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Highlights
The increasing availability of new, high-
quality geo-referenced environmental
data(bases) is stimulating landscape ge-
nomic studies of terrestrial and aquatic
organisms.

Environmental data (e.g., climate, soil,
and topography) are now available at
multiple spatial and temporal scales
and, together with environmentally and
genetically informed sampling designs,
enable us to capture selection pressures
at high resolution in various organisms.
Detecting the extrinsic selective pressures shaping genomic variation is critical
for a better understanding of adaptation and for forecasting evolutionary
responses of natural populations to changing environmental conditions. With
increasing availability of geo-referenced environmental data, landscape genomics
provides unprecedented insights into how genomic variation and underlying gene
functions affect traits potentially under selection. Yet, the robustness of genotype–
environment associations used in landscape genomics remains tempered due
to various limitations, including the characteristics of environmental data used,
sampling designs employed, and statistical frameworks applied. Here, we argue
that using complementary or new environmental data sources and well-informed
sampling designsmay help improve the detection of selective pressures underlying
patterns of local adaptation in various organisms and environments.
Statistical advances in genotype–
environment association methods now
allow testing the response of population
genomic variation to complex environ-
ments, using nonredundant and infor-
mative environmental predictors.

Our understanding of the environmental
constraints underlying local adaptation
of living organisms has provided insights
into the potential responses of popula-
tions to environmental changes such as
global warming. This understanding is a
key component of well-informed biodi-
versity conservation programmes.
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A growing research field with moderate explanatory power?
The environment, and in particular its spatio-temporal changes, exerts strong selection pressures
on fitness-related phenotypic traits. If these traits are genetically controlled, natural selection leads
to locally adapted populations. Thus, environmental drivers leave a specific signature in the
genomes of species and populations. This enables the inference of local adaptation without
directly measuring fitness traits, but instead determining the effect of environmental factors
(see Glossary) on allele frequencies using landscape genomic methods such as genotype–
environment associations (GEA) [1]. The research field of landscape genomics contributes
to the understanding of the genomic mechanisms underlying local adaptation, while detecting
the environmental factors driving it. Landscape genomic inference can be expanded to assess
the possible maladaptation of populations to environmental change (genomic offset [2,3]).
This knowledge is particularly valuable in the context of human-induced environmental alter-
ations, such as climate or land-use change, and is therefore relevant for nature conservation
and ecosystem management [4,5]. In fact, the concept of genomic offset can inform assisted
gene flow and migration strategies that are now at the heart of conservation programmes to
support climate-threatened populations and strengthen ecosystem resilience [6].

The field of landscape genomics emerged about 15 years ago with the publication of the first
conceptual approach specifically designed for GEA analysis [7]. Thereafter, the advent of next-
generation sequencing techniques and large geo-referenced environmental datasets has
dramatically increased the quality and quantity of both genomic resources and environmental
factors [8]. Consequently, the field of landscape genomics has grown rapidly. According to our
literature survey (n = 278; Figure 1A; see the supplemental information online for methodological
details), more than 50% of all landscape genomic articles published during the survey period
2007–2021 were issued after 2017. A majority of studies initially focused on plants (especially
trees), likely due to their sedentariness. This trend has become more balanced in recent years,
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Glossary
Backward stepwise selection: a
variable selection procedure that starts
with all variables in the first model tested,
then removes one variable at a time and
inspects the improvement of the model
fit.
Cross-validation: a model validation
technique to assess the robustness of
the statistical prediction using a
resampled random subsample of the
dataset.
Environmental database: a digital
infrastructure that collects, synthesises,
and stores geo-referenced
environmental data that can be shared
and reused by a broad community.
Environmental factor: a quantification
of the natural features of the habitat and
climate that are expected to potentially
evoke adaptive response in populations.
Forward stepwise selection: a
variable selection procedure that starts
with a single variable in the first model
tested, then adds one variable at a time
and inspects the improvement of the
model fit.
Genotype–environment association
(GEA): also known as environmental
association analysis, an approach that
seeks associations between
environmental and genetic variation
based on correlative statistical
approaches to identify the molecular
basis of local adaptation and the
environmental variables that drive it.
Genomic offset: a concept to quantify
the difference between the current
genomic composition and the one
required to cope with a change in
environmental conditions in a set of
putatively adaptive loci.
In situmeasurements: an on-site
assessment of environmental conditions
to characterise the local abiotic or biotic
habitat. Site-specific measurements can
be carried out on the ground or from
airborne devices via remote sensing.
Landscape genomics: a research
field that studies the interactions
between adaptive genetic variation and
environmental conditions in natural
populations.
Remote sensing: the acquisition of
environmental characteristics through
capturing specific reflections of radiation
usually emitted from air-borne vehicles
(satellites, planes, drones).
Spatial autocorrelation: a pattern of
spatial covariation in which adjacent
observations have more similar data
values than more distant observations.
resulting in 51% and 47% of all studies (2007–2021) examining plant and animals, respectively
(Figure 1A). Landscape genomics has also expanded to the aquatic world (termed seascape or
riverscape genomics [9,10] as subfields of landscape genomics), among which marine studies
have become particularly frequent in the past 2 years. This development is mirrored by the
three most studied ecosystems [forest (32.7%), marine (13.3%), and agriculture (10.8%);
Figure 1A], which together account for 56.8% of all studies.

A landscape genomic study typically relies on: (i) an appropriate sampling design to incorporate
intraspecific genetic diversity while capturing relevant environmental differences, (ii) geo-referenced
environmental data that accurately describe the putative selective pressures of interest acting on
populations or individuals, (iii) high-quality genome-wide data, and (iv) appropriate statistical tools
to correlate response (genomics, Y) and predictor (environmental, X) variables, while accounting
for confounding effects such as neutral genetic structure [11]. As a result, manifold decisions need
to be made at an early stage of a study (Figure 2). While there are numerous overviews on method-
ological issues and genomic approaches (e.g., [12–14]), there are hitherto no general guidelines on
the use of environmental data in landscape genomics. Here, we fill this gap and review the types and
applications of environmental data in landscape genomics and highlight promising avenues for
better characterising environmental factors capturing selection pressures from complex and hetero-
geneous habitats, with the aim of improving the robustness of landscape genomic outcomes.

Notably, our literature survey revealed that only 36% of all studies reported values of explanatory
power of the presented GEA models. Always taking the best model of each study, the median
explanatory power across all studies resulted in an R2 of 0.38 (n = 93, standard deviation =
0.29) with values ranging from 0.01 to 0.98 and an overall trend towards low R2 values in studies
with small sample sizes (Figure 1B). Although the maximum explanatory power achievable with
such models remains unknown, these values indicate that landscape genomic analyses have
revealed only moderate explanatory power yet. Hence, we argue that better informed decisions,
for example, based on prior knowledge of environmental data (i.e., choice, type, source, and
scale of environmental factors as predictors; Figure 2), should guide the sampling design and
anticipate statistical limitations, which may enhance the confidence in future landscape genomic
studies. To this end, we highlight trends in the literature and present four main avenues that can
be pursued to improve GEA models.

Environmental data as explanatory variables
Researchers have three main data sources to describe the environmental conditions at sampling
locations: in situ measurements, remote sensing, or spatial interpolation (Figure 2), the
latter being clearly the most widely used to date (e.g., WorldClim; [15]). The open access and
user-friendly design of large interpolation-based, geo-referenced environmental databases
have greatly improved the characterisation and exploration of ecological gradients relevant to
identify selective pressures in natural populations. Their convenience is that no additional environ-
mental data has to be collected in the field. The availability of such big data has been facilitated by
initiatives led by international consortia to acquire, model, store, and share environmental data on
a global scale. For example, the World Ocean Database [16], powered by over 20 000 datasets,
centralises a coordinated effort of uniformly curated data for oceanographic, climate, and
environmental research. With such resources, ambitious studies have tackled the genomics of
adaptation over continental-scale areas (e.g., [17]; Figure 1C), leaving sampling effort and the
cost of genomic analyses as the main bottleneck. Nevertheless, further efforts in data acquisition
and interpolation modelling are still needed to better grasp environmental variation, particularly in
poorly sampled areas of freshwater and marine ecosystems. In parallel, highly accurate pocket-
sized devices have been developed to measure biophysical properties at sampling locations,
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Spatial extent: the geographic area
covered by the study design.
Spatial interpolation: a statistical
procedure using geo-referenced
locations with known values to estimate
values at other locations in-between for
a given environmental variable.
Spatial resolution: the size of the grain
or grid cell of a raster map that is used to
describe environmental conditions.
Temporal extent: the time period
covered by observations in an
environmental dataset.
Temporal grain: the frequency of
observations in an environmental
dataset.
allowing in situ measurements with high spatial resolution and temporal grain. These are
powerful tools for studying the local habitats of living organisms, especially for those with short
generation times and strong population dynamics associated with selection pressures. However,
in situ measurements often represent short snapshots of environmental conditions and may
inadequately reflect the long-term selection pressure within an evolutionary timescale.

Nearly 90% of landscape genomic studies focused on abiotic factors as potential selective
pressures, largely neglecting biotic factors that may be of adaptive relevance (Figure 1D; but
see [18,19]). Yet, biotic and abiotic factors often operate on different spatial and temporal scales
and affect different genomic features, thus providing distinct insights into how selective forces
may act in natural populations [20]. For instance, mean ecological indicator values can be derived
from floristic compositions at multiple sampling locations to ascribe not only long-term humidity,
light availability, soil organic matter content, or pH conditions [21], but also biotic interactions.

Of the studies employing abiotic factors, the vast majority (91.4%; Figure 1D) considered climate
factors in GEA analyses, followed by topography (35.3%) and soil (11.5%) factors. This focus
reflects the desire to gain knowledge on genetic patterns and molecular mechanisms of adapta-
tion to local (micro-) climatic conditions and how they may respond to future climate change.
However, recent studies frequently supplemented climate data with other environmental data
(Figure 1D). For instance, Yadav et al. [22] investigated local adaptation of two grasshopper
species endemic to the Australian Alps and found significant GEAs, particularly with long-term
precipitation seasonality, number of frost days, terrain ruggedness, and soil pH conditions. This
study illustrates the benefit of incorporating diverse environmental data conditioned on hypotheses
to assess the multifactorial nature of local adaptation.

While soil plays a key role in the establishment and persistence of many organisms, including
animals, fungi, and plants, few studies have focused on below-ground environmental properties
in GEA analyses because appropriate data were largely missing. Yet, great efforts have been
made to generate comprehensive datasets of interpolated soil descriptors at decent spatial
resolution to complement in situ measurements. For instance, a global prediction of bacterial
diversity has been established to provide the first reference atlas of dominant bacteria on Earth
[23], based on random forest modelling using interpolated soil data at high spatial resolution
(i.e., 250m [24]). Similarly, soil variables were used to explain the global abundance of nematodes
with links to soil fertility and functioning [25]. These chemical and physical soil factors are usually
released with cross-validation scores and uncertainty maps, which help users to perceive the
level of confidence and, thereby, the number of observations that support the target geographical
areas (e.g., https://soilgrids.org). Recently, Lembrechts et al. [26] highlighted the difference
between in situ soil temperature measurements and atmospheric air temperature (up to 10°C
in some areas, mean 3.0 ± 2.1°C) at a global scale, in particular in cold and dry biomes. These
authors advocated the need to collect soil data in yet unsampled geographical areas to improve
the quality and density of environmental data, essential for spatial interpolation. Remote sensing
techniques can also help improve the modelling of soil characteristics over time, such as surface
soil moisture [27].

Spatial and temporal scales to capture selective pressures
Generation time and population dynamics influence the ability to detect patterns of local adapta-
tion (Figure 3A,B). For example, forest tree species are known to have long generation times and
produce large numbers of seeds, resulting in dense seedling layers subjected to strong selection
and intraspecific competition for light and nutrients [28]. Characterising sampling site conditions
at the time of juvenile tree establishment, considered as the period of strongest selection
Trends in Ecology & Evolution, March 2023, Vol. 38, No. 3 263
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Figure 1. The use of environmental data for landscape genomic studies. Results from a literature survey (search period 2007–2021) on the topics listed in the
supplemental information online. (A) Yearly numbers of studies per kingdom. Pie charts indicate the aquatic and terrestrial environments represented and the different
ecosystems involved. (B) Distribution of the Fisher’s z-transformed correlations based on the strongest explanatory power (i.e., R2) and sample sizes reported in landscape
genomic studies. The horizontal grey bars show the 95% confidence intervals. Studies with confidence intervals not overlapping with the 0-line denote a significant effect of
the environment on allele frequencies. Large horizontal confidence intervals relate to small sample sizes. (C) Spatial extent of landscape genomic studies with circle radius
reflecting sample size (i.e., number of individuals). Pie charts summarise the geographical coverage of studies and the types of sampling designs used. (D) Yearly numbers
of environmental data sources used per study. Pie charts indicate categories and types of variables used. (E) Temporal extent (horizontal blue lines) of climate data
used, ranked by sampling year (diamonds). Sampling years that overlap the temporal extent are represented in pink; sampling years that do not fall within the temporal
extent are shown in orange. (F) Sampling density (individuals/sampling locations) grouped according to genetic marker type. All Tukey-HSD pairwise comparisons are

(Figure legend continued at the bottom of the next page.)
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(sometimes more than 100 years ago), helps to capture the adaptation-relevant environmental
variation used in GEA, as shown in Swiss stone pine (Pinus cembra) [29]. This is achieved by
tuning the temporal grain as well as the temporal extent of environmental data to target
the desired time period (Figure 3A). In a study on the breeding range of the yellow warbler
(Setophaga petechia) [5], a migratory bird with a short generation time, the authors found
significant GEAs with local precipitation conditions averaged over 1970–2000, highlighting the
impact of climate-induced selection on the birds’ breeding habitat. Interestingly, based on
the same terrestrial bioclimatological variables (reference period 1970–2000), populations of
the migratory Arctic charr (Salvelinus alpinus) were found to be adapted to their local environmen-
tal conditions irrespective of breeding range and sampling years and with individuals spanning
several age classes (2005–2017) [4]. This time lag between the reference period of environmental
predictors and sampling years (Figure 1E), intentional or not, is of primary importance because
natural selection can vary across years and operate with antagonistic effects on allele
frequencies in natural populations [30]. Hence, we advocate optimising the match between the
temporal scales of the environmental data and the selection periods to ensure that they optimally
reflect the anticipated evolutionary responses to which the sampled individuals have been
exposed.

With numerous geo-referenced environmental databases and knowledge of a species’ life history
at hand, it is possible to explore and test new adaptation-focused hypotheses by going beyond
the often-chosen strategy of using conveniently available factors such as those related to
bioclimatology or geography. Although there is probably no single data source that meets all
needs in terms of spatial and temporal extent and grain, a set of complementary datasets can
be used to capture environmental heterogeneity in space and time (Figure 3). For instance,
when studying selection based on long-term climatic means versus minimum/maximum values
or extreme climate events, the gradual change in average climate conditions (e.g., sum of annual
precipitation for 1970–2010) could be teamed with hourly or daily data (e.g., precipitation during
the growing season 2018) to assess local and singular pulses that are strong enough to induce
rapid evolution within populations. In addition, as the temporal grain size commonly increases
going back in time due to the diminishing number of observations, a trade-off has to be made
between incorporating environmental conditions in the early life stages of long-lived organisms
and the accuracy of the predictors tested in GEA. This appears to be particularly challenging
for extreme events such as droughts, although there has recently been substantial improvement
combining multiple independent datasets (e.g., [31]). At what spatial scale selection operates
seems an impractical question, as selection acts on phenotypes of single individuals and there-
fore has no explicit spatial scale. Instead, when planning a landscape genomic study, the focus
should be on the spatial scale at which local adaptation is detectable for certain taxonomic
groups and life histories, which is intimately linked to sampling strategies and the match between
genetic and environmental data outlined in the next section.

Matching sampling designs for genetic and environmental data
There is growing awareness of applying environmentally and genetically informed sampling
designs [12]. Sampling for landscape genomic studies generally follows one of the following
three strategies: (i) uninformed, (ii) environment-informed, (iii) and environment- and genetics-
non-significant. (G) Yearly numbers of studies by genetic marker type. Pie charts represent the taxonomic breadth of the studies and the types of sequencing
approach. (H) Yearly numbers of studies per genotype–environment association (GEA) model. Pie charts indicate the proportion of studies using machine learning
(ML) approaches and predictive assessment (genomic offset) under future environmental conditions. (I) Yearly numbers and proportion of studies using variable
reduction and selection to minimise the number of environmental factors as explanatory variables; correlation (Cor.), ordination (Ord.), and variance inflation factor
(VIF). Pie charts show the variable selection approaches used and the proportion of studies applying one or more variable reduction steps.
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informed designs (Box 1), using, or not, a priori knowledge of environmental and/or genetic
variation. While the alternatives within the sampling strategy (i) do not rely on environmental or
genetic data, regular, scattered, or transect sampling designs are often used (67.6% of the
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Figure 3. Illustration of spatial and temporal scales with key concepts, organisms’ characteristics, and available environmental data. (A) Description of
spatial and temporal scales used in landscape genomics, characterised by extent and grain. (B) Spatial and temporal characteristics of exemplary organisms’ life
history (annual plant, short-lived migratory bird, mid-lived fish, long-lived tree) that are affected by selection pressures. Green lines for each organism symbolise the
spatial extent (occurrence, dispersal/migration) and life span, respectively. (C) Examples of environmental data based on different spatial and temporal scales (length of
white horizontal bar) and resolution (density of cell subdivision within the bar) according to available data sources: Abbreviations: CRU, Climate Research Unit; PRISM,
Parameter-elevation Regressions on Independent Slopes Model; SRTM, Shuttle Radar Topography Mission; SwissAlti3D, Swiss digital elevation model; SoilGrids,
Global Gridded Soil Information.
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studies surveyed; Figure 1C) as they are assumed to adequately capture both genetic diversity
and environmental heterogeneity (see Figure IA in Box 1). In contrast, strategy (ii) incorporates
knowledge from environmental data beforehand to establish a sampling design. Considering
paired populations (e.g., wet/dry or low/high elevation) or sampling along known ecological
gradient(s) strives for maximising environmental variation covered by sampling locations, while
keeping a good representation of a species’ distribution range (23.7%; Figures 1C and see
Figure IB in Box 1). However, ecological gradients can be correlated with patterns of demo-
graphic history (e.g., [32]; see later), a phenomenon that should be accounted for in sampling
and downstream data analysis. In addition, although sampling of multiple paired populations is
known to have high statistical power while limiting false positive associations [11], it is rarely
implemented in the field (3.4%, but see [33]; Figure 1C), likely due to the limited knowledge of
sites with a similar environmental contrast. Yet, such simulation-supported sampling greatly
mitigates the putative confounding effect of demographic history by selecting closely related
populations growing in consistently contrasting environments [11]. Another drawback is that
many of the available environmental factors (e.g., climate data) do not have the spatial resolution
to capture the environmental contrast between closely situated locations. Finally, the most in-
formed sampling strategy (iii) takes benefit of environmental data and available genetic information
to set up a suitable sampling strategy (see Figure IC in Box 1). Thus, the sampling design is
optimised by incorporating both environmental variation (e.g., climatic zones) and genetic varia-
tion (e.g., genetic clusters, evolutionary lineages), usually resulting in stratified sampling for both
Trends in Ecology & Evolution, March 2023, Vol. 38, No. 3 267
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Box 1. Sampling designs used in landscape genomic studies

Landscape genomic studies are generally conducted using one of the following six sampling designs, which may or may not incorporate prior knowledge of environ-
mental and/or genetic variation from populations studied (Figure I). Definitions of these main sampling designs considered in this review, with their possible variants
and examples, are next.

Uninformed design

Regular: sampling individuals or populations according to a regular grid.
Scattered: sampling individuals or populations in an unstructured way (e.g., randomly or depending on available sampling locations).
Transect: sampling individuals or populations along regular and linear Euclidian distances (e.g., every 20 km along a geographical axis).

Environment-informed

Paired: sampling individuals in paired populations with contrasting environmental conditions (e.g., cold and warm habitats). This is a special case of categorical sampling
and pairs are usually replicated several times.
Gradient: sampling individuals or populations along an environmental gradient (e.g., elevation/latitude, atmospheric temperature, soil pH conditions).

Environment- and genetics-informed

Stratified: sampling evenly (often randomly) within clearly defined subsets of individuals or populations (strata; i.e., an equivalent number of samples per environmental
cluster and genetic group). Stratification can also be conducted with environmental or genetic information only (e.g., with even numbers of populations from biogeo-
graphical regions or a fair representation of previously characterised genetic lineages).

GradientPaired

TransectScattered

Stratified

N

Regular(A)

(B) (C)

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Illustration of main sampling strategies used in landscape genomic studies. Three main strategies summarise the different levels of prior knowledge
used in the sampling designs, all of which require occurrence data in the complete or partial species range. The background map symbolises topography with dark and
light brown colours for high and low elevations as environmental variable, respectively. Green boundary represents the species’ (regional) range limit. (A) The sampling
strategy relies on neither environmental nor genetic data. Regular, scattered, or transect sampling approaches are commonly used, as they are assumed to adequately
capture both genetic and environmental variation based on the geographical distribution of sampling locations. (B) Environmental data, but no genetic information, is
considered. Sampling in closely situated populations experiencing contrasting habitat conditions or along environmental gradients maximise environmental variation
covered by sampling locations, while keeping a good representation of a species’ distribution range. Finally, (C) takes advantage of environmental data and available
genetic information to set up a sampling strategy. The sampling design is optimised by stratifying both environmental variation (e.g., climatic zones) and genetic diversity
(e.g., genetic clusters, evolutionary lineages). Circles represent sampling locations, with shadings referring to a priori known neutral genetic differences.
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components (see Figure IC in Box 1), with a balanced representation of individuals sharing the
same demographic background. In conclusion, we anticipate that choosing a well-informed
sampling design such as strategy (iii) may contribute to increased robustness of GEA outcomes.

Sample size per study varied over several orders of magnitude, ranging from 1 to 1193 locations
and from only 10 to as many as 17 300 individuals in total, with a median value of 267 individuals
falling within the 200–400 units recommended by simulations [12]. Not surprisingly, the number
of locations and the spatial extent of a study (longitudinal extent × latitudinal extent) showed a
significant positive correlation (Pearson’s r = 0.383; P < 0.001; Figure 1C), but not the number
of individuals and spatial extent (r = 0.083, P = 0.222). Sampling density (i.e., number of
individuals/locations) was similar across most types of genetic markers, with a median of
less than 20 individuals (Figure 1F).

About two-thirds of the reviewed studies were conducted regionally (64.4%; mean latitudinal
extent = 488 km; mean longitudinal extent = 537 km) and only 31.3% and 4.3% of the studies
were conducted at the continental or even global (i.e., more than two continents) scale, respec-
tively. Pooled sequencing (DNAs of individuals usually pooled at the population level), which
allows to increase the number of individuals sequenced while keeping costs affordable, has rarely
been employed (6.4% of studies; Figure 1G). To date, genotyping by sequencing has been the
most often used technique to generate genetic markers for GEA (48.2%), followed by targeted
SNP genotyping and targeted sequencing in 18.7% and 12.6% of the studies, respectively
(Figure 1G). Whole-genome sequencing was employed only in 9.0% of the studies, suggesting
that further efforts are required to generate genome-wide resources for non-model organisms
and further reduce sequencing costs per base.

Statistical considerations in association models
There are multifaceted benefits and drawbacks of the statistical models mostly used to test
genomic responses to environmental factors (Box 2), and the models’ robustness may be
improved by optimally incorporating adaptation-relevant environmental variation and accounting
for neutral genetic structure. A notable change in the practice of landscape genomics over time
is that researchers model the multivariate genetic response to capture the polygenic nature of
local adaptation. For example, redundancy analysis (RDA; Figure 1H) [34] is a multivariate
model (for Y and X) that identifies covarying allele frequencies associated with several environ-
mental factors (Box 2). Such a model is particularly appropriate in the usual case of polygenic
responses occurring in complex environments [35]. Another recent advance in GEA is the use
of machine learning approaches (i.e., Gradient Forest) to account for the nonlinear genomic
responses to environmental predictors [36,37], while testing for a set of environmental predictors
in a single model (see Table I in Box 2).

An important requirement for GEA analysis is to remove the confounding effect of demographic
history, as the genetic signature is expected to be different between neutral loci and those
under selection. However, neutral evolutionary processes can mimic patterns of local adaptation
in the genome (e.g., when allele frequencies resulting from range shifts coincide with ecological
gradients of adaptive relevance) [32]. Earlier GEA studies relied on spatial autocorrelation to
account for population demography and limit false-discovery rate [38]. For instance, the spatial
locations of samples were transformed with Moran’s eigenvector maps and then used as
additional explanatory variables to the environmental predictors in statistical analysis [39].
However, with the development of large genomic datasets (Figure 1F), we recommend incorpo-
rating neutral genetic structure directly as a covariate in statistical models, for example, using
the residuals after linear regression on overall structure (partial RDA [40]) or as random factors
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Different statistical frameworks are used to investigate associations between genetic and environmental variation while accounting for the confounding effect of
population demography based on neutral genetic structure (Table I). The response variable Y refers to genetic variation assessed at the individual or population level,
either as individual genotypes or translated into allele frequencies. The predictor variable X denotes environmental variation using original or composite variable(s)
(Figure 2 and Table I).

Univariate (Y) models

Linear model: the response variable (Y, allele frequency) is linearly associated to the environmental predictor (X). Confounding factors can be added as predictors
(e.g., neutral genetic structure).

Generalized linear model: logistic regression (allele frequency) or Poisson regression (allele or genotype counts) are based on a linear association between the logit or the
log of Y and environmental factors, respectively. Confounding factors can be added as predictors (e.g., neutral genetic structure).

Mixed effect model: an extension of linear models to allow for both fixed and random effects. Here, fixed effects are environmental factors and random effects denote, for
example, genetic distances or latent factors, as in latent factor mixed model (LFMM) [49]. The non-independence of the random effects and response variable calls for
randomisation tests.

Bayesian hierarchical model: this Bayesian method (i) calculates the posterior distribution (null model) from the empirical allele frequencies, and (ii) tests the regression
between population allele frequencies and environmental factors against the null model. Two main implementations for GEA have been developed so far, Bayenv2 [42]
and BayPass2 [50], both of which control for population genetic structure using a covariance matrix.

F-model: assumes that all populations share a common pool of migrants, while their effective size and migration rate are population-specific. Population structure
at each locus is described by local FST estimates, which measure genetic differentiation between each local population and the migrant pool [51]. The effect of
environmental differentiation on each locus can then be tested with a local adaptation model, as implemented in BayeScEnv [52].

Gradient forest: an extension of the random forest machine learning approach that models the nonlinear change of allele frequency at each locus along an environmental
gradient. The gradient forest algorithm assesses allele-specific turnover functions that identifymajor tipping point environmental conditions [53]. In its current implementation,
this approach has no explicit factor accounting for neutral population structure.

Multivariate (Y) models

Redundancy analysis (RDA): a constrained ordination that models linear relationships between genetic variation and environmental factors, from which associations are
interpreted in a principal component analysis (PCA). To include neutral population structure or any other confounding factor, partial RDA (pRDA [54]) should be applied
(Table I). Note that incorporating the population genetic structure may inhibit the detection of loci under selection [54].

Table I. Overview of the most commonly used statistical methods for testing the genetic response to environmental factors

Genetic response (Y) Environmental predictor (X) Statistical method Neutral genetic structure Implementationa Refs

Univariate Univariate F-model ß BayeScEnv [52]

Bayesian hierarchical model Covariance matrix Bayenv2b [42,55]

BayPass2b [41,50]

Multivariatec Logistic regression modeld Principal component(s) Samßadae [56,57]

Latent factor mixed model Latent (random) factors(s) LEA3e [43,49,58]

Gradient Forest Not yet implemented GradientForeste [37]

Multivariate Multivariatec Redundancy analysis Principal component(s) Vegane [40,54,59]

aSoftware or R packages are mentioned under the implementation column.
bImplementations that can specifically account for pooled data and correct for pool size.
cNonlinearity can be added in models by adding polynomial factors (e.g., quadratic terms).
dSuitable GEA model for haploid data.
eR packages.
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characterised by a covariance matrix (Bayenv2 and BayPass2 [41,42]; Box 2) or latent
factor(s) (LEA3 [43]; Box 2). These covariates are best assessed with a set of independent
neutral loci or with the full genomic dataset available that presumably captures the overall
population structure, reducing false-positives under various demographic scenarios [11].
Ideally, a panel of unlinked neutral SNPs should be targeted from genomic sites in noncoding
regions [44].
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Outstanding questions
What are the main environmental
drivers of genetic adaptation and
at which spatial and temporal scales
can we detect them? What is the
contribution of long- and short-term
(e.g., extreme events) environmental
changes that leave discernible signa-
tures in the genome? Shall we put
more emphasis on extreme events
such as heat waves, floods, or
droughts to capture selective pres-
sures underlying rapid evolutionary
processes? New developments in re-
mote sensing techniques and machine
learning might enable such detailed
environmental characterisation and
the detection of patterns for landscape
genomic analyses.

How can spatially heterogeneous soil
characteristics best describe selective
pressures at small spatial scale? How
do chemical and physical soil properties
and communities of soil microbiota
impact individuals and populations of
above- and below-ground terrestrial
organisms? In particular, soil nutrient
content, soil temperature, and water
availability should exert strong selec-
tion on natural populations.

To what extent do biotic factors drive
patterns of local adaptation in terrestrial
and aquatic organisms? A possible ave-
nue for organisms depending on soil as
a substrate would be to describe bacte-
rial and fungal communities and include
their characteristics as explanatory
factors. Which composite community
predictors should be selected for GEA
analysis? Possible options are abun-
dance data, derived ecological indica-
tors such as competition or vegetation
indices, or diversity measures. More-
over, how common is co-adaptation be-
tween symbiotic partners and under
which environmental conditions does it
take place?

How can we use knowledge of adaptive
genomic variation for conservation
purposes? Are existing environmental
factors accurate enough to support
conservation decisions? Genomic
offset analyses based on well-justified
environmental factors represent an inter-
esting tool for conservation measures,
but need additional validation and have
to be combined with complementary
observations such as demographic
trends.
Considering several environmental predictors of adaptive genomic response in multiple regres-
sion models is likely to increase the robustness of landscape genomic analyses [45]. However,
the presence of many environmental factors as predictors in classical models (e.g., regression,
RDA) requires a preliminary reduction of the predictors to avoid collinearity among them, which
can lead to unstable model fit and biased interpretation of results (e.g., regression coefficients
or predictor significance) [46]. This reduction step can be based on various principles, for
example, pairwise correlation, variation inflation factor, or principal component analysis (PCA;
Figure 1I). Excluding correlated factors may require additional information, such as expert
knowledge of putatively selective predictors or species information to retain the most relevant
factor(s). Although PCA is enticing, its first synthetic orthogonal axes (i.e., principal compo-
nents, PCs) of environmental factors may not necessarily represent the ecological drivers of
divergent selection, nor may they adequately capture complex environments, as the PCs
may be dominated by factors that exhibit the greatest variation and covary the most. When
possible, we recommend using a reduced set of uncorrelated environmental factors in GEA
or to consider advanced forms of regression models based on regularization procedures that
have shown to be robust to multicollinearity [3].

Although rarely used according to our literature review (14.0%; Figure 1I), if the chosen analytical
framework allows, variable selection should be an important step to inform on the explanatory
power of predictors. Variable selection uses backward stepwise selection or forward
stepwise selection of environmental factors to retain the most informative and largely
independent predictors in a model, thus avoiding model overfitting. The choice of the best
model, and thus of the variables retained, is usually based on Akaike’s information criterion,
the Bayesian information criterion, or adjusted R2. However, stepwise regression procedures
in landscape genomics suffer from omitting cross-validation using an independent dataset to
assess possible biases in parameter estimation [47] when moving from explanatory to predictive
applications (but see [48]).

Concluding remarks: perspectives in landscape genomic research
We emphasise here a few aspects in which increasingly available environmental data will play
a key role in the future: (i) recent and future changes in selective pressure as a consequence
of direct human activity, (ii) soil factors as integrative descriptors of local site conditions, and
(iii) effects of climate change on selection processes relevant for biodiversity conservation.

Across the globe, human settlements are growing in area and density, evoking formerly unknown
local selection pressures (e.g., microclimate, artificial habitat, disturbance [60]). Likewise, agricul-
ture and fisheries are expanding in space and increasing in intensity of use [61,62]. Under such
conditions, organisms are deemed to migrate to the remaining, less affected habitats, or to
adapt rapidly (see Outstanding questions). High-resolution environmental data for urban areas
are assessed owing to our interest in microclimatic effects of buildings and streets on human
well-being [63]. In turn, agricultural practice increasingly relies on digital data (e.g., for pest control
and optimised nutrient and water supply) [64]. Using automatic identification systemmessages, it
is now possible to track industrial fishing vessels [65]. Hence, these big data on urban, agricul-
tural, or commercial fishing pressures allow researchers to study rapid evolution under recent
environmental changes. Such studies could focus on paired comparisons (e.g., [66]), either in
space (urban vs. rural, intensive vs. extensive agriculture, outside vs. inside marine reserves) or
in time (before vs. after urbanisation or agricultural/fishery intensification). However, these recent
andmarked environmental changesmay represent unstable conditions in a way that compromises
the detection of evolutionary responses using GEA, and concern only organisms with a short-term
genomic response. Nevertheless, landscape genomics may benefit from the increased interest in
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anthropogenically altered environments and provide genetic-informed contributions to evaluating
the fate of species inhabiting these environments.

Clearly, the set of environmental factors considered in GEA should be broadened in future studies
to capture as many of the selective pressures as possible, but still in relation to plausible adapta-
tion mechanisms for a given species. A trade-off has to be found between environmental factors
chosen on the basis of hypotheses (expert opinion) and those derived from a human-free mind-
set (all possible factors), with the risk of missing important variables having the strongest
association(s) with genetic variation in the former case. Besides biotic factors that have hitherto
been largely ignored (see Outstanding questions), abiotic factors have commonly been restricted
to climate and topography. Particularly for plants and underground-dwelling species, soil
properties represent an under-explored dimension of the environment. Physical, chemical, and
biotic soil properties impose prominent selective pressures on individuals, populations, and
communities. While heavy metal or salt tolerance has been widely studied in relation to plant
[67–69] and fungi [70,71] adaptation, many other aspects still await consideration. Among
these are acidification (whichmay indirectly affect toxic ion concentrations in soils), soil compaction
(change in aeration), soil water content (drought stress related to precipitation, evapo-transpiration,
and terrain), and biotic activity (micro- and macro-organisms). We see great prospects for
interpolated soil factors or, even better, measured in situ, to complement the topo-climatic factors
hitherto favoured.

In nature conservation, it is commonly advocated to optimise ecological similarity between source
and target habitats in translocation efforts [6]. With increased robustness of landscape genomic
approaches, we see vast opportunities for deepening our understanding of how particular geno-
types may respond to a given environment in their present or new location (e.g., climate change),
both now and under predicted conditions in the future [3]. Incorporating more accurate and
species-specific comprehensive environmental datasets will allow us to better grasp polygenic
responses and, hence, improve our knowledge of selective pressures to support conservation
decisions. As such, biodiversity conservation at the intraspecific level will specifically address
the adaptive fraction of genetic diversity, a key topic for conservation practitioners [72].
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