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Estimation of newly grown needle area in Norway spruce based on simple 
biometrical tree parameters

Abschätzung von neu zugewachsener Nadel� äche der Fichte mittels 
einfacher biometrischer Baumparameter

Michal Bellan1, 2, *, Jan Krejza1, 2, Irena Marková1

Keywords: shoot; needle projection area; shoot silhouette; tree crown; bio-
mass; canopy; photosynthesis; allometry; Picea abies; assimila-
tion; speci� c leaf area

Schlüsselbegri� e: Trieb; Nadelprojektions� äche; Silhouette des Triebes; Baum-
krone; Biomasse; Kronendach; Photosynthese; Allometrie; Picea 
abies; Assimilation; spezi� sche Blatt� äche

Abstract

Estimation of newly grown needle area, as the most active part of assimilation appa-
ratus, is important for better understanding of biochemical processes of trees. This 
paper investigates the relationship between the projected area of newly grown need-
les and other biometric tree parameters (tree height HTREE, diameter at breast height 
DBH, projected crown area and crown length) of Norway spruce trees. The total pro-
jected area of newly grown needles of seven sampled trees was estimated using a 
detailed inventory of the number and length of shoots. The relationship between this 
value and other readily measurable biometric tree characteristics was tested to � nd 
the best model for estimating total area of newly grown needles. The model using 
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HTREE*DBH with a coe�  cient of determination of 0.96 had the best performance. The 
DBH and HTREE inventory of all trees in the studied plot was used to estimate the total 
projected area of newly grown needles of the entire forest stand (4506.7 m2 per hec-
tare). We also investigated speci� c leaf area (SLA) of newly grown needles in vertical 
pro� le of tree crown. SLA increased constantly from the tree top (28.7 cm2.g2) to the 
crown base (80.3 cm2.g2).

Zusammenfassung

Die Ermittlung der jährlich neu gebildeten Nadelmasse als aktivster Teil der Assimi-
lationsorgane eines Baumes ist sehr wichtig für ein besseres Verständnis der bio-
chemischen Prozesse von Bäumen. Diese Studie beschreibt die Beziehung zwischen 
der Projektions� äche von neu zugewachsenen Nadeln und der Baumhöhe (HTREE), 
des Stammdurchmesser in der Brusthöhe (DBH), der Projektionskronen� äche sowie 
der Kronenlänge der Gemeinen Fichte. Die gesamte Projektions� äche von neu zu-
gewachsenen Nadeln an sieben Probebäumen wurde mittels durch detaillierte Er-
fassung der Projektions� äche von Nadeln und der Anzahl und Länge von neu zu-
gewachsenen Trieben ermittelt. Das beste Modell erreichte mit dem Parameter 
HTREE*DBH ein Bestimmtheitsmass von 0.96. Aus Messunge von DBH und HTREE aller 
Bäume konnte die gesamten Projektions� äche der neu zugewachsenen Nadeln des 
gesamten untersuchten Bestandes ermittelt werden (4506.7 m2 pro Hektar). Ausser-
dem, Es wurden auch die spezi� sche Blatt� äche (SLA) für neu gebildete Nadeln im 
vertikalen Pro� l der Baumkrone untersucht. SLA nahm von dem Wipfel (28.7 cm2.g2) 
bis zur Kronenbasis (80.3 cm2.g2) stetig zu.

Introduction

Norway spruce (Picea abies (L.) Karst.) is one of the most important European coni-
ferous tree species due its wide distribution, its economic importance and long tra-
dition of cultivation (Caudullo et al. 2016). In the past, Norway spruce stands have 
often been favored because of their easy establishment, transparent management 
and high yield (Spiecker 2003).

Trees are growing in environment, where they constantly exchange matter and ener-
gy with atmosphere and soil. From the environment a plant must acquire resources 
that it can then save or spend in various ways to construct a product (Bloom 1985). 
The actual size of green leaf area is one of the key parameters in� uencing the to-
tal primary production of trees and the exchange of energy between trees and the 
atmosphere (Newman 1979). Solar energy is environmentally friendly and its con-
version to energy of chemical substances is carried out only by photosynthesis – ef-
fective mechanism characteristic of plants (Tkemaladze and Makhashvili 2016). Tree 
crown architecture may be described by the vertical and horizontal distribution of 
plant organs, particularly focusing on the productive assimilation area (Echereme et 
al. 2015). The utilization of solar radiation (especially photosynthetically active radia-
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tion of wavelengths 400 – 700 nm) directly depends on tree crown architecture, its 
projected area and the forest stand structure (Mõttus et al. 2006; Pangle et al. 2009). 
The crown of Norway spruce is regularly conical and columnar, with whorled, short 
and stout branches, the upper level ascending and the lower drooping (Caudullo et 
al. 2016). The tree crown dimension is more easily measured by vertical crown length 
than by crown projection.

Forest stand production is closely connected with micro climatic conditions that are 
created within the forest stand. Incident solar radiation a� ects forest stand clima-
te and is the exclusive source of energy for the production processes of the trees 
(Marková et al. 2011). Solar radiation is one of the most limiting factors in numerous 
processes of forest regeneration, stand development (Niinemets and Kull 1995) and 
radial growth (Beadle and Long 1985; Linder 1985; Monteith 1994). The size and dis-
tribution of the active assimilatory apparatus therefore plays a decisive and crucial 
role in forest growth and development.

The total leaf area of the plant can be obtained by either direct or indirect methods. 
Indirect, non-destructive methods are user friendly and provide robust leaf area esti-
mates (Norman & Campbell, 1989). Another method would be removing and measu-
ring all leaves of a plant. This direct method is destructive and can be used for model 
development. One of the most useful tools for assessment of total leaf area is speci� c 
leaf area (SLA). SLA uses relationship between the area of the representative mixed 
foliage sample with its dry weight (Kalácska et al. 2005; Nouvellon et al. 2010). SLA 
often serves as an indicator for potential growth rate and reacts very sensitively to 
changes of the availability of resources (Fellner et al. 2016).

The amount of needles growing on a tree in� uences photosynthesis, gas exchange, 
transpiration, the interception and utilization of inorganic and organic atmospheric 
pollutants and the leaching of substances from aerial plant surfaces (Riederer et al. 
1988). Leaf area is therefore one of the most important structural characteristics of 
a tree or forest stand as it relates to its potential production or even health status 
(Pokorný and Stojnič 2012; Čater 2015). The amount of needles growing on a tree 
is adequately described using the projected area of needles. The young needles are 
photosynthetically highly active needles (Hom and Oechel 1983, Huttunen and Heik-
kilä 2001, Kayama et al. 2007) and net CO2 assimilation rates decrease with needle 
aging in the conifer species (Freeland 1952; Warren 2005). 

The main objective of the study was to determine the area of newly grown needles 
in the crown layer. Models for estimating the projected area of newly grown needles 
using some easily measurable biometric characteristics of shoots have been develo-
ped. Su�  ciently accurate equations for calculating the projected newly grown need-
le area of trees using tree biometric characteristics have been developed.
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Material and Methods

Site description

The amount of newly grown needles in a young spruce monoculture (Picea abies (L.) 
Karst.) was determined at the Rájec study site (the Drahanská vrchovina Highlands, 
the Czech Republic) after the 2014 growing season (Table 1). The experimental sta-
tion Rájec was founded in 1975 and is included in the International Long Term Ecolo-
gical Research Network (ILTER) and national infrastructure for carbon observation in 
the Czech Republic - CzeCOS.

The studied spruce monoculture was established through reforestation (5000 trees 
per ha) after a clearcut of a mature spruce stand in 1978 (Marková and Pokorný 2011). 
There were performed several thinnings in the experimental site, nevertheless none 
of them did not reduce amount of neighbors of studied trees at least ten years before 
investigation. Detailed analysis of the amount of newly grown needles was deter-
mined on seven selected trees growing in the forest stand, that are equipped with 
sca� olding that allowed for the taking of measurements in a vertical pro� le of tree 
crowns. Selected biometric characteristics of the studied spruce stand at the chosen 
experimental plot (four sampled plots with area 125 m2; 98 trees) are shown in Table 
1.

Table 1: A description of the study site in 2014 (mean ± standard deviation)

Tabelle 1: Beschreibung den untersuchten Fläche im Jahre 2014 (Mittelwert ± Standardabweichung)
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The studied trees were selected according to the distribution of tree diameter at bre-
ast height (DBH) of the chosen experimental plot (Fig. 1). Two dominant trees, three 
co-dominant trees and two sub-dominant trees were chosen for the analysis.

Figure 1: Diameter at breast height (DBH) distribution at the study site in 2014. Black points represent the 
selected studied trees with their numbers used in this paper. Dashed line is a normal distribution of DBH.

Abbildung 1: Verteilung der Brusthöhendurchmesser (DBH) der untersuchten Fläche im Jahre 2014. 
Schwarze Punkte repräsentieren die ausgewählten untersuchten Bäume und die in dieser Studie 
verwendete Nummerierung. Die gestrichelte Linie markiert eine Normalverteilung von DBH.

Needle level

The area of newly grown needles was observed on the seven selected trees (Fig. 1) 
throughout the whole tree crown pro� le at the end of the 2014 growing season. 
Newly grown shoots (16 per tree) were removed from three additional trees of di� e-
rent social status (dominant, co-dominant and subdominant; Fig. 2). These 48 shoots 
were selected following the shoot length distribution within the tree crown. 
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Figure 2: Methodology of sampling and analysis. LSHOOT - length of shoot in cm, ASHOOT - length of shoot in cm, ASHOOT SHOOT - projected area of SHOOT - projected area of SHOOT

shoot in cm2, NN2, NN2 SHOOT, NNSHOOT, NN  - number of needles per shoot, NASHOOT - number of needles per shoot, NASHOOT SHOOT - projected area of needles in cmSHOOT - projected area of needles in cmSHOOT 2/shoot, SLA 2/shoot, SLA 2
– speci� c leaf area (cm2.g2.g2 -1). -1). -1

Abbildung 2: Methodik der Probenahme und Analyse. LSHOOT - Länge des Triebes in cm, ASHOOT - Länge des Triebes in cm, ASHOOT SHOOT - SHOOT - SHOOT

projizierte Fläche des Triebes in cm2, NNSHOOT - Anzahl der Nadeln per Trieb, NASHOOT - Anzahl der Nadeln per Trieb, NASHOOT SHOOT - projizierte Fläche SHOOT - projizierte Fläche SHOOT

der Nadeln in cm2/Trieb, SLA - Spezi� sche Blatt� äche (cm2.g-1).

The length of the removed newly grown shoots (LSHOOT) was measured from the be-
ginning of growth in the current year to the bottom of the new terminal bud and the 
area of removed newly grown needles (NASHOOT) was measured using image analysis. 
Images of the removed newly grown shoots were taken with a Nikon D5100 digital 
SLR camera (Nikon Corp., Japan) and a Tamron 17-50/F2.8 AF (Tamron Corp., Japan) 
lens set at 35-mm focal length for better optical quality. Images were captured in 
high resolution on a background marked with millimeter gridlines. The projected 
area of the removed shoot (ASHOOT) was captured on one side by the camera at a 90° 
angle loosely laid on a � at table (Fig. 3). Needles were separated from the shoot and 
scanned by an image scanner (Perfection V500, EPSON) (Fig. 3). NASHOOT, ASHOOT and SHOOT and SHOOT

number of needles (NNSHOOT) was determined from images by ImageJ (National Ins-
titutes of Health, USA). The parameters of the removed newly grown shoots (LSHOOT, 
NNSHOOT and NASHOOT and NASHOOT SHOOT) were further analyzed to assess the correlations between the 
projected area of needles and shoot characteristics.



Estimation of newly grown needle area in Norway spruce  Seite 7

Figure 3: Newly grown shoot projection (A) and the projected area of needles separated from this shoot (B). 

Abbildung 3: Neu gewachsener Trieb (A) und die projizierte Fläche, der von diesem Trieb abgetrennten 
Nadeln (B).

The silhouette area to projected needle area ratio (SPAR) of a shoot is de� ned by Sten-
berg et al. (1995) as:

where ASHOOT (SHOOT (SHOOT α,β) is the projected area of shoot for inclination (α), rotation angle (β), 
and NASHOOT is the projected needle area. SPAR was calculated only at SHOOT is the projected needle area. SPAR was calculated only at SHOOT α = 90° and β = 
0° (i.e. the shoot projection area was determined only for a loosely laid shoot on � at 
table) and this parameter was described as SPARmax.

The shoot area to total needle area ratio (STARcal) was calculated after converting the 
projected needle area (NASHOOT) to total needle area (TNASHOOT) using the equation for 
one-year-old needles published by Homolová et al. (2013): 

Speci� c leaf area (SLA, ratio between projected needle area and needle dry mass) 
was determined on ten trees growing in the studied forest stand (including the seven 
trees used in detailed analyses; Fig. 2). One sample branch was taken from each third 
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of tree crown. Afterward three subsamples (consisting of approximately 50 needles 
each) were collected from each sample branch. Needle subsamples were scanned, 
oven-dried (at 80°C for 48 h) and weighed (precision ±0.001 g). Needle area of sub-
samples was determined by ImageJ (National Institutes of Health, USA).

Shoot level

The detailed analysis of newly grown shoots was performed on the seven selected 
studied trees throughout the whole tree crown at the end of the 2014 growing sea-
son (Fig. 2). The height of all living branches in whorls was measured during the shoot 
sampling period. The number of newly grown shoots was counted on every living 
branch in the whorl and in the inter-whorl. LSHOOT was measured on living branches in SHOOT was measured on living branches in SHOOT

whorls along the whole vertical pro� le of the tree crown.

Tree and stand level

The position, height (HTREE), vertical length of the living crown (LCROWN) and projected 
crown area (PACROWN) of the selected studied trees and � nally of all trees on the expe-
rimental plot were determined using the FieldMap measuring system (IFER, Czech 
Republic). The top of the highest tree and the lowest living whorl in the stand de� nes 
the height of the stand crown layer. The base of the living crown was considered the 
whorl closest to the ground surface that had a minimum of two living branches. DBH 
of the selected studied trees was calculated from the stem circumference measured 
with tape at a height of 1.3 m above the ground. 

Tree crown dimension, as the potential base for budding, is directly related to the 
amount of newly grown shoots. Chosen tree and crown biometric characteristics are 
provided in Table 2. For the seven selected Norway spruce trees, the average DBH was 
15.3 cm ± 4.0, and the average tree height was 15.5 m ± 3.3.
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Table 2: Chosen biometric characteristics of the seven studied trees. Trees were divided into three categories 
according to their social status within the forest stand. 

Tabelle 2: Ausgewählte biometrische Merkmale von sieben untersuchten Bäumen. Die Bäume 
wurden nach ihrem sozialen Status innerhalb des Bestandes in drei Kategorien unterteilt.

Statistical analysis

To determine the relationship between NASHOOT and an easily measurable shoot para-SHOOT and an easily measurable shoot para-SHOOT

meter, a list of measured newly grown shoot characteristics was established and 
the best model was estimated using QCExpert 3.3 (TriloByte Statistical Software Ltd 
2013). Linear, exponential, polynomic, logarithmic and power models were tested 
and the quality of the models was evaluated based on (i) mean quadratic error of 
prediction (MEP), (ii) Akaike information criterion (AIC) and (iii) coe�  cient of deter-
mination (R2). MEP and AIC values are decreasing with increasing model quality, and 
higher R2 values indicate higher suitability of the model. MEP was the decisive factor 
in selecting the best model.

A list of the biometric characteristics of the seven studied trees (HTREE, DBH, PACROWN, 
LCROWN) was made to � nd the most appropriate and most suitable model to describe 
the total projected area of newly grown needles on a tree. The dependence of newly 
grown needles area on each of tree characteristic parameter was estimated in QCEx-
pert 3.3 and SigmaPlot 11.0 (Systat Software, Inc.).
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Results

Needles

The length of the 48 shoots removed from the subset of three trees (sub-dominant, 
co-dominant and dominant) ranged from 21.8 to 113.3 mm. The mean values of the 
biometric measurements performed on these 48 shoots, obtained through image 
analysis, are provided in Table 3. SPARmax varied from 0.299 to 0.662 with a mean value 
of 0.514. Shoot area to total needles area ratio (STARcal) (calculated with the conver-
sion factor published by Homolová et al. 2013) ranged from 0.096 - 0.211 with a mean 
value of 0.164.

Table 3: Selected biometric characteristics of the 48 removed newly grown shoots.

Tabelle 3: Ausgewählte biometrische Merkmale von 48 neu gewachsenen Trieben.

New needle production estimated by the model was at an average of 188 453 need-
les per tree (according to relationship on Fig. 4 and model in Table 4). We detected a 
strong relationship (i) in shoot length versus the number of needles (R2 = 0.93)(Fig. 4), 
(ii) shoot length versus the projected area of newly grown needles (R2 = 0.91) (Fig. 5), 
and (iii) the projected area of shoot versus the projected area of newly grown needles 
(R2 = 0.93) (Fig. 5).
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Figure 4: Relationship between number of needles and shoot length. See Table 4 for the model description. 

Abbildung 4: Beziehung zwischen Anzahl der Nadeln und Trieblänge. Die Tabelle 4 stellt die 
Beschreibung der Modelle dar.

Figure 5: Relationships between projected area of newly grown needles and selected shoot parameters. 
See Table 4 for the description of the models.

Abbildung 5: Beziehungen zwischen der projizierten Fläche von neu gewachsenen Nadeln und 
ausgewählter Triebparametern. Tabelle 4 zeigt die Modellparameter.
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Speci� c leaf area (SLA) of needles increased from 28.7 cm2.g-1 on the top of tree to 
80.3 cm2.g-1 at the base of crown. Important change occurs in height, with the bran-
ches in the lower layers of the canopy being more a� ected by competition for light 
than in the upper canopy. In particular, the increase in SLA occurred at a higher rate 
from 14 m height (62% of stand crown layer) down to 6 m. Furthermore, SLA showed 
greater variability in the lower parts of the crown than in the upper parts (Fig. 6).

Figure 6: Speci� c leaf area in di� erent height. Horizontal bars represent standard deviation. See Table 4 for 
the model description.

Abbildung 6: Spezi� sche Blatt� äche in unterschiedlicher Baumhöhe. Horizontale Fehlerbalken 
repräsentieren die Standardabweichung. Tabelle 4 zeigt die Modellparameter.
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The best correlation was found in the relationship between the projected area of 
needles (NASHOOT) and the number of needles (NNSHOOT) (R2=0.96). Nevertheless, the 
estimation of the projected area of newly grown needles was calculated from the 
shoot length (LSHOOT) because this parameter is more easily measurable (coe�  cient of 
determination R2=0.91) – Fig. 5, Table 4.

Table 4: Models for relationships displayed in Fig. 4, Fig. 5 and Fig 6. R2 - coe�  cient of determination, MEP 2 - coe�  cient of determination, MEP 2
- mean quadratic error of prediction, AIC - Akaike information criterion, NASHOOT - projected area of needles SHOOT - projected area of needles SHOOT

in cm2/shoot, L2/shoot, L2 SHOOT - length of shoot in cm, NNSHOOT - length of shoot in cm, NNSHOOT SHOOT - length of shoot in cm, NNSHOOT - length of shoot in cm, NN  - number of needles per shoot, ASHOOT - number of needles per shoot, ASHOOT SHOOT - projected area of SHOOT - projected area of SHOOT

shoot in cm2, H2, H2 BRANCH – height of branch in m.

Tabelle 4: Beschreibung der Modelle, die in Abb. 4, Abb. 5 und Abb. 6 verwendet wurden. 
R2 - Bestimmtheitsmaß, MEP - mittlerer quadratischer Fehler der Vorhersage, AIC - Akaike 
Informationskriterium, NASHOOT - projizierte Fläche der Nadeln in cmSHOOT - projizierte Fläche der Nadeln in cmSHOOT 2/Trieb, LSHOOT - Länge des Triebes SHOOT - Länge des Triebes SHOOT

in cm, NNSHOOT - Anzahl der Nadeln per Trieb, ASHOOT - Anzahl der Nadeln per Trieb, ASHOOT SHOOT - projizierte Fläche des Triebes in cmSHOOT - projizierte Fläche des Triebes in cmSHOOT 2, HBRANCH – 
Höhe der Verzweigung in Metern.

The total projected area of newly grown needles on the tree level was calculated 
from the set of shoot lengths measured on each of the seven studied trees using the 
parametrized model (Table 4). The projected area of newly grown needles growing 
between whorls (NATREE_BW) corresponds to roughly one-� fth of the projected area of 
newly grown needles in whorls (NATREE_IW) for sub-dominant trees and to roughly one-
third for dominant trees. The total surface area of newly grown needles of the seven 
selected trees (Table 5) reached 51 m2.
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Table 5: The projected area of newly grown needles displayed separately for branches in whorls, branches 
between whorls and for all branches for the whole living crown.

Tabelle 5: Die Projektions� äche der neu gewachsenen Nadeln getrennt für Äste in den Quirlen, Ästen 
zwischen den Quirlen und für alle Äste der lebenden Krone.

Shoots

The inventory of each living branch in whorls and between whorls (Table 6) allowed 
us to describe the crown architecture of the seven studied trees. The mean LSHOOT was 
4.8 cm and the average number of newly grown shoots per tree was 1707.
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Table 6: Selected biometric characteristics of the branches and newly grown shoots of the seven studied 
trees.

Tabelle 6: Ausgewählte biometrische Merkmale der Zweige und neu gewachsenen Triebe der sieben 
untersuchten Bäume.

For each of the seven studied trees, the tree crown was subdivided into � ve hori-
zontal layers of equal thickness: 0-20%, 21-40%, 41-60%, 61-80% and 81-100% of 
the vertical tree crown length, starting from the whorl closest to the ground surface 
that had a minimum of two living branches, and ending with the top of the tree. 
The mean shoot length was then calculated for each tree crown section.  The hig-
hest mean length of shoots was observed in the upper sections from 61 to 100% of 
relative tree crown length in all tree social status groups (Fig. 7.). The highest mean 
length of shoots was observed in whorls on the top of the crowns (81 – 100% of tree 
crown length) in co-dominant and sub-dominant trees and the second highest � fth 
(61 – 80% of tree crown length) in dominant trees. Sub-dominant trees, in contrast 
with dominant and co-dominant trees, did not produce any new shoots in the lowest 
living whorls (0 – 20% of tree crown length). There is also noticeable change in slope 
of newly grown shoot length trend in height 15 m (70 % of stand crown layer). New 
shoots growing under this height are shorter and the length of shoots decreases fas-
ter with decreasing height (Fig. 7).
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Figure 7: Mean length of newly grown shoots in whorls located at di� erent heights along the tree stem 
(left). Mean length of newly grown shoots according to the social status of the trees and grouped by 
relative crown position (right). Horizontal bars represent standard deviation.

Abbildung 7: Die mittlere Länge der neu gewachsenen Triebe in Quirlen entlang der Baumhöhe (links) 
und die mittlere Länge der neu gewachsenen Triebe gruppiert nach sozialem Status des Baumes und 
relativer Kronenposition (rechts). Horizontale Fehlerbalken repräsentieren die Standardabweichung.

Tree and stand level

Di� erent models were established using tree height (HTREE), diameter at breast height 
(DBH), projected area of crown (PACROWN) and crown length (LCROWN) as independent va-
riables to estimate the projected area of newly grown needles (NATREE) of trees (Table 
7). These equations were examined separately for branches in whorls, for branches 
in inter-whorls and for all branches. The best correlations were found in the relation-
ships of NATREE with HTREE (R2 = 0.92), of NATREE with DBH (R2 = 0.90), of NATREE with LCROWN

(R2 = 0.90), of NATREE with HTREE and DBH (R2 = 0.96), of NATREE with PACROWN and LCROWN (R2
= 0.82). The relationship between NATREE and PACROWN (R2 = 0.63) demonstrated 
the lowest correlation. The model with DBH and HTREE (Fig. 8) was chosen to estima-
te the projected area of newly grown needles on the trees due to its highest accuracy 
and because these parameters are commonly measured. 
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Table 7: Models for estimating the projected area of newly grown needles of trees (NATREE) based on TREE) based on TREE

chosen biometric characteristics of selected studied trees. NATREE_IW - estimated projected area of newly TREE_IW - estimated projected area of newly TREE_IW

grown needles of the branches in whorls, NATREE_BW - estimated projected area of newly grown needles of TREE_BW - estimated projected area of newly grown needles of TREE_BW

the branches between whorls. HTREE - tree height (m), DBH - stem diameter at breast height (cm), PATREE - tree height (m), DBH - stem diameter at breast height (cm), PATREE CROWN

- crown projection area (m2), L2), L2 CROWN - crown length (m), RCROWN - crown length (m), RCROWN 2 - coe�  cient of determination, MEP - mean 2 - coe�  cient of determination, MEP - mean 2
quadratic error of prediction, AIC - Akaike information criterion. The domains of functions are for HTREE = TREE = TREE

(4.6;21.0), DBH = (4.4;24.5), PACROWN = (2.0;19.6), LCROWN = (2.0;19.6), LCROWN CROWN = (3.1;11.9)CROWN = (3.1;11.9)CROWN

Tabelle 7: Modelle zur Ermittlung der Projektions� äche von neu gewachsenen Baumnadeln 
(NATREE) basierend auf ausgewählten biometrischen Merkmalen der untersuchten Bäume. NATREE_IW

- geschätzte Projektions� äche von neu zugewachsenen Nadeln der Zweige in Quirlen, NATREE_BW - 
geschätzte Projektions� äche von neu zugewachsenen Nadeln der Zweige zwischen Quirlen. HTREE - 
Baumhöhe (m), DBH - Stammdurchmesser in der Brusthöhe (cm), PACROWN - Kronenprojektions� äche 
(m2), R2 - Bestimmtheitsmaß, MEP - mittlerer quadratischer Fehler der Vorhersage, AIC - Akaike 
Informationskriterium. Der Anwendungsbereiche der Modelle ist für HTREE 4.6 bis 21.0 m, DBH  4.4 bis 
24.5 cm, PACROWN 2.0 bis 19.6 m2 und LCROWN 3.1 bis 11.9m.
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Figure 8: Relationship between the projected area of newly grown needles (NA) and parameter Tree height 
x DBH (upper) and model residuals (lower).

Abbildung 8: Die Beziehung zwischen der projizierten Fläche der neu gewachsenen Nadeln (NA) und 
Parameter der Baumhöhe x DBH (oben) und Modellreste (unten).

The DBH and HTREE inventory of all trees in the studied plot was used to estimate the 
total projected area of newly grown needles of a young spruce stand at the Rájec 
study site (Fig. 9, Table 7). The total projected area of newly grown needles in 98 trees 
growing in four sampled plots (à 125 m2) was 4506.7 ± 516 m2 per ha.
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Figure 9: Projected area of newly grown needles of all trees in the experimental plot in 2014 estimated by 
the model using parameter HTREE x DBH (Table 7).TREE x DBH (Table 7).TREE

Abbildung 9: Die projizierte Fläche der neugewachsenen Nadeln der Bäume auf der untersuchten 
Fläche im Jahre 2014 geschätzt vom Modell mit Parameter von HTREE x DBH (Tabelle 7).

Discussion

This study provides functions for estimation of area of newly grown needles based on 
simple biometrics parameters of the tree and vertical variability of shoot and needle 
parameters in the tree crown. The information about newly grown area of needles is 
valuable, because the area of new needles or new needle biomass is closely associa-
ted with production of forest and carbon sequestration. 

Needle level

New needle production was at an average of 188 453 needles per tree and strong 
relationships between the shoot length and the number of needles and between the 
shoot length and the projected area of newly grown needles were found. Similar re-
sults were observed by Sander and Eckstein (2001) for mature Norway spruce. Annu-
al needle production is controlled by genetic and/or ecological factors (Sander and 
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Eckstein 2001). Light availability, as an ecological factor, decreased with the social 
status of the trees (Kučera et al. 2002). The number of needles per cm of shoot length 
ranged from 18 to 31, which corresponded with the range of 6 – 63 needles per cm of 
shoot length presented by Sander and Eckstein (2001) and 13 – 23 needles per cm of 
shoot length presented by Stenberg et al. (1999). The shoot silhouette to total needle 
area ratio (STARmax) reported by Palmroth et al. (2002) ranged from 0.116 to 0.251, 
which compared well with the 0.096 – 0.211 range of STARcal presented in this paper.

Signi� cant changes have been found for SLA and shoot length at relative stand crown 
layer height 62 % and 70 % respectively. Reich et al. (1998) found out SLA changes 
in case of light competition which resulted in higher SLA in low light condition and 
lower SLA in higher light condition. At the lower vertical level of the crown the value 
of SLA is a� ected by forest density (i.e. by the shading of neighboring individuals). 
Equally, the SLA changes are a� ected by the cumulative leaf area index (LAI) of indi-
viduals (Fellner et al. 2016; Konôpka et al. 2016) and by changing light due to various 
light transmission through the crown layer (Ellsworth and Reich 1993).  According to 
Ellsworth and Reich (1993), the intersection of the curve of cumulative LAI and the 
light transmission is at 60 % of the crown height. This is consistent with our � ndings.

Shoot level

The number of newly grown shoots varied between 691 - 2372 (from sub-dominant 
trees to dominant trees). Norway spruce is able to compensate for a loss of lower 
crown needle mass by branch and foliage growth in the upper crown (Gilmore and 
Seymour 1997, Kantola and Mäkelä 2006). The reduction of new shoots and leaf mass 
is evident in the lower parts in our stand, where no development of newly grown 
shoots was observed at the base of the crown in sub-dominant trees. This will result 
in crown shortening and the accumulation of leaf biomass in the upper part of the 
tree. The greatest length of newly grown shoots was observed in the upper part of 
tree crown, especially in dominant trees (the greatest length of shoots was achieved 
at the 61% to 100% relative crown position). The reason for this trend is that trees in 
the understorey often invest in height growth to avoid shade (Oliver and Larson 1996, 
Pretzsch 2010). The length of newly grown shoot depends on the position in the ca-
nopy and competing environment, which increases the variability in length of newly 
grown shoots. The highest variability was found at the lower part of crown, where the 
variability in light intensity and competition are at the highest level. Stand properties 
such as stand structure, length and size of the branches play a signi� cant role in the 
development and growth of tree crowns (Deleuze et al. 1996; Lindström 1996) and 
the thinning regime also has a signi� cant e� ect on tree crown formation (Pape 1999). 
Shape and crown development is greatly a� ected by stand density. If the stand den-
sity decreases to the extent that the trees can achieve their maximum crown projec-
tion area, the shape of the crown will start to be di� erent (Pretzsch 2010).
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Tree and stand level

Many studies indicate that DBH may be an appropriate parameter for estimating total 
leaf biomass, but there are no published predictions of area of newly grown needles. 
Marklund (1987), Mund et al. (2002) and Wirth et al. (2004) published allometric rela-
tionships between DBH and leaf biomass with signi� cant coe�  cients of determina-
tion (R2 = 0.81, R2 = 0.87 and R2=0.90, respectively). The presented study con� rms that 
a model using DBH as predictor produces good results (R2 = 0.90) when estimating 
the projected area of newly grown needles in trees (NATREE). The most common mea-
sured variable is DBH, while the measured HTREE and other tree variables such as LCROWN

and PACROWN are less frequent (Cienciala et al. 2008). The parameters HTREE, LCROWN and 
PACROWN individually explained 92 %, 90 % and 63 % of the variability in the observed 
NATREE, respectively. Modelling NATREE using two independent variables as predictors 
(DBH and HTREE) increased the coe�  cient of determination from 0.90 (for DBH) and 
0.92 (for HTREE) to 0.96 and decreased MEP from 0.64 to 0.57. The importance of ad-
ditional independent variables was also presented by Černý (1990), Wirth et al. (2004) 
and Cienciala et al. (2008). LCROWN (as a factor re� ecting tree dimension) was found to 
be a better parameter for estimating area of newly grown needles increment than 
PACROWN. This was also shown by Krejza et al. (2015), who found similar dependences 
when they investigated relationships between basal area growth and crown dimen-
sion. 

Conclusion

The area of newly grown needles is closely connected with basic biometric parame-
ters of the tree. The models have been developed for the prediction of newly grown 
needles on the basis of a detailed inventory of the newly grown shoots and shoots 
biometric characteristic of young Norway spruce trees. Values that are relatively ea-
sily obtained (DBH, HTREE, LCROWN and PACROWN) were used as input parameters for the 
model. The created models may be used to calculate the amount of newly grown 
needles area within the crown layer on the basis of knowledge of the tree height 
and tree diameter at breast height. Developed models brought the tool for determi-
nation of positive component of annual dynamic of leaf area index. The results can 
be easily combined with speci� c leaf area and produced valuable information about 
increment of new needle biomass, which is described as the most productive part of 
needle biomass.
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E� ects of stand density on soil organic carbon storage in the top and deep 
soil layers of Fraxinus mandshurica plantations

Auswirkungen der Bestandesdichte auf die Kohlensto� speicherung 
in oberen und tiefen Bodenschichten von Fraxinus mandshurica

Au� orstungen

Xudong Sun1, Wenna Wang2, Muhammad Razaq3, Hailong Sun1*

Keywords: Manchurian Ash; A� orestation; Litter input; Carbon sequestra-
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Abstract

Forests stand density has been reported to in� uence soil organic carbon (SOC) sto-
rage, yet this e� ect is often inconsistent. Especially for SOC in deep soil layers few 
studies examined its changes with stand density. In this study we investigated the 
e� ects of stand density on SOC storage by collecting soil samples from a Fraxinus 
manshurica plantation at three di� erent stand densities. We took samples at two soil 
depths from 0-10 cm (top layer) and 40-60 cm (deep layer), fractionated the soil ma-
terial with a 0.4 mm mesh to remove the labile fraction and then used the sieved 
material for laboratory incubation. Soil properties in di� erent stand densities were 
examined before the incubation. After the incubation, soil respiration and the � nal 
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carbon balance were determined. Our results indicate that the SOC storage increased 
with increasing stand density in both top and deep layers. The fractionation lowered 
the carbon concentration in both layers with the reduction in the top layer being hig-
hest at the low stand density site, while in deep layer it was highest at middle stand 
density. At the end of the incubation, total respiration in the top layer decreased with 
increasing stand density, whereas it remained invariable in the deep layer. The speci-
� c respiration decreased with increasing stand density in both layers. Addition of leaf 
litter after incubation resulted in an increase of the carbon content in top soil samples 
with the scale of accumulation increasing with increasing stand density. We conclu-
ded that the increasing SOC storage with stand density is due to its resistance versus 
microorganisms in top soil layer and not related to deep soil layer.

Zusammenfassung

Die Bestandsdichte eines Waldes soll einen entscheidenden Ein� uss auf die Speiche-
rung von organischen Kohlensto�  im Boden haben, allerdings ist dieser nicht immer 
eindeutig. Insbesondere für den organischen Kohlensto�  in tieferen Bodenschichten 
gibt es nur wenige Studien, die den E� ekt der Bestandesdichte untersucht haben. 
Diese Studie erforscht die Auswirkungen der Bestandsdichte auf die Lagerung des 
organischen Kohlensto� s mittels Bodenproben aus drei verschiedenen Bestands-
dichten und aus zwei Bodenschichten in 0-10 cm (oberste Schicht) und 40-60 cm 
(tiefe Schicht) für eine Fraxinus manshurica Au� orstung. Die Proben wurden mit 
einem 0.4 mm Sieb getrennt, die labilen Komponenten entfernt und dann für die In-
kubation im Labor verwendet. Vor der Inkubation wurden die Bodeneigenschaften in 
verschiedenen Bestandsdichten ermittelt. Nach der Inkubation wurde die Bodenat-
mung und die gesamte Kohlensto� bilanz gemessen. Unsere Ergebnisse zeigten, dass 
die organische Kohlensto� speicherung mit zunehmender Bestandsdichte sowohl in 
oberen wie auch in unteren Bodenschichten zunahm. Die Fraktionierung reduzierte 
die Kohlensto� konzentration in beiden Schichten, wobei die Abnahme in den obe-
ren Bodenschichten am größten bei niedriger Bestandsdichte war, während die Ab-
nahme in den tieferen Bodenschichten am höchsten bei mittlerer Dichte war. Am 
Ende der Inkubation nahm die Gesamtrespiration im Oberboden mit zunehmender 
Bestandsdichte ab, während sie in in den tieferen Bodenschichten unverändert blieb. 
Die spezi� sche Respiration nahm in beiden Schichten mit zunehmender Bestands-
dichte ab. Nach der Inkubation führte die Zugabe von Laubstreu zu einer Erhöhung 
des Kohlensto� gehalts in oberen Bodenproben, wobei das Ausmaß der Akkumu-
lation mit zunehmender Bestandsdichte zunahm. Wir schlussfolgeren, dass die zu-
nehmende organische Kohlensto� speicherung mit der Bestandsdichte eher auf die 
Widerstandsfähigkeit gegen Mikroorganismen in der obersten Bodenschicht als auf 
die tiefen Bodenschichten zurückzuführen ist.
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1. Introduction

Soil is the largest carbon pool in terrestrial ecosystems and exceeds the amount of 
carbon in atmosphere and biomass (Post et al. 1982; Jobbágy 2000). Thus even a 
small change of soil organic carbon (SOC) sinks a� ects not only soil properties and 
microorganism activity (Bonner et al. 2018), but may have a substantial e� ect on the 
carbon balance, potentially leading to global climate change (Schlesinger and An-
drews 1990; Davidson and Janssens 2006).

Studies suggested that the forest soil plays an important role in carbon sink (Brown 
et al. 1993; Peng et al. 2008). A number of variables have been reported to a� ect 
SOC storage in forests, such as tree species composition (Langenbruch et al.2012; 
Vesterdal et al. 2013), management practices (Frouz et al. 2009; Klumpp et al. 2009; 
Shahzad et al. 2012), climate conditions (Razanamalala et al. 2017), etc. As one of the 
management practices, stand density of a� orestation has been reported to in� uence 
SOC storage (Jandl et al. 2007; González et al. 2012; Zhou et al. 2013), yet its e� ects are 
somewhat inconsistent, as SOC storage both increased (Fernández-Núñez et al. 2010; 
Sitters et al. 2013) and decreased (Noh et al. 2013) with increasing stand density. The 
variation of stand density will likely lead to the di� erences in the carbon input and 
output of soils (Litton et al. 2003; Fang et al. 2007; Noh et al. 2010), which may cause 
the change of recalcitrance of SOC, which in turn a� ects SOC storage. However, the 
e� ect of variation of stand density on SOC recalcitrance is poorly explored, which 
may explain our ambiguous understanding discrepant of stand density e� ects on 
SOC storage. We conclude that the evaluation of the size and recalcitrance of soil 
carbon sink by stand density is an important task.

Kirkby et al. (2014) suggest that SOC fractions can be separated into coarse and � ne 
fractions according to the size and density of the particles. The coarse fraction, which 
is mainly composed of the residuals of plants and animals, has a high microbial ac-
tivity, while the � ne fraction, which is mainly composed by refractory humus, has a 
slow turnover time (Falloon and Smith 2000). The � ne fraction in soil usually repre-
sent a larger share of the entire SOC pool compared to the coarse fraction (Kirkby et 
al. 2011).

Many studies have examined the properties of SOC (Cui et al. 2014; Liang et al. 2017). 
The surface soils received more attention than the subsoils, although the latter also 
store large amounts of carbon as well (Batjes 1996; Jobbágy 2000; Fontaine et al. 
2007). The surface SOC sink is mainly regulated by the input of fresh organic carbon, 
unlike in subsoils the carbon sink is a� ected by physical disturbance (Salomé et al. 
2010). Therefore, surface soils and subsoils should be both considered when studying 
SOC storage, which could lead to a better understanding of the mechanism of SOC 
storage change. 

Manchurian ash (Fraxinus mandshurica) is a commonly used species for a� orestation 
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in northeast China, which helps to upscale the � ndings of this study on SOC in ash 
forests for understanding the regional soil carbon sink and provide advice for future 
a� orestation. We investigate the e� ects of variation of stand density on SOC recalci-
trance and subsequently on SOC storage in di� erent layers by sampling both top and 
deep soil layers from 18-year-old ash plantations at three di� erent stand densities. 
The objective of this study is to reveal the mechanisms of how stand density regu-
lates SOC storage. We hypothesized that the SOC storage in di� erent stand density 
sites is a� ected by the recalcitrance of SOC.

2. Materials and methods

2.1 Study area

This study area is located in Maoershan Experimental Station of Northeast Forestry 
University, Heilongjiang Province, China (127°36’47’47’ ” E, 45°18” E, 45°18” ’13” N) with an average ” N) with an average ”
altitude of 300 m. The climate type of this region is temperate continental monsoon 
climate with a mean annual temperature of 2.8 °C and mean annual precipitation 
of 700 mm (Zhou 1994). The forests in this region are mainly composed of Fraxinus 
mandshurica, Larix gmelini, Betula platylhylla, Acer mono, Phellodendron amurense and 
Populus davidiana. 

The studied ash plantations were planted in 1998 with 2-year-old seedlings with three 
di� erent a� orestation densities (2200, 4400 and 10000 trees per hectare). The planta-
tions were planted on a north-facing slope with an inclination of less than 10° and the 
soil type is an Al� sol. Those plantations were not arti� cially thinned. Due to natural 
thinning the stand density was lower than when the stands were planted. The dead 
trees were removed in every winter, as local residents collected fuel wood usually in 
October and November. The stand structure of the plantations are shown in Table 1.

Table 1: Stand structure of ash plantations with di� erent original stand density, current stand density, 
average tree height and average diameter at breast height are presented as means ± standard error (n 
= 3).

Tabelle 1: Merkmale von Eschenau� orstungen mit unterschiedlicher Bestandsdichte. Für aktuelle 
Bestandesdichte, durchschnittliche Höhe und durchschnittlichen Durchmessers bei Brusthöhe 
zeigen wir Mittelwert ± Standardfehler (n = 3).
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2.2 Methods

2.2.1 Sampling

Three sampling sites with a size of 20 m by 20 m were established under each stand 
density (9 sampling sites in total) in early September 2015. The density plantations 
were separated by a 20 m bu� er, and the three replicate sites were also separated 
by a 20 m bu� er. For sampling roots, six plots from each site were randomly chosen 
located at 50 to 70 cm distance from trees. A soil core with inner diameter of 60 mm 
was used for 0-10 cm layer (top soil) and for 40-60 cm layer (deep soil) to measure 
the � ne root biomass with a diameter of less than 2 mm (Eissenstat et al. 2000). For 
sampling soils three pro� les were dug in each site from 0-10 cm and 40-60 cm. Soil 
samples from the three pro� les of each site were homogeneously and equally mixed, 
and passed through a 2 mm mesh to remove stones and plants debris, before the soil 
properties were measured. The properties of soil samples were described in Table 2. 
As suggested by Kirkby et al. (2011), a fractionation was used to obtain the refractory 
SOC fraction, which was subsequently used for incubation by using a 0.4 mm mesh. 
Besides, we collected the annual fresh leaf litter of ash trees from the forest � oor to 
use as a substrate subsequently in the incubation. The leaf litter was grounded into 
pieces with 1 to 2 mm size and dried before application. 

2.2.2 Incubation setup

A weight of 60 g air dried soil sample from each density site of top layer and deep 
layer was put into a 500 ml jar with the water content of 40 % water holding capaci-
ty (WHC). All the samples were put into an incubator in the dark at 25 °C for 8 days 
of pre-incubation. To simulate � eld conditions, all the topsoils were amended with 
annual litter as the substrate. The deep soil samples did not get additional litter in-
put, as the deep soil layer receive little litter carbon input. After the pre-incubation, 
6.44 mg C g-1 grounded air-dried annual ash litter (carbon concentration 454.97 mg 
g-1; nitrogen concentration 20.04 mg g-1; phosphorus concentration 0.88 mg g-1) was 
added into the topsoils from all the density sites, while deepsoil samples did not re-
ceive additional substrate. Subsequently, the water content was adjusted to 65 % 
WHC with the soil and added litter getting mixed. A 25 ml beaker � lled with 10 ml 
1 mol L-1 NaOH solution was suspended up inside the jar for trapping CO2 released 
from soil (Aye et al., 2018). All the jars were sealed airtight at 25 °C for the incubation 
of 121 days. There were three replicate sites for each stand density with three top 
layer and deep layer replicate soil samples for each site, which was 54 jars to be in-
cubated (3 densities * 3 sites * 2 layers * 3 replicates). At the day 2, 4, 7, 11, 18, 29, 36, 
45, 61, 79, 100 and 121, CO2 trapped in NaOH solution was measured with titration. 
When the incubation ended, samples from topsoils were fractionated to separate the 
refractory fraction and not fully decomposed litter by using “dry sieving and winno-
wing” method mentioned by Kirkby et al. (2011). Using this method, soil particles that 
were not able to pass through the 2 mm mesh, were taken as the light fraction and 



Seite 32 Xudong Sun, Wenna Wang, Muhammad Razaq, Hailong Sun

considered as the not fully decomposed litter in this experiment. The particles that 
passed through 0.4 mm mesh were taken as the heavy fraction, known as the refrac-
tory fraction of SOC. The particles that passed 2 mm mesh but not passed the 0.4 mm 
mesh compounded both fractions, which were separated with blowing wind as only 
the light fraction rather than the heavy fraction can be blown away. The weight and 
carbon content of the refractory fraction and the not fully decomposed litter before 
and after incubation were measured to determine the carbon balance.

2.2.3 Analysis

The carbon and nitrogen concentration was measured with Vario MACRO Elemen-
tor Co., Germany. The mineral nitrogen concentration was the sum of ammonium 
concentration and nitrate concentration, which was extracted with 2 mol L-1 KCl and 
measured ammonium and nitrate respectively by Auto Analyzer 3. Microbial biomass 
was determined with the chloroform fumigation method (Vance et al. 1987). Carbon 
was extracted with 0.5 mol L-1 K2SO4 and subsequently measured by Liqui TOCII. Mi-
crobial biomass carbon was estimated as the di� erence between the fumigated soil 
sample and unfumigated sample. DOC was extracted with deionized water and mea-
sured by Liqui TOCII.

2.2.4 Statistic 

All the data were presented as the average value of the three replicate sites of each 
stand density. Means were compared with the ANOVA method using the LSD crite-
rion. The SOC storage and � ne root biomass in top layer were calculated as the total 
amount per unit area within the 10 cm while in deep layer were calculated within the 
20 cm. Correlations between indexes were calculated as Pearson Correlation Coe�  -
cient. The total respiration is presented as the amount of accumulative CO2 released 
during the incubation period normalized to the sample weight, while the speci� c re-
spiration is presented as the amount of accumulative CO2 released during incubation 
period normalized to the SOC content of the sample. All the data were statistically 
analyzed with SPSS 19.0.

3. Results

3.1 SOC storage and other soil properties in top and deep soil in di� erent 
stand density

In � eld condition, the SOC storage was found higher in high stand density site in 
both top layer and deep layer, with 15.52 % and 10.90 % higher in topsoils and 31.81 
% and 9.99 % higher in deepsoils compared to the low stand density site and middle 
stand density site, respectively. The microbial biomass carbon and dissolved organic 
carbon were both found higher in low stand density site and lowest in high stand



Effects of stand density on soil organic carbon storage Seite 33

Table 2: Soil properties and � ne root biomass in top layer and deep layer at three di� erent stand densities. 
We present mean ± standard error (n = 3). The di� erent capital letters represented the signi� cant di� erence 
of samples among stand densities in the same layer, and the di� erent lowercase letters represented the 
signi� cant di� erence of samples between two layers in the same stand density (P<0.05).

Tabelle 2: Bodeneigenschaften und Feinwurzelbiomasse in der oberen und tiefen Bodenschicht 
unter drei unterschiedlichen Bestandesdichte. Wir zeigen Mittelwert ± Standardfehler (n = 3). 
Die unterschiedlichen Großbuchstaben repräsentierten signi� kante Unterschiede hinsichtlich 
Bestandesdichte in derselben Schicht und die unterschiedlichen Kleinbuchstaben repräsentierten 
signi� kante Unterschiede zwischen den zwei Schichten in derselben Bestandesdichte (P<0.05).

density site in topsoils. In deepsoils, however, the microbial biomass carbon was 
found the lowest in high stand density site, which is opposite to the trend of dissol-
ved organic carbon. The pH was 5.03 to 5.08 in topsoils and 4.02 to 4.15 in deepsoils, 
which remained unchanged with stand density. There was no di� erence of particle 
distribution with stand density in both topsoils and deepsoils. For the � ne root bio-
mass, it was found increasing with stand density in topsoils but decreasing with stand 
density in deepsoils (Tab. 2).
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Figure 1: The total carbon concentration of soil samples in top layer (T) and deep layer (D) from low density 
(LD), middle density (MD) and high density (HD) with and without fractionation. The di� erent capital 
letters represented the signi� cant di� erence of unfractionated samples among stand densities in the same 
layer, and the di� erent lowercase letters represented the signi� cant di� erence of fractionated samples 
among stand densities in the same layer. The asterisks represented the signi� cant e� ects of fractionation 
on carbon concentration (n = 3; P<0.05).

Abbildung 1: Die Kohlensto� konzentration der Bodenproben in der oberen (T) und der tieferen 
Bodenschicht (D) mit niedriger (LD), mittlerer (MD) und hoher Bestandesdichte (HD) mit und 
ohne Fraktionierung. Die verschiedenen Großbuchstaben zeigen signi� kanten Unterschiede 
der unfraktionierten Proben zwischen den Bestandesdichten in derselben Schicht, und die 
unterschiedlichen Kleinbuchstaben repräsentierten den signi� kanten Unterschied der fraktionierten 
Proben zwischen den Bestandesdichten in derselben Schicht. Die Sterne repräsentieren die 
signi� kanten Auswirkungen der Fraktionierungauf die Kohlensto� konzentration (n = 3; P<0.05).

3.2 Carbon concentration in top and deep soil in di� erent stand density 
changed by fractionation

There was not any signi� cant variation of soil carbon concentration with changing 
stand density before fractionation. After fractionation, the soil carbon concentration 
in topsoils was found highest in middle density site with 4.42 % and 6.79 % higher 
than in high density site and low density site, respectively. In deepsoils, it was found 
highest in high density site with 16.73 % and 7.48 % higher than in middle density 
site and low density site, respectively. Furthermore, the carbon concentration of each 
soil sample decreased with the application of fractionation. In topsoils, the decre-



Effects of stand density on soil organic carbon storage Seite 35

ments are getting slighter with increasing stand density while in deepsoils the scale 
of decrements presents the highest in middle density site and lowest in low density 
site (Fig.1). 

Figure 2: The accumulated total respiration of samples in top layer (a, left) and deep layer (b, right) for low, 
middle and stand density with simulating litter accessibility expected in the � eld.

Abbildung 2: Die kumulierte Gesamtrespiration der Proben in der oberen Bodenschicht (a, links) und 
tiefen Bodenschicht (b, rechts) für niedrige, mittlere und hohe Bestandesdichte, unter simulierten 
Streuinput.

3.3 Respiration of topsoils and deepsoils from di� erent density sites

Total respiration in topsoils is signi� cantly higher than in deepsoils, but its change 
patterns with di� erent stand density are distinct in top layer and deep layer. Total re-
spiration was found signi� cantly higher in topsoils than in deepsoils and decreased 
in topsoils with stand density while it remained unchanged in deepsoils (Fig.2). The 
speci� c respiration in deepsoils was higher than in topsoils, which in both layers pre-
senting the highest in low density site (Fig. 3). 
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Figure 3: The accumulated speci� c respiration of samples in top layer (a, left) and deep layer (b, right) at 
low, middle and stand density while simulating litter accessibility expected in the � eld.

Abbildung 3: Die kumulierte spezi� sche Respiration von Proben in der oberen Bodenschicht (a, links) 
und tiefe Bodenschicht (b, rechts) für niedrige, mittlere und hohe Bestandesdichte, unter simulierten 
Streuinput.

3.4 Carbon balance in topsoils from di� erent density sites 

During the incubation, the content of refractory fraction of organic carbon increased 
by 4.64 % to 9.08 % compared to the samples before incubation. The scale of incre-
ment increased signi� cantly with stand density. After the incubation, only 29.66 % to 
31.68 % of added litter remained. The amount of litter decomposition in the duration 
of incubation did not vary with stand density (Tab. 3). 
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Table 3: Changes of refractory SOC content and substrate carbon content of the 121 days of incubation in 
top layer at low, middle and high stand density (g · kg-1). We present means ± standard error (n = 3). The -1). We present means ± standard error (n = 3). The -1
di� erent lowercase letters represented the signi� cant di� erence among stand density (P<0.05).

Tabelle 3: Veränderungen des organischen Kohlensto� gehalts und des Kohlensto� gehalts des 
Substrats während der 121-tägigen Inkubation in der obersten Bodenschicht bei niedriger, 
mittlerer und hoher Bestandesdichte (g · kg-1). Wir zeigen Mittelwert ± Standardfehler (n = 3). 
Die unterschiedlichen Kleinbuchstaben repräsentieren signi� kante Unterschiede zwischen der 
Bestandesdichte (P<0.05).

3.5 Correlations of SOC indicators with changing stand density in top and 
deep soil. 

In top soil layer, the SOC storage was found positively correlated to SOC increment 
and negatively correlated to available nitrogen. The dissolved organic carbon was 
found negatively correlated to both substrate carbon decrement and SOC increment, 
and positively correlated to � ne root biomass. There was also a negative correlation 
between SOC increment and � ne root biomass (Tab. 4). 

In deep soil layer, the SOC storage was found positively correlated to available nit-
rogen and negatively correlated to speci� c respiration. The available nitrogen was 
found negatively correlated to both total respiration and speci� c respiration. Obvi-
ously, the positive correlation was found between total respiration and speci� c re-
spiration (Tab. 5).
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Table 4: The Pearson correlations among SOC storage, Litter decomposition amount, SOC increment, 
Dissolved organic carbon, Available nitrogen and Fine root biomass in top soil layers (n=9). The asterisk 
represented the signi� cant correlation between the two indexes.

Tabelle 4: Die Pearson-Korrelationen zwischen der organischen Kohlensto� speicherung, 
Streudekomposition, organischem Kohlenstofzuwachs, gelöstem organischen Kohlensto� , 
verfügbarem Sticksto�  und Feinwurzelbiomasse im Oberboden (n = 9). Der Stern zeigt die signi� kante 
Korrelation zwischen den beiden Indices.

Table 5: The Pearson correlations among SOC storage, Total respiration, Speci� c respiration, Dissolved 
organic carbon, Available nitrogen and Fine root biomass in deep soil layers (n=9). The asterisk represented 
the signi� cant correlation between the two indexes. 

Tabelle 5: Die Pearson-Korrelationen zwischen der organischen Kohlensto� speicherung, 
Gesamtrespiration, spezi� scher Respiration, gelöster organischer Kohlensto� , verfügbarem Sticksto�  
und Feinwurzelbiomasse in tieferen Bodenschichten (n = 9). Der Stern repräsentiert signi� kante 
Korrelation zwischen den beiden Indices.
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4. Discussion

4.1 The e� ects of stand density on carbon storage in topsoils

In the ash plantations, the SOC storage in topsoils increased with the magnitude of 
stand density (Tab.2), possibly due to the increase of the refractory SOC pool as we 
hypothesized. After fractionation, the light fraction, known to be microbial active 
with a high carbon concentration, has been removed by the 0.4 mm sieving. The re-
tained heavy fraction is known to be refractory with relatively low carbon concen-
tration. That could be the explanations of the generally lower carbon concentration 
after sieving (Magid and Kjaergaard 2001; Kirkby et al. 2011; Fig. 1). Only for the low 
stand density site we discovered a signi� cant decrease in carbon concentration after 
sieving (Fig. 1), indicating the larger amount of easily degradable carbon contained in 
topsoil at a low stand density. Thus, at the high stand density site, higher percentage 
of refractory fraction in topsoils may lead to potentially higher recalcitrance of SOC. 
We considered the recalcitrance as one possible reason for the higher SOC storage in 
high stand density site compared to low stand density site.  

After incubation, the carbon content of all the topsoils increased compared to those 
before incubation (Tab. 3), indicating that under natural conditions (with litter input) 
the refractory fraction of SOC will be continuously accumulated. This was consisting 
with the results of studies of SOC storage in chronosequence forests (Sharma et al. 
2009; Uri et al. 2014). Meanwhile, after incubation, the accumulation amount increa-
sed with increasing stand density (Tab.3), indicating higher stand density of ash will 
not only increase the percentage of refractory fraction of SOC in topsoils, but also be-
ne� t for its accumulation. This is also con� rmed by the positive correlation between 
SOC storage and the increment after incubation (Tab. 4). 

With the incubation of 121 days, no di� erences of soil samples receiving carbon from 
substrate were found in di� erent stand density sites, but the increment of carbon 
content of the topsoils increased signi� cantly when stand density gets higher (Tab. 
3), indicating less SOC derived carbon emission stimulated by litter input with increa-
sing stand density. As the addition of fresh carbon will stimulate the mineralization 
of SOC, which is known as the priming e� ect (Kuzyakov et al. 2000; Fontaine et al. 
2004; Blagodatskaya et al. 2011), we inferred that the priming e� ect of the refractory 
fraction of SOC will be restricted with increasing stand density in topsoils (Fig. 2). 
Creamer et al. (2015) reported that the chemical similarity of SOC and added substra-
tes would alter the intensity of priming e� ect due to the “co-metabolism”. The more 
chemically similar they are, the stronger potential priming e� ect of SOC will be, as 
the promoted microorganism by the addition of substrate better equipped to de-
compose SOC. In our experiment, all the substrates are annual litter. As Pascault et 
al. (2013) mentioned the positive relationship between priming e� ect intensity and 
substrate degradability, we considered that with increasing stand density, it is the 
SOC microbial availability decreases. Also, our results of decreased microbial biomass 
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with increasing stand density supported this point (Tab. 2). Thus, the decreasing mi-
crobial availability of refractory fraction of SOC with increasing stand density is also 
considered to be an explanation of higher SOC storage in higher density site.

4.2 The e� ects of stand density on carbon storage in deepsoils

Similar to the topsoils, SOC storage in deepsoils also increases with increasing stand 
density (Tab. 2). The scale of decrement of soil carbon concentration with fractiona-
tion presented the highest in middle density site (Fig. 1), indicating the largest per-
centage of easily decomposed SOC in the deep layer from middle density site. This 
result, however, is not considered as the contribution to the change of SOC storage 
in deepsoils as Salomé et al. (2010) pointed out that the recalcitrance of SOC in deep-
soils from microbe is mainly caused by the incapability of the microbes to contact 
the substrate it can use, which is known as the spatial isolation. The high amount of 
easily decomposed SOC in deepsoil of middle density site might be potentially not 
available to the microorganism because of the isolation, subsequently a� ects SOC 
storage barely. 

It has been reported that the intensity of speci� c respiration could express the re-
calcitrance of SOC (Lv et al. 2005). Therefore, the negative correlation between spe-
ci� c respiration and SOC storage in our results (Tab. 5) probably indicated that the 
increasing SOC storage with increasing stand density is due to the higher recalci-
trance of SOC. As some studies pointed out that DOC is one kind of labile carbon for 
microorganism in soil which is also allowed to move freely in soil solution (Ne�  and 
Asner 2001; Qiu et al. 2016), we expected DOC could somehow explain the variation 
of SOC recalcitrance, in turns the SOC storage with stand density changing. However, 
no signi� cant correlations were found between DOC and speci� c respiration or SOC 
storage (Tab. 5). Thus, the recalcitrance of SOC in deepsoils might not be considered 
as the reasons for SOC storage variation with stand density. Moreover, the speci� c 
respiration is a key path for soil carbon pool output (Guenet et al. 2012; Heitkötter 
et al. 2017). The weaker output of carbon with increasing stand density could partly 
explain the accumulated SOC storage with increasing stand density. 

Guo et al. (2005) reported the crucial e� ects of � ne root on SOC storage. In our results, 
a positive correlation was found between � ne root biomass and SOC storage in deep-
soils (Tab. 5), implying the impact of � ne root biomass on SOC storage. Normally, soil 
in deep layer is not able to contact the forest � oor to receive the carbon feedback, 
which makes the � ne root in deep layer one of the few paths for carbon input (Hu 
et al. 2016). Thus, we speculated the SOC storage increasing with increasing stand 
density could also be explained by the higher input level, as more root exudates and 
litter will be when more � ne root biomass exists (Iversen et al. 2008).
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5. Conclusion

In conclusion, the SOC storage of ash plantations increased with increasing stand 
density in both top soil layer and deep soil layer. In topsoils, as we hypothesized, 
the increasing SOC storage is due to the recalcitrance of SOC that increased with in-
creasing stand density. With stand density increasing, higher percentage of refractory 
fraction exists, with this fraction being also more recalcitrant for microorganism. In 
deep soils, however, the recalcitrance of SOC might not be taken as the reason for 
SOC variation with stand density as we hypothesized. It is the higher input and lower 
output of carbon with increasing stand density that resulted in the higher SOC sto-
rage.
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Abstract

Many of the coppice stands in Turkey are in the process of conversion into high fo-
rest because of decreasing demand for fuel wood and negative e� ects of frequent 
clearcutting on soil, landscape and biodiversity. Most of these coppice stands are 
composed of pure and mixed oak stands. Main goal of this study is to determine the 
e� ects of canopy on soil erosion and carbon sequestration in a pure Pedunculate oak 
(Quercus robur L. subsp. Quercus robur L. subsp. Quercus robur robur L.) coppice stand during the conversion process into robur L.) coppice stand during the conversion process into robur
high forest. Obtained results showed that average soil loss amounts were 0.35, 0.70 
and 0.93 t/ha/yr and total carbon stock amounts were 80.07, 77.86 and 64.2 tC/ha re-
spectively under high, moderate and low canopy. In other words, decrease of canopy 
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density increase soil losses and decreases carbon stocks (p<0.05) and in turn if the 
canopy get reduced during the conversion process, C stocks are at risk. 

Zusammenfassung

Viele der Niederwälder in der Türkei werden derzeit aufgrund der sinkenden Nachfra-
ge nach Brennholz und der negativen Auswirkungen häu� ger Nutzungen auf Boden, 
Landschaft und Biodiversität in Hochwald umgewandelt. Die meisten Niederwälder 
des Landes bestehen aus reinen und gemischten Eichenbeständen. Ziel dieser Studie 
ist es, die Auswirkungen des Kronenschluss auf die Bodenerosion und die Kohlen-
sto� speicherung in einem reinen Stieleichenbestand (Quercus robur L. subsp. Quercus robur L. subsp. Quercus robur robur
L.) während des Umwandlungsprozesses in Hochwald zu untersuchen. Unsere Er-
gebnisse zeigen einen durchschnittlichen Bodenverlust von 0.35, 0.70 und 0.93 t/ha/
Jahr und die Kohlensto� speicherung 80.07, 77.86 und 64.2 tC/ha bei hohen, mittle-
ren und niedrigen Kronenschluss. Mit anderen Worten, die Verringerung des Kronen-
schluss erhöht den Bodenverlust und verringert die Kohlensto� vorräte (p <0.05) und 
wenn der Baldachin während des Umwandlungsprozesses reduziert wird, ist Kohlen-
sto� speicherung gefährdet.

Introduction

Turkey has a total of 22.3 million hectares of forests, including 19.6 million hectares of 
high forests and 2.7 million hectares of coppice. Forests cover 28.6% of the country's 
total area (OGM 2015). Main tree species of coppice stands are oaks. Pedunculate oak 
(Quercus robur L. subsp. Quercus robur L. subsp. Quercus robur robur L) is one of the most important tree species of coppice robur L) is one of the most important tree species of coppice robur
stands subjected to conversion into high forest in Turkey and it has a wide spreading 
area in Turkey as well. Pedunculate oak can be reach a size of up to 30-40 meters with 
a breast height diameter up to 2 m and live up to 1000 years (Örtel 2011). According 
to current data, the annual average harvested wood raw material from forests equals 
to 18.314.621 m3/year (0.82 m3/ha/year), which is 15.942.459 m3/year (0.81 m3/ha/
year) from high forests and 2.372.162 m3/year (0.87 m3/ha/year) from coppice forests 
(OGM 2015). However, Boydak and Çalışkan (2015) reported that annual average 
wood raw material demand in Turkey is nearly 40 million m3. Therefore, there is a 
signi� cant wood raw material de� cit in Turkey.

Due to the decreasing demand for fuel wood, interest on coppice management has 
been decreasing all over the world especially over the past two decades. Converting 
coppice stands into high forests with continuous cover has often been established 
during the last decades as a management goal in Turkey. Namely, approximately 3 
million hectares of coppice forest were converted into high forest between 2006 and 
2015 (OGM 2015). Today's societies appear to question and change the traditional 
forms of forest resource production due to concerns for deforestation and forest de-
gradation (Asare et al. 2013). Gradual changing from intensive use of forest resources 
towards a more protective forest policy cause conversion of many coppice forests 



Effects of canopy on soil erosion and carbon sequestration Seite 47

into high forests (Coppini and Hermanin 2007), allthough Donovan and Puri (2004) 
indicated that traditional knowledge on forest management is often well in line with 
current scienti� c knowledge. The process of converting coppice forests into high fo-
rests is based on the biological and economic principles of silviculture. So, decisions 
about the conversion process must be taken rationally considering both scienti� c 
and economic knowledge when allocating production or changing the mode of 
continuous production. A key objective of conversion of coppice into high forests is 
to be able to meet the future demand of forest products more e�  ciently. However, 
socio-economic dimensions of the conversion scales also has to be taken into consi-
deration. Lafortezza et al. (2008) stated that over the past two decades especially in 
publicly-owned forests in Italy conversion of coppice forests into high forests have 
increased, but on privately-owned forests conversion is still limited, since the small-si-
zed forest areas do not allow e�  cient high forest management. Yet, Ciancio et al. 
(2006) suggested that coppice forestry has some advantages for forest owners (e.g., 
simplicity of management, ease and rapidity of natural regeneration, fast growth of 
the new stand and, thus, shorter rotation and more frequent income than high fo-
rests).

Some research results indicate that coppice management is contrary to forestry ap-
proach suitable to nature (e.g., frequent clearcutting over large areas causes soil ero-
sion on steep slopes, short rotation period, skidding harvested trees while logging 
remove the humus horizon, maintaining monolayer stands, low levels of dead bio-
mass and etc.) and that yield is lower when compared to high forest management 
(Ciancio et al. 2006; Picchio et al. 2009). On the other hand, coppice management 
done in accordance with the scienti� c principles can have an important role in forests 
providing bioenergy (Šrámek et al. 2015) and has positive ecological characteristics 
in terms of soil, water yield, forest structure variety and soil � ora (Harmer 1995; Geray 
2007; Çağlar 2007; Vacik et al. 2009). However, Šrámek et al. (2015) recognized that 
coppicing may have negative e� ects on soil and site. Relatively high consumption 
of soil nutrients in coppice managements compared with high forests and statisti-
cally signi� cant relations between biomass production and nutrient content of the 
coppice stands were reported depending on the intensive or extensive management 
strategies and tree species (Ranger and Bonneau1986; Ranger and Nys 1996). 

The main regeneration type in a coppice forest is vegetative propagation. With vege-
tative propagation, there is little renewal of the genetic structure of the forest popu-
lation, since mutation (rarely happening in trees in nature) and natural regeneration 
(ignorable in many coppice stands) are not take into consideration (Çalıkaoğlu and 
Kavgacı 2001). Some researchers discovered that coppice management has a decrea-
sing e� ect on biodiversity (Ciancio et al. 2006; Chatziphilippidis and Spyroglou 2004). 
Sjölund and Jump (2015), on the other hand, stated that there were no statistically 
signi� cant di� erences in genetic diversity between coppice and high forest stands. 
Valbuena-Carabaňa et al. (2008) suggested that intense thinning practices are unad-
visable in the conversion of Q. pyrenaica coppice into high forest due to the signi� -
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cant losses of genetic diversity by removing unique genotypes.

Consequently, the process of converting coppice forests into high forests is complex 
considering its technical, administrative, social, economic, and ecological dimensions. 
In turn, it is necessary to investigate the ecological, economic and social dimensions 
across scales and to make decisions according to the scienti� c evidence during the 
process of converting coppice forest into high forest (Bekiroğlu et al. 2013; Carvellini 
2014; Mairota et al. 2016). Coppice stands being converted into high forests should 
be constructed in a way, that keeps productivity continuously high both in terms of 
quality and quantity, and have a stand structure that is resistant to forest pests and 
� res (Niemela et al., 1996; Joys et al. 2004; Piegai et al. 2004; Andreatta 2006; Coppini 
and Hermanin 2007; Geray 2007; Çağlar 2007; Atmış and Günşen 2009; Yeşildağ and 
Tolunay 2012).

It is well known that, forest thinning directly and indirectly a� ects soil carbon (C) 
stocks and dynamics (Ma et al. 2004; Tian et al. 2010; Olajuyigbe et al. 2012; Baena et 
al. 2013; Cheng et al. 2015). Zhang et al. (2018) indicated that thinning signi� cantly 
increased soil respiration in both broadleaved and mixed forests but not in conife-
rous forest due to the di� erence of litter fall quality. Zheng (2006) emphasized that 
vegetation is one of the key factors a� ecting soil erosion. Coppice management li-
mited forest stand fertility and C storage capacity in the coppiced forest ecosystems 
(Noormets et al. 2015; Vacca et al. 2017; Lee et al. 2018). Drake et al (2013) emphasi-
zed that total respiratory C losses in coppice were much lower than in uncut control 
plots and this fact was mainly due to the lower biomass accumulated in the coppice 
treatments. Yücesan et al (2013) indicated that according to the surface stoniness, soil 
depth and the slope gradient, thinning intensity should be regulated as moderate 
and low intensity for controlling the site factors more e�  ciently in arti� cial beech 
stands. Hartanto et al (2003) stated that canopy density, sapling density, litter depth 
and woody debris appeared to be important ecological factors that determine the 
magnitude of soil loss.

The silvicultural tool usually adopted for converting coppices is the gradual thinning 
of sprouts by releasing of the best shoot on each stump during the long time re-
quired to complete the conversion. The main goal of this study is to investigate the 
change in the amount of soil loss and carbon sequestration depending on the gra-
dual thinning e� ect on canopy density. We also analyse the ecological losses due 
thinning intensity in the process of converting coppice forest into high forest.
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Material and methods

Material

The study area is placed in the Northwestern Region of Turkey in the Güngörmez 
village Saray/Tekirdağ (41° 29’ 20.79 ” N 27° 59’ 31.38” E) (Fig. 1). Study area is approxi-
mately 70 km far away from centre of the Tekirdağ province. The terrain of study area 
has straight topography with low slope gradient. In recent years, many wind turbines 
have been built on this region because of the high wind potential. According to the 
climate data of the last 75 years, the average annual temperature is 14.0 ºC and the 
annual total rainfall is approximately 580.8 mm. Most of rainfall occurs in winter and 
autumn season and according to Walter (1974) climate diagram (Figure 2); there is a 
water shortage in this region from June to September throughout to year and the-
re is a water gap in June, July and August. So, evapotranspiration can be said to be 
relatively high in this dry period. In addition, the study area is classi� ed as "steppe" 
according to DeMartonne and "C1, semi dry, less humid" for Thornthwaite method 
(MGM 2017).

Figure 1: The location of the study area

Abbildung 1: Das Untersuchungsgebiet
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Figure 2: Walter climate diagram of the study area

Abbildung 2: Walter Klima Diagramm des Untersuchungsgebiets

The study area has been managed as a coppice stand in the last ten years before 
conversion into high forest (Figure 3) and the converting process was started in 2006. 
Total area of the stand is 8.53 ha. Average slope in study area is 10%, average eleva-
tion is 240 m.a.s.l. and the main aspect is southwest. The main rock is neritic limes-
tone. There is an impermeable clay layer above the main rock. Soil texture is clay and 
average surface stoniness is 3%.

Figure 3: Picture of Quercus robur L. subsp. robur L. coppice stand (Stand pro� le 1, Canopy density is 75%)

Abbildung 3: Aufnahme des Quercus robur L. subsp. Quercus robur L. subsp. Quercus robur robur L. Niederwaldes (Bestand 1, robur L. Niederwaldes (Bestand 1, robur
Kronenschlussgrad 75%)
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Methods

As part of the conversion process gradual thinning of sprouts by releasing the best 
shoots of each stump were applied in the study area by local directorate of forest en-
terprise in 2006 and by varying the thinning intensity the forest stand now has three 
area with di� erent canopy density (25%, 55% and 75%, Figure 4). Average canopy 
density degree was 75% in 6 of 18 parcels, 55% in 6 of 18 parcels and 25% in 6 of 18 
parcels in the study area.

Figure 4: Location of stand pro� le plots and soil pro� le locations at the three canopy densities (CD)

Abbildung 4: Lage der Bestandespro� le und Bodenproben bei den drei unterschiedlichen 
Kronenschlussgraden (CD)

To explore the relations between thinning intensity depending on the canopy den-
sity and stand structure (single or two-storied structure) three stand pro� les were 
determined for 20 by 20 m (400 m2) area for each of the three di� erent canopy den-
sity degree in 2017 (Figures 5 to 7). In each stand pro� le slope gradient, aspects were 
determined. All living trees in the stand pro� les were measured for their coordinates, 
diameter at breast height 1.3m (DBH), diameter at 0.3 m height (D03), tree height, 
crown width and living crown height to quantify stand characteristics and canopy 
density. Both height characteristics were measured with Vertex Forester device. All 
trees in the stand pro� le were classi� ed as either dominant trees (height > 2/3 of the 
height of the tallest trees in the overstory), as intermediate (height between 1/3–2/3 
of the tallest tree height) or as suppressed trees (height smaller 1/3 of the dominant 
tree height as understory), by using the IUFRO classi� cation (Ucler et al. 2001; Genc et 
al. 2012; Oktan 2015; Yücesan et al., 2015). Three stand pro� les (each one represent a 
di� erent canopy density) were drawn with the “ARGUS Forstplanungdi� erent canopy density) were drawn with the “ARGUS Forstplanungdi� erent canopy density) were drawn with the “ ” simulation pro-
gram (Staupendahl 2003).
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Figure 5: Stand pro� les of sample plot 1

Abbildung 5: Bestandespro� l der Probe� äche 1.

Figure 6: Stand pro� les of sample plot 2

Abbildung 6: Bestandespro� l der Probe� äche 2

Figure 7: Stand pro� les of sample plot 3

Abbildung 7: Bestandespro� l der Probe� äche 3
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Study area with di� erent canopy density degrees were split into six separate homo-
genous parcels with no di� erences in slope gradient and slope length. In total, 18 
sample parcels have been established. Random sampling was used to select six soil 
sample locations (each canopy density represented by two soil pro� les) for analysing 
soil properties (Figure 4). Soil sampling locations have been chosen to averagely re-
present the study area with di� erent canopy density. Soil pro� les were established in 
2017 down to 60 cm depth. Disturbed soil samples (approximately 2 kg) were taken 
from soil pro� les at 0-20 cm depth level (top soil). In soil analysis, air dried and sieved 
(< 2.0mm) soil particles were used to determine soil particle size distribution such 
as sand (%), silt (%) and clay (%) ratio depend on Bouyoucos hydrometer method 
(Bouyoucos 1962). Soil pH was determined by using digital pH meter (Hach Company 
USA) and the organic matter content by the Walkley-Black, wet oxidation method 
(Allison 1965) in laboratory condition. Permeability class and the other hydro-phy-
sical soil properties such as � eld capacity (%) wilting point (%), saturation (%), sa-
turated hydraulic conductivity (cm/hr) and bulk density are described according to 
Saxton’s Hydraulic Properties Calculator (Saxton et al. 1986). Surface stoniness (%), 
slope gradient (%), aggregate class etc. are determined separately (B.K. 1994) in each 
soil sample locations.

In this study, to estimation of soil loss, Allgemeine Boden Abtrags Gleichung (ABAG), 
which was developed out of the Universal Soil Loss Equation (USLE) with the units 
converted to the metric system and adapted to the European conditions (Schwert-
mann et al. 1990). We use this model to determine soil loss by erosion (Eq. 1).

Where A is the average annual soil loss (t/ha/year), K the soil erodibility factor, R the 
rainfall erosivity factor, LS slope and slope length factor (L: slope length, S: slope gra-
dient), C the cover management factor and P is the supporting practice factor. K, LS, 
C and P factors have been estimated using equations and values from the literature 
(Schwertmann et al. 1990). R value was taken from Dogan and Gücer’s study (Dogan 
and Gucer 1976). In the calculation of soil loss, R (75.0) and P (1.0) values were taken 
as � xed values for all sample parcels The K value was also taken as a � xed value esti-
mated from mean soil properties of 6 soil sample locations (Ktopsoil= 0.1644) assuming 
the soil properties do not change at short distances. Plant cover factor (C) values were 
estimated according to equations made by Schwertmann et al (1990). Thereby, C va-
lue was taken as 0.01 for the sample parcels with 75%, 0.02 for 55%and 0.03 for 25% 
canopy density respectively. LS values were calculated separately for three sample 
parcels due to di� erences in slope gradient (S) and slope lengths (L).

In each canopy density class, carbon sequestration was estimated using the three 
stand pro� le areas (20 x 20 m=400 m2) and two smaller quadrats (1 x 1 m) were taken 
randomly located within the stand pro� les. Species type, diameter at breast height 
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(DBH) and tree height of living trees were recorded (DBH ≥ 8 cm, height ≥ 1.3 m). 
There were no standing dead trees in the stand pro� les. In each quadrat (1 x 1 m), all 
plants including seedlings (DBH<8 cm, height < 1.3 m), saplings, shrubs, herbs and 
woody species were destructively harvested. In destructive sampling, the vegetation 
in each area was cut and weighed (fresh weight) in the � eld and subsamples of the 
vegetation were taken, weighed fresh in the � eld, and weighed again after oven-dry-
ing to determine the dry-weight. Biomass of each ground vegetation component was 
oven-dried during 72 hours at 65 °C to calculate dry biomass on an area basis (t/ha).

In each of three sample stand pro� le, four samples of litter, consisting of leaves, fruits, 
buds, barks, branches and twigs (diameter < 1 cm) was sampled using 25 cm x 25 
cm metal quadrats. The four quadrats were systematically distributed in each 400 m2
plot. All material of litter was collected inside the quadrats. To minimize contamina-
tion with mineral soil, the samples were soaked and washed in water. All components 
of litter were oven-dried at 65°C and weighed.

To estimate belowground biomass and carbon stock, we used the roots directly mea-
sured in the � eld using our four soil pro� le plots. The roots were separated from the 
soil by soaking in water and then gently washing them over a series of sieves with 
mesh sizes of 2 and 5 mm. We then sort the roots into three groups, � ne (< 2 mm), 
small (2-5 mm) and coarse (>5 mm) roots. The roots from each sizes category were 
oven-dried at 65 °C for 24 h, weighed and analysed for carbon content.

The carbon stocks (tC/ha) was estimated as the sum of living trees, soil, weed and 
litter in the stand pro� les for di� erent canopy classes The living tree biomass C stock 
was obtained directly using algorithmic carbon equation for Quercus robur L. (Maki-Quercus robur L. (Maki-Quercus robur
neci et al. 2015) and shown in Eq. 2.

LTC is living tree carbon stock and DBH is diameter at breast height of living trees 
(cm).

Soil carbon stock in tC ha-1 were calculated for the soil depth intervals 0–10 cm, 10–30 
cm, 30-60 cm, 60-90 cm and 90–120 cm. Soil organic carbon stock (SOCS) was com-
puted as the product of three variables, BD, soil sampling depth (cm) and carbon 
concentration (C%) calculated as a function of OM (%). SOCS (t ha-1) was estimated 
according to Eq. 3 and 4.
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In the equation OM is organic matter, BD is soil bulk density (g cm-3), and D is soil 
sampling depth (cm) (Guo and Gi� ord 2002). Carbon stocks for litter and weed were 
estimated from the tables for Pedunculate oak species in Turkey developed by Maki-
neci et al. (2015).

Test of normality was used to test whether obtained soil loss and carbon sequestra-
tion under di� erent canopy density have normal distribution. Thus, it was decided 
that the parametric or non-parametric test should be used. The Mann-Whitney U 
test was used to compare di� erences between two independent groups if the dis-
tribution was not normal. ANOVA was used to compare the means of three indepen-
dent groups in order to determine whether there was statistical con� rmation that 
the mean soil loss and carbon sequestration amounts were signi� cantly di� erent if 
the distribution was normal. Obtained results were expressed as means ± standard 
error. Pearson's correlation coe�  cients were used to examine the relation between 
normally distributed data. Spearman’s correlation coe�  cient was used for non-nor-
mal distributed data. Statistical signi� cance was de� ned as p<0.05 and p<0.01 level. 
Analysed soil properties and soil loss amounts were analyzed using the SPSS program 
(version 23.0 software package, Institute Inc., Chicago, IL, USA, 2016).

3. Results

Two storied stand structure (74% of trees were overstory trees) was identi� ed in sam-
ple plot 1 (canopy density 75%) (Figure 5). Single storied structures were identi� ed 
in sample plot 2 (canopy density 55%) and in sample plot 3 (canopy density 25%) 
(Figure 6-7). The stand pro� le components were summarized in Table 1.

Table 1: Summary of stand characteristics according to canopy density

Tabelle 1: Zusammenfassung des Bestandesmerkmale hinsichtlich der Kronenschlussgrad

Canopy structure was more heterogeneous in sample plot 1. However, despite their 
lower canopy densities, canopy structures were more homogenous in the sample 
plot 2 (canopy density is 55%) and sample plot 3 (canopy density is 25%). Mean basal 
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area was 6.62 m2/ha in sample plot 1, 5.68 m2/ha in sample plot 2 and 1.97 m2/ha in 
sample plot 3. Mean DBH (diameter at breast height) values were 9.32 cm in sample 
plot 1, 9.27 cm in sample plot 2 and 8.43 cm in sample plot 3. Both trees in sample 
stands were of >8 cm DBH. So sample stands had entered to pole stage with DBH va-
lues ranging from 8.0 to 19.9 cm and subjected to moderate thinning in accordance 
with the silvicultural perspective. Mean height values were 7.33 m in sample plot 1, 
7.78 m in sample plot 2 and 7.01 m in sample plot 3.

Figure 8: Top soil loss versus canopy density (CD)

Abbildung 8: Oberboden Verluste gegenüber der Kronenschlussgrad (CD)
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Table 2: The soil properties and K factor (Mean ± SD, n=6)

Tabelle 2: Die Bodeneigenschaften und der K-Faktor (Mittelwert ± SD, n=6)

Lowest predicted soil loss amount obtained as 0.35 t/ha/year in the top soil (0-20 cm 
depth) in stand pro� le 1 (canopy density is 75%). On the other hand, predicted top 
soil loss amounts obtained as 0.70 t/ha/year in the stand pro� le 2 (canopy density is 
55%) and 0.93 t/ha/year in the stand pro� le 3 (canopy density is 25%) (Figure 8). Ob-
tained results showed that only canopy density has signi� cant (p<0.05) e� ect on the 
amount of top soil loss. So it is possible to say that there was a linear correlation bet-
ween soil loss amount and canopy (Y = 77.372 × X + 103.858 (R2= 0.93). The amount 
of soil loss per unit area increases as the canopy cover decreases (Figure 8). However, 
only the amount of soil loss at 75% canopy density was found to be signi� cantly lo-
wer (p <0.05) than the other stand pro� les. The amount of soil loss in the stand pro� le 
with 25% canopy density has not been signi� cantly increased compared to the stand 
pro� le where the canopy density was 55% (p>0.05).

The soil loss in the study was assessed with di� erent slope and length conditions 
under the same climatic and soil conditions, in 3 sample stand pro� les with di� erent 
canopy density. LS factor, which is a component of slope length and slope, has not 
changed signi� cantly (p>0.05) between sample parcels (Figure 9). However, there 
was a signi� cant correlation (p<0.01) between soil loss and canopy density (Table 
4). For this reason, the most important factor that a� ected the soil loss was “C” factor 
which is the only component of canopy density.
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Figure 9: L, S and LS factors grouped by canopy density (CD)

Abbildung 9: L, S und LS Faktor gruppiert nach Kronenschlussgrad (CD)

Table 3: Carbon sequestration of a Pedunculate oak coppice forest in the study area

Tabelle 3: Kohlensto� speicherung eines Stieleichen-Niederwalds im Untersuchungsgebiet

Total carbon stock was obtained as 80.07 t/ha in sample plot 1, 77.86 t/ha in sample 
plot 2, 68.77 t/ha in sample plot 3 (Table 3). So, there was also a linear correlation 
between total carbon stock and canopy density. Low C stocks in low canopy density 
is mostly due to low tree biomass. Because of the OM (organic matter), BD (soil bulk 
density) and D (soil sampling depth) did not di� er between the three stand pro� le 
plots the estimated soil carbon stocks were the same. Weed and litter types were lar-
gely similar in the three plots at di� erent canopy densities. Estimated carbon stocks 
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values for litter are highest for plot 1 and 2 (canopy density 75% and 55%), while 
weed carbon mass was highest in plot 3 (canopy density 25%, Table 3). Finally, we 
show in Table 4 the results of our correlation between soil loss and stand structure 
using Pearson’s correlation coe�  cient.

Table 4: Correlations between the soil loss and stand structure components. We show Peasonn correlation 
coe�  cients and signi� cance level. Number of observations was always 85.

Tabelle 4: Korrelationen zwischen den Komponenten Bodenverlust und Bestandesstruktur. Wir 
zeigen die Pearson Korrelationkoe�  zienten und Signi� kanzniveaus. Die Anzahl der Beoabachtugnen 
betrug immer 85.

4. Discussion

During the process of converting coppice pedunculate oak stand into high forest, 
high intensity of release cutting/tending decreases the plant coverage and canopy 
density. At the same time higher thinning intensity caused to a change in the storied 
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structure and generally single storied structure was dominant where high thinning 
intensity were applied. Obtained results showed that there was a linear correlation 
between thinning intensity and soil erosion. Increasing rate of thinning intensity, 
which a� ected the storied structure as well causes higher soil erosion. Thus, soil ero-
sion was also considered as a variable of determining land use change (Bakker et al. 
2005). In this study the amount of soil loss in the topsoil tend to increase as the cano-
py decreased (Figure 7, Table 4). This e� ect is caused by the increase of the “C” factor. 
So, change of the canopy density can be seen as the main driver for increasing the 
annual soil loss per unit area. Already many studies reported that the “C” factor has 
a signi� cant e� ect on the soil loss (Zhao et al. 2012; Kuok et al. 2013; Karamage et al. 
2016). The energy for moving soil by water under a forest cover is linked to the ener-
gy of falling raindrops. Brandt (1988) stated that the energy change by the multiple 
canopies varied between 0.03 and 0.66 times that of the rainfall. Yücesan et al. (2013) 
found negative correlation between soil loss amount, soil loss tolerance and canopy 
density also for Oriental beech.

The general soil properties of the study area have clay texture. The amount of sand 
and organic matter in the topsoil was found to be higher than the subsoil (Table 2). 
The presence of an impermeable clay layer in the lower soil ensured that the amount 
of clay in this layer was high. This has caused the soil's hydro-physical properties such 
as � eld capacity, wilting point, saturation, AWHC, SHC to behave di� erently in the 
subsoil It has been reported that the hydro-physical properties of the soil are signi-
� cantly a� ected by changing the proportion of soil, particle size density (Luce and 
Black 1999).

Obtained results showed a linear correlation between canopy density and total car-
bon sequestration. Decreasing rate of thinning intensity during the conversion pro-
cess increased the carbon sequestration amount. Zhang et al (2018) stated that forest 
thinning is widely used in forest management activities and has complex e� ects on 
underground carbon processes. It is known that soils represent the most important 
long-term organic carbon (OC) reservoir which mostly based on the organic matter 
(Schimel, 1995; Tarnocai et al. 2009). Carbon stock potential of the soils has an import-
ant e� ect on environmental problems such as climate change (Plante and Conant 
2014). It is also an important parameter in reducing the soil loss (Wei et al. 2007). 
Lee et al. (2018) emphasized both continuing and abandoning coppice management 
caused an increase in the C stocks, but in long-term larger di� erences in the C seques-
tration between continuing and abandoning coppice management should be pos-
sible. The thinning from below intensity (extraction of 30% of basal area at the most) 
applied in the beech coppices to be converted into high forest showed a positive ef-
fect on volume growth rate and diameter increment and led to stands with fewer but 
larger trees (Ciancio et al. 2006). Ciancio et al. (2006) also emphasized that the decrea-
se of stocking did not a� ect height growth of released trees, thus the higher mean 
stem volume was due to the crown enlargement, which allowed a higher diameter 
growth. However, Cañellas et al. (1998 and 2004) and Ducrey (1992) reported di� e-
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rent response of height compared to DBH in thinned oak coppices due to the growth 
of epicormic branches as a consequence of higher light intensity. Though oriental 
beech forms a wide crown, 3 years after heavy thinning canopy density cannot reach 
to high levels (Yücesan et al. 2015). Yet, Pedunculate oak has higher crown growth ab-
ility than oriental beech. When the trees tend to expand the crown closure, the trend 
of stabile growth may decline as the increase in diameter will decrease (Yücesan et al. 
2015). In coppice stands branches and tops can represent 10-30% of the total mass 
(Baldini et al. 2008), and their release into the stand improves dead fuel accumulation 
and increase the risk of the occurrence of wild� res, which represent a serious hazard 
for woodland, infrastructure and people (Marchi et al. 2007).

5. Conclusion

The growth and site conditions are very important for good stand developement. 
Soil and organic matter loss a� ect growth environment negatively. Canopy density 
has positive e� ects on both reduction of soil loss and carbon sequestration. When 
soil loss and total carbon stocks are considered, the stand canopy density should be 
kept at high levels (70-100%) as far as possible during the process of conversion cop-
pice forest into high forest. Tending or release cutting operations at moderate inten-
sity seem better suited for oak coppices during the conversion process. On the other 
hand, the completion of the crown development of the trees at 70-100% canopy den-
sity may also positively a� ect the seed tree features. Increasing quality and quantity 
of seed trees will in turn a� ect the success of natural regeneration and conversion 
process of coppice stands into high forest positively. Yet we require in-situ observati-
ons of soil loss to verify the � ndings of our study.
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