(n2)

�Y (
p
c21
 + "

p
c22)

p



n2
p
c21

f(Y �i )

�(F )�ipi =
C � n1c1 � n2c0 � �(n2)

�Y (
p
c21
 + "

p
c22)

1

n2
p
c22

jRijPN

i=1 �ipiPN

i=1 �i
=

"p



r
c21

c22

MAV (bY �reg) = �Y 2
�p
c21
 + "

p
c22
�2

C � n1c1 � n2c0 � �(n2)
+

1

n1
�2

(5.16)

Since
@MAV (bY �

reg)

@n2
� 0 the number of terrestrial plots n2 should be kept as small as

possible under practical constraints. This is intuitively clear since, as we have seen,

two-phase sampling �lters out the inhomogeneities of the local Poisson forest. For

given n2 the optimal n1 is easily found to be

n1;opt(n2) =
� (C � n2c0 � �(n2))p

c1(
p
c21
 + "

p
c22 +�

p
c1)

and the resulting relative anticipated variance is then equal to

MRAV (n2) =

�p


p
c21 + "

p
c22 +�

p
c1
�2

C � n2c0 � �(n2)
(5.17)

which, as expected, is an increasing function of n2. Note that in the above formulae

one could replace the between strata variance �2 by the more general form V (bY (x)).
The non-existence of a true minimum is somewhat disturbing even if natural

for post-strati�ed estimation under the local Poisson model. For this reason we

give also a slightly di�erent approach. By requiring the expected number of �rst

stage trees to be �xed, i.e.
PN

i=1 �i = m1, we can not only achieve a true minimum

but also have a very good idea about the plot size, an important criterion for �eld

work. For technical reasons it is easier to work with the total expected number of

second stage trees M2 = n2m2, m2 =
PN

i=1 �ipi. For given n1 and M2 the Cauchy-

Schwartz inequality yields after some algebra the lower bound of the anticipated

variance as

1

n2


�Y 2

m1

+
1

M2

jRj2 + 1

n1
�2

After linearizing the travelling costs the above expression must be minimized under

the constraint

n1c1 + n2(~c0 +m1c21) +M2c22 = C

The Lagrange technique yields the optimal solution n1, n2 and M2 which can be
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rewritten in terms of n1, n2 and m2

�(F )�i = m1

f(Y �i )

Y �

�(F )�ipi = m2

jRij
jRj

n1;opt =
~C�p



q
c21 +

~c0
m1

+ "
p
c22 +�

p
c1

� �p
c1

n2;opt =
~C�p



q
c21 +

~c0
m1

+ "
p
c22 +�

p
c1

� p



m1

q
c21 +

~c0
m1

m2 =
~C�p



q
c21 +

~c0
m1

+ "
p
c22 +�

p
c1

� "

n2;opt
p
c22�

n2;opt

n1;opt

�2
=


c1

m1�2

1

~c0 +m1c21

min
n2jm1

MRAV (bY �reg) =
�p



q
c21 +

~c0
m1

+ "
p
c22 +�

p
c1

�2
~C

(5.18)

Hence, the optimization of the most general sampling scheme encountered so far

is surprisingly simple. The best achievable lower bound of the relative anticipated

variance depends on the budget, the various costs, the relative prediction error ",

the between strata coeÆcient of variation �, as well the correction factor 
 for

discrete PPP. It is easily checked that the lower bound minn2jm1
MRAV (bY �reg) is

a decreasing function of the number m1 of �rst stage trees and therefore of the plot

size.

Formally one can obtain the optimal one-phase one-stage scheme from 5.18 by

replacing Y �i by Yi, c21 by c2 = c21+c22 and setting Ri = 0; " = 0 (the result �i = 0

simply means that we do not have to take further measurements at the second stage

since have the exact value already at the �rst stage).

The relative eÆciency of one-phase two-stage sampling with respect to two-phase

two-stage sampling is, by 5.12 and 5.18 easily found to be

RE(12j22) =
0@ p



p
c21 + "

p
c22 +�

p
~c0

p


q
c21 +

~c0
m1

+ "
p
c22 +�

p
c1

1A2

(5.19)

Since in general ~c0 >> c1 two-phase two-stage sampling will be more eÆcient than

one-phase two-stage sampling, i.e. RE12j22 > 1. Again, it can be shown that one

obtains the same relative eÆciency when minimizing the expected costs for a given

anticipated variance. The generalization to cluster sampling uses the same algebraic

arguments, which allows us to skip the technical details.

5.6 One-phase one/two stage cluster random sam-

pling

We only deal with one-phase two-stage case, since one-phase one-stage can be ob-

tained by setting formally " = 0; Y �i = Yi; Ri = 0; c21 7! c2 = c21 + c22. Using 3.19,
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3.23 (together with following remarks), 5.10 and 4.8 we have to minimize

E!Vxj! bY �c (!) = 1

n2ExM(x)�2(F )

NX
i=1

Y �2i
�i

+
1

n2ExM(x)
(1 + �)�2

+
1

n2ExM(x)�2(F )

NX
i=1

R2
i

�ipi

under the constraint

�(n2) + n2ExM(x)cc0 + n2ExM(x)c21

NX
i=1

�i + n2ExM(x)c22

NX
i=1

�ipi = C

Recall that ExM(x)cco is the total installation cost of the cluster, including the

travelling cost for visiting all the points of the cluster, and that the in
ation factor

�, due to the intra-cluster correlation, can be expected to lie between 0 (when the

clusters are spread over several di�erent strata) and ExM(x) � 1 +
VxM(x)

ExM(x)
(when

they lie entirely within the same stratum).

For given n2 we can use 5.11 by replacing formally n2 7! n2ExM(x) and �2 7!
(1 + �)�2 to obtain

�(F )�i =
C � n2ExM(x)cc0 � �(n2)

�Y (
p
c21
 + "

p
c22)

p



n2ExM(x)
p
c21

f(Y �i )

�(F )�ipi =
C � n2ExM(x)cc0 � �(n2)

�Y (
p
c21
 + "

p
c22)

1

n2ExM(x)
p
c22

jRijPN

i=1 �ipiPN

i=1 �i
=

"p



r
c21

c22

MAV (bY �c ) = �Y 2
�p
c21
 + "

p
c22
�2

C � n2ExM(x)cc0 � �(n2)
+

1

n2ExM(x)
(1 + �)�2

(5.20)

The plot size is therefore inversely proportional to the number of points in the

cluster. Linearizing the travelling costs and setting

~cco = ExM(x)cco + slope(�(n2))

we obtain by 5.12 the optimal sample size

n2;opt =

p
1 + �� ~C

p
~cco

�p
ExM(x)(

p
c21
 + "

p
c22 +

p
~cco
p
1 + ��

�
and �nally the lower bound of the relative anticipated variance as

min
n2

MRAV (bY �c ) =
�p

c21
 + "
p
c22 +

q
cc0 +

slope(�)

ExM(x)

p
1 + ��

�2
~C

(5.21)

The relative eÆciency at the optimum of the one-phase two-stage cluster sam-

pling to the one-phase two-stage simple sampling is consequently given by

RE(12; cj12; s) =
0@pc21
 + "

p
c22 +

q
cco +

slope(�)

ExM(x)

p
1 + ��

p
c21
 + "

p
c22 +

p
~c0�

1A2

(5.22)
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Let us denote by Tc the travelling costs for visiting all points of the cluster, then

one has approximately

cco � co +
Tc

ExM(x)

In practice one can expect the total installation costs of the cluster, i.e. ExM(x)cco,

to be somewhat smaller than ExM(x)co + Tc. Hence, in any case, cluster sampling

is more eÆcient than simple random sampling if�
c0 +

Tc

ExM(x)
+
slope(�)

ExM(x)

�
(1 + �) < (co + slope(�)) (5.23)

In particular, when � = 0, that is is when the cluster geometry is such that the points

of the clusters are likely to be spread over di�erent strata, then cluster sampling

is likely to be more eÆcient than simple random sampling if the travelling costs

within the cluster are not to large, i.e. if

Tc < (ExM(x)� 1)slope(�)

On the other hand, if the points of the cluster tend to all fall into the same stratum

then 1 + � will be close to ExM(x) +
VxM(x)

ExM(x)
and cluster sampling is less eÆcient

than simple random sampling. The intuitive explanation is that in this case it is

better to use a single large plot than ExM(x) smaller plots in a cluster. Of course, in

practice, large plots can be awkward to handle because of boundary e�ects and slope

correction; furthermore the theoretical validity assumptions might be violated. Last

not least, cluster sampling o�ers the possibility to perform other investigations, for

instance transect sampling of vegetation, when going from one cluster point to the

next. In any case, 5.22 allows one to assess the relative merits of both procedures at

their optimum. Note that for a given budget, a given cluster sampling scheme may

be more or less eÆcient than a given simple sampling scheme. The above result

gives the relative eÆciency of the optimal sampling schemes. For practical work, it

is certainly wise to plot the anticipated variances and the resulting plot sizes of both

simple and cluster sampling as a function of the sample size n2 to draw meaningful

conclusions.

5.7 Two-phase one/two stage cluster random sam-

pling

Again we deal only with the two-stage procedure, since the one-stage can be ob-

tained by setting " = 0; Y �i = Yi; Ri = 0; c21 7! c2 = c21 + c22. According to 3.23,

3.29 and 4.8 we have to minimize

E!Vxj! bY �c;reg(!) = 1

n2ExM(x)�2(F )

NX
i=1

Y �2i
�i

+
1

n1ExM(x)
(1 + �)�2

+
1

n2ExM(x)�2(F )

NX
i=1

R2
i

�ipi

under the constraint

C = n1ExM(x)cc1 + �(n2) + n2ExM(x)cc0 + n2ExM(x)c21

NX
i=1

�i

+ n2ExM(x)c22

NX
i=1

�ipi
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For given n1; n2 we can obviously use 5.20 after subtracting the �rst-phase costs

from the budget and we have the result

�(F )�i =
C � n1ExM(x)cc1 � n2ExM(x)cc0 � �(n2)

�Y (
p
c21
 + "

p
c22)

p



n2ExM(x)
p
c21

f(Y �i )

�(F )�ipi =
C � n1ExM(x)cc1 � n2ExM(x)cc0 � �(n2)

�Y (
p
c21
 + "

p
c22)

1

n2ExM(x)
p
c22

jRijPN

i=1 �ipiPN

i=1 �i
=

"p



r
c21

c22

(5.24)

For given n1; n2 the lower bound of the anticipated variance is then given by

MAV (bY �c;reg) = �Y 2
�p
c21
 + "

p
c22
�2

C � n1ExM(x)cc1 � n2ExM(x)cc0 � �(n2)

+
1

n1ExM(x)
(1 + �)�2

(5.25)

As for simple random sampling we see that
@MAV (bY �

c;reg)

@n2
> 0. Therefore the number

n2 of terrestrial clusters should be kept as small as possible. For given n2 the optimal

n1 is easily found to be

n1;opt(n2) =
�
p
1 + � (C � n2ExM(x)cc0 � �(n2))

ExM(x)
p
cc1(

p
c21
 + "

p
c22 +�

p
1 + �

p
c1)

and the resulting lower bound of the relative anticipated variance is then equal to

MRAV (n2) =

�p


p
c21 + "

p
c22 +

p
1 + �

p
cc1�

�2
C � n2ExM(x)cc0 � �(n2)

(5.26)

which, as expected, is an increasing function of n2. Comparing 5.17 with 5.26 we see

that the relative eÆciency of two-phase two-stage simple sampling with respect to

two-phase two-stage cluster sampling for a given total number k of terrestrial

plots is given by the expression

RE(22cj22s)(k) =
 p



p
c21 + "

p
c22 +

p
1 + �

p
cc1�p



p
c21 + "

p
c22 +

p
c1�

!2

C � kco � �(k)

C � kcco � �( k
ExM(x)

)

The �rst term will be in most instances larger than 1 and the second smaller than

1, so that depending on the particular circumstances and the value of k cluster

sampling may be more or less eÆcient than simple random sampling.

To obtain a true minimum we proceed as for simple random sampling by �xing

the expected number of �rst stage trees per point to be
PN

i=1 �i = m1. Likewise we

denote by m2 =
PN

i=1 �ipi the expected number of second stage trees per point. By

Cauchy-Schwartz we know that we must choose the inclusion probabilities according

to

�(F )�i = m1

f(Y �i )
�Y

�(F )�ipi = m2

jRij
jRj

As for simple two-phase sampling we work with M2 = n2m2. Simple calculations

show that the anticipated variance can be rewritten as
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1

n2ExM(x)


�Y 2

m1

+
1

ExM(x)M2

jRj2 + 1

n1ExM(x)
(1 + �)�2

After linearizing the travelling costs the above expression must be minimized under

the constraint

n1ExM(x)cc1 + n2ExM(x)

�
cc0 +m1c21 +

slope(�(n2))

ExM(x)

�
+ExM(x)M2c22 = C

But for the constant ExM(x), which can be factorised out, and the change �2 7!
(1 + �)�2 this is the same problem as in simple random sampling so that we can

apply mutatis mutandis the result 5.18 and we write down the characteristics of the

optimal two-phase two-stage cluster sampling scheme under the condition that the

number of �rst-stage trees is m1. They read:

�(F )�i = m1

f(Y �i )

Y �

�(F )�ipi = m2

jRij
jRj

n1;opt =  

p
1 + ��
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slope(�)
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(5.27)

where the constant  is de�ned as

 =
~C

p
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p
c22 +

p
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Finally, the lower bound of the relative anticipated variance is given by

MRAV (bY �c;reg) =
�p
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p
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1 + ��
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(5.28)

which, as expected, is a decreasing function of m1. Comparing 5.18 and 5.28 we

see that, for a given number of �rst stage trees and at the optimum, the relative

eÆciency, for given m1, of two-phase two-stage cluster sampling with respect to

two-phase two-stage simple random sampling is given by

RE(22cj22s) =
0@p


q
c21 +

co
m1

+
slope(�)+Tc
m1ExM(x)

+ "
p
c22 +

p
c1
p
1 + ��
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q
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m1

+
slope(�)
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+ "
p
c22 +

p
c1�

1A2

(5.29)

where we have assumed that cco = c0 +
Tc

ExM(x)
and cc1 = c1; in practice these

equalities are likely to be inequalities <. Hence, if RE(22cj22s)(m1) < 1 then clus-

ter sampling is certainly more eÆcient. Again, this is likely to be the case when the

intra-cluster correlation and the travelling costs within the cluster are not too large.
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Final remarks

All the formulae given so far are purely mathematical results, independent of the

numerical values assigned to the occurring constants. Consequently, in any given

practical case, one should check their feasibility. For instance, it may theoretically

happen that �i � 1 or pi � 1. In such a case, one has to set �i = 1 and pi = 1.

Likewise one must have n2
n1

< 1 for two-phase sampling to be meaningful, and so

on. If the cost parameters are roughly adequate these problems should not occur.

It is also important to check the size of the inclusion circles: if the optimal circles

are so large that boundary e�ects cannot be assumed to be negligible, it is wise

to increase the sample size n2 until the validity assumptions are ful�lled. One can

reasonably hope that the relative eÆciencies given by the anticipated variances will

correspond to the relative eÆciencies given by the true variances even under moder-

ate departures from the Poisson models. Also, in practice, if the relative eÆciency

of two sampling schemes is very close to 1, say 1:05 or 0:95 then it is probably wiser

to decide in favor of the simpler scheme (the famous "keep it simple" argument!).

Last not least, one should perform a sensitivity analysis to judge the impact of the

most important cost parameters on the location and the magnitude of the optimum.

Ideally, the cost or variance function at the optimum should be 
at, which ensures

some robustness of the results. With these remarks in mind we are now ready to

draw the �nal conclusions.
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Chapter 6

Conclusions

The anticipated variance under the local Poisson model generating the forest strata

is a simple tool to optimize forest inventories. The resulting sampling rules have a

clear intuitive background and it is diÆcult to imagine circumstances under which

they would be qualitatively wrong. Generally speaking it turns out that two-phase

sampling is potentially more eÆcient than one-phase sampling, that two-stage sam-

pling is superior to one-stage sampling, and that cluster sampling is superior to

simple sampling when the intra-cluster correlation and the travelling costs within

the cluster are small. Furthermore, the inclusion probabilities of the trees must

be proportional to size, PPS, either directly in one-stage procedure or by a com-

bination of probability proportional to the predicted size, PPP, and then to the

expected prediction error, PPE in two-stage sampling. An optimal discrete approx-

imation of PPS orPPP can be given, which depends only on the distribution of the

response variable in the tree population and not on the sampling scheme. Further-

more, all probabilities are inversely proportional to the square root of the relevant

cost parameters. In two-phase sampling the number of terrestrial plots must be

as small and their size as large as possible under practical and, to a lesser degree,

mathematical constraints. These rules can be expected to be qualitatively correct

under tree location models departing from the local Poisson model, in which the

trees are uniformly distributed within strata. Under this model and after linearizing

the travelling cost function it is possible to give fairly simple analytical expression

for all quantities relevant for choosing the most eÆcient sampling scheme. The

optimization requires, in simple sampling, only the approximate knowledge of the

various cost parameters, the between-strata coeÆcient of variation and the afore

mentioned distribution of the response variable; in cluster sampling, one also needs

some knowledge of the impact of the relative geometry of cluster and strata on the

intra-cluster correlation.

It can be expected that the numerical results are useful guidelines for forest in-

ventories performed on large areas, even under moderate departure from the model.

This, however, will be investigated empirically in future work.
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