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Chapter 7
Modelling Future Growth of Mountain 
Forests Under Changing Environments
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Abstract Models to predict the effects of different silvicultural treatments on future 
forest development are the best available tools to demonstrate and test possible 
climate-smart pathways of mountain forestry. This chapter reviews the state of the 
art in modelling approaches to predict the future growth of European mountain 
forests under changing environmental and management conditions. Growth models, 
both mechanistic and empirical, which are currently available to predict forest 
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growth are reviewed. The chapter also discusses the potential of integrating the 
effects of genetic origin, species mixture and new silvicultural prescriptions on 
biomass production into the growth models. The potential of growth simulations to 
quantify indicators of climate-smart forestry (CSF) is evaluated as well. We conclude 
that available forest growth models largely differ from each other in many ways, and 
so they provide a large range of future growth estimates. However, the fast 
development of computing capacity allows and will allow a wide range of growth 
simulations and multi-model averaging to produce robust estimates. Still, great 
attention is required to evaluate the performance of the models. Remote sensing 
measurements will allow the use of growth models across ecological gradients.
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Acronyms

CSF Climate-smart forestry
C Carbon
CO2 Carbon dioxide
GHG Greenhouse gas
GCM Global climate model
RCM Regional climate models
IPCC Intergovernmental Panel on Climate Change
SRES Special Report on Emissions Scenarios
RCP Representative Concentration Pathway
AR5 Fifth Assessment Report
YM Yield model
EM Empirical model
PM Mechanistic models
ES Growth simulator
SES Hybrid (semi-empirical) model
SFM Sustainable forest management
TRW Tree-ring width
VS Vaganov-Shashkin
LDM Landscape dynamics or forest landscape model
NFI National forest inventory
EFDM European Forest Dynamics Model
EFISCEN European Forest Information Scenario model
ICP Forests International Co-operative Programme on Assessment and Monitoring 

of Air Pollution Effects on Forests
EC Eddy covariance
NEP Net ecosystem productivity
MODIS Moderate Resolution Imaging Spectroradiometer
GPP Gross primary productivity
NPP Net primary productivity
LUE Light-use efficiency
APAR Absorbed photosynthetically active radiation
NDVI Normalised difference vegetation index
PAR Photosynthetically active radiation
ER Ecosystem respiration
LiDAR Light detection and ranging
SAR Synthetic aperture radar
EVI Enhanced vegetation index
NDWI Normalized difference water index
WDRVI Wide dynamic range vegetation index
PI Phenology index
LAI Leaf area index
DA Data assimilation

7 Modelling Future Growth of Mountain Forests Under Changing Environments



226

ALS Airborne laser scanning
TRW Tree ring width
ITRDB International Tree-Ring Data Bank
NCEI National Centers for Environmental Information

7.1  Introduction

Globally, the forest sector plays a crucial role in climate change mitigation because 
forests store a significant amount of carbon (C) and absorb around 30% of the 
annual anthropogenic global carbon dioxide (CO2) emission. For example, Pan 
et al. (2011) estimated a total forest sink of 2.4 ± 0.4 petagrams of C per year (Pg C 
year−1) globally from 1990 until 2007. However, in the same study, the authors esti-
mated a C source of 1.3 ± 0.7 Pg C year−1 due to land-use change in the tropical 
forests.

Climate change imposes direct effects on forest ecosystems through increasing 
the concentration of atmospheric CO2 or change in temperature and precipitation 
(Keenan et al. 2013). Individual organisms living in forest ecosystems respond to 
climate change in different ways. If their adaptation to new environmental condi-
tions is successful, forest ecosystems continue to provide ecosystem services spe-
cific to the type of forest ecosystem, and, by storing C, they can significantly aid in 
mitigating the impacts of climate change too (Fig. 7.1). However, signs of C satura-
tion in European (Nabuurs et  al. 2013) and tropical (Hubau et  al. 2020) forests 
indicate that forests cannot infinitely absorb CO2. Moreover, trees can adapt to new 
conditions by reducing their biomass production, which may, in turn, lessen the 
mitigation effect (Sperry et al. 2019).

Forestry actions that lead to a reduction in greenhouse gas (GHG) emissions and 
maximise carbon sequestration are considered climate-smart (Nabuurs et al. 2018; 
Yousefpour et  al. 2018). The recently developed comprehensive definition of 
climate- smart forestry suggests that it should enable forest practitioners to 

Greenhouse gas concentra�on

Climate change

Impacts

Responses

Adapta�on Mi�ga�on

Human ac�vi�es

Fig. 7.1 Scheme describing the links between climate change and forests and the role of forests in 
mitigation of climate change impacts
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transform management targets, allowing forests to adapt to and mitigate climate-
induced changes while delivering other services to the society (Bowditch et al. 2020).

Mountain forests (for a definition see, e.g., Kapos et al. 2000), are particularly 
affected by environmental changes, because they are energy and temperature lim-
ited, and potentially exposed to warming-induced drought stress (Albrich et  al. 
2020). In addition, mountain forests are further exposed to and affected by large- 
scale wind disturbances, frequently followed by outbreaks of pests and fungal dis-
eases (Seidl et  al. 2014). Therefore, forest policy decision-makers and forest 
managers need to be advised by science about the potential and vulnerability of 
different tree species under predicted climate change.

Predictions by growth models are the best available source of information to 
optimise forest management and to assess the potential adaptation of the forests to 
climate change and the mitigation of climate change by the forests. Forest growth 
models have the potential to test many different variants of forest management, 
including various species compositions and silvicultural systems, from stand to 
regional or landscape levels (Fontes et al. 2010; Kramer et al. 2010; Mergani  et al. 
2020). Example applications of growth models include prediction of future yields, 
exploration of silvicultural options, preparing resource forecasts, providing insights 
into stand dynamics, etc. Growth models are generally classified into (i) empirical 
and (ii) process-based (also known as mechanistic) models. Empirical models are 
based on empirical equations (regression functions) describing particular relation-
ships without knowing the causal mechanism of the complex system (Fontes et al. 
2010; Mäkelä et al. 2012). In contrast, process-based models are based on a theo-
retical understanding of relevant ecological processes.

Currently, not all available models can test different management variants rele-
vant for ecosystem management and ecopolitical decisions. In the following sec-
tions, we review the potential of various models to test the effects of climate change 
on the growth (the difference in standing volume between the beginning and end of 
a specified period of time) and productivity (the potential amount of wood produced 
by the forest within a specified time period, usually rotation period) of mountain 
forests and their potential to continue to be or become climate-smart.

7.2  Prediction of Future Climate Conditions

To obtain consistent predictions of future tree and forest growth, reliable past cli-
mate data as well as predictions of future climate in specific spatial and temporal 
resolutions must be provided as input into growth models and simulators. To 
obtain past climate data, spatially interpolated databases at varying spatial and 
temporal resolutions have been developed (Harris et  al. 2014; Moreno and 
Hasenauer 2016; Cornes et al. 2018). The continental and global databases of past 
climate data are often the products of spatial interpolation of instrumental time 
series from climate stations. Therefore, the precision of the interpolated data 
depends on the density of climate station data provided by individual countries. In 
the following section, we briefly review the existing approaches to model and pre-
dict climate conditions.

7 Modelling Future Growth of Mountain Forests Under Changing Environments
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7.2.1  Climate Models

Climate models are numerical representations of the Earth’s climate system based 
on global patterns of physical processes, including chemical and biological compo-
nents of the climate system, simulating the transfer of energy and materials through 
the system. Currently, there are a variety of models available from simple, simulat-
ing only a certain process in the atmosphere, to complex, simulating many pro-
cesses of the climate system.

Global climate models (GCMs) are general circulation models, which were 
developed on general principles of fluid dynamics and thermodynamics (Stute et al. 
2001). A crucial limitation of global models for their use in ecological modelling is 
the coarse spatial resolution. Therefore, regional climate models (RCMs) were 
developed by downscaling GCMs to the region of interest. The more recently devel-
oped RCMs have provided a tool to characterise past and future climates at various 
spatial scales (Rummukainen 2010).

7.2.2  Climate Change Scenarios

The intensifying greenhouse effect leads to global warming and to change in other 
climate characteristics on the Earth. The most serious consequences are changes in 
general atmospheric circulation, shifting in frontal and climate zones and the high 
speed of climate change, exceeding all previous climate changes at least tenfold. 
This is what scientists have learned from the mathematical modelling of the Earth 
climate system, where critical physical and chemical processes in the atmosphere 
and the oceans and physical processes associated with the cryosphere, biosphere 
and lithosphere were considered (IPCC 2014).

In 2000, the Intergovernmental Panel on Climate Change (IPCC) issued its 
Special Report on Emissions Scenarios (SRES) and introduced four scenario fami-
lies to describe a range of possible future climate conditions. Each scenario (A1, 
A2, B1 and B2) was based on a complex relationship between the socioeconomic 
forces driving greenhouse gases and aerosol emissions (Nakicenovic et al. 2000). 
The SRES scenarios have been in use for more than a decade.

In 2009, a new set of scenarios was developed based on the concentration of 
greenhouse gases in the atmosphere in 2100 (Moss et al. 2010). These scenarios are 
known as Representative Concentration Pathways (RCPs). Each RCP indicates the 
amount of radiative forcing, expressed in watts per square metre, that would result 
from greenhouse gases in the atmosphere in 2100. These four RCPs were used for 
climate modelling in the IPCC Fifth Assessment Report (AR5) (IPCC 2014): 
RCP2.6 with radiative forcing peaking at approximately 3  W  m−2, RCP4.5 at 
4.5 W m−2, RCP6.0 at 6 W m−2 and RCP8.5 peaking at 8.5 W m−2, being the most 
pessimistic scenario at the time.

M. Bosela et al.
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As in the case of SRES, the GCM/RCM is used to derive data under different 
RCP scenarios (Jacob et al. 2014). The simulations from the climate models are 
then used as input to growth models, in some cases with a preceding statistical 
downscaling to account for topographic effects at a scale below 10 km and to match 
the grain size of forest models (Temperli et al. 2012; Seidl et al. 2019).

7.3  Simulating Future Forest Growth in the Context of CSF

Forest growth models are used to predict the development of trees, stands and forest 
ecosystems in the near or distant future, under various scenarios. Forest modelling 
science has developed from simple empirical yield models (YM), based on either 
single-time inventories or repeated empirical measurements and regression equa-
tions, to more complex empirical models (EM) and dendroclimatic models (DM) 
and to mechanistic models (PM), which describe physiological mechanisms and 
processes to predict forest growth. More complex empirical growth simulators (ES) 
and hybrid (semi-empirical) models (SES), which combine empirical regression 
equations with physiological processes, are better placed to be used to simulate 
future forest development than the simple YM and EM, because they often directly 
include growth sensitivity to climate. A range of growth models available include 
whole landscape or biome models, stand models, diameter distribution and size 
class models and individual-tree models (Burkhart and Tomé 2012a). The 
classification of forest growth models was presented in many studies (Porté and 
Bartelink 2002; Mäkelä et al. 2012; Fabrika and Pretzsch 2013; Fabrika et al. 2019). 
Growth models can be classified according to their ability to account for inter- and 
intraspecific competition and according to the sensitivity of simulated tree/stand 
growth to climate variation (Fig.  7.2). Tree-level (individual tree or gap/patch) 
ecophysiological models (the rightmost dark green box in Fig. 7.2) are believed to 
be most suited for simulations of forest development, because they combine causal 
effects of climate change and inter- and intraspecific competition (Rötzer et  al. 
2010; Seidl et al. 2012).

Simulations of forest development with forest growth models require input 
data, according to the spatial scale for which the prediction of future forest devel-
opment is required (Fig.  7.3). Input data sources are reviewed in Sect. 7.4 in 
more detail.

Until recently, forest growth models (mainly ES) were used to predict biomass 
production and to test the effects of different management approaches and cli-
mate change scenarios. However, increasing requirements for a variety of ecosys-
tem services as well as for sustainable forest management have raised the demands 
on models to expand the spectrum of outputs (Mäkelä et  al. 2012; Temperli 
et al. 2020).

To allow assessment of CSF with modelling approaches, forest growth models 
must be able to simulate forest stand development under varying forest management 
alternatives (e.g. different silvicultural treatments) and policy strategies (e.g. 
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emission scenarios). Models should be able to simulate direct and indirect effects of 
different silvicultural treatments not only on tree growth rates (representing their 
potential to store carbon) but also on wood quality (the potential of timber to be 
used for substitution of carbon-intensive materials or fossil fuels) (e.g. Mäkelä 
et al. 2010).

Bowditch et al. (2020) selected a set of CSF indicators, by combining the pan- 
European indicators for sustainable forest management (SFM) (FOREST EUROPE 

• Stand
• Region
• Landscape
• Na�onal

Indicators

Forest growth models

and simulators

Predic�ng
• Stand
• Region
• Landscape
• Na�onal

Advising

Climate:
• Past climate
• Future climate

scenarios

Forest data:
• Site specifica�on
• Management
• Inventory

Fig. 7.3 Scheme of the process of predicting future growth and development of forest ecosystems 
and advising at different spatial scales

Growth predic�ons to assess future
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Yield tables
(computer so�ware not
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- Schwappach 1902

- Assmann and Franz 1963
- Halaj et al. 1987

Empirical models
(distance independent)

- PROGNAUS
- TreeGrOSS

- Dendroecological
models

Empirical models
(distance dependent)

- SILVA
- SIBYLA

- Empirical gap models
(ForClim, 4C)

Process-based
models

(distance independent)
- Biome-BGC

- 3-PG

- Sta�c empirical
equa�ons

- climate sensi�vity
- Inter- and intra-

specific compe��on

- Sta�c empirical
equa�ons

- climate sensi�vity
- Inter- and intra-specific
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- Sta�c empirical equa�ons
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based on empirical data
+ Inter- and intra-specific
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+ physiological processes
+ climate sensi�vity
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Process-based
models

(distance dependent)
- BALANCE

- Gap models (PICUS, 
ForClim)
- iLand

+ physiological
processes
+ climate sensi�vity
+ Inter- and intra-

specific compe��on

Fig. 7.2 Classification of forest growth models in the context of climate-smart forestry with some 
examples of existing models or groups of models for each class (in bold black letters). The brown 
arrow denotes increasing details on ecosystem processes implemented in models
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2015) with the ecosystem services defined by the European Environment Agency in 
the Common International Classification of Ecosystem Services (Haines-Young and 
Potschin 2018), to assess if the applied CSF practices are on track to meet the goals 
of forest adaptation and mitigation to climate change. Annex 7.1 resumes the ability 
of example growth models to address the indicators of CSF based on Bowditch et al. 
(2020). The models listed in the table represent individual groups following the 
classification provided above (Fig. 7.3).

7.3.1  Empirical Growth Models

Empirical models use correlation relationships translated into a set of regression 
equations to simulate tree and/or stand growth. Empirical models include YM, 
DM and ES.

7.3.1.1  Yield Models

YMs, experiencing more than 250 years of history, are the oldest models in forestry 
science and practice. They “predict” forest development over the rotation period or 
longer and are usually based on long-term monitoring or permanent research plots. 
They are based on regression functions derived from the empirical  data and are 
often presented in the form of handy yield tables (which summarises expected yield 
tabulated by measurable stand characteristics, such as age, site index and stand den-
sity) to enable their use in forestry practice. Pretzsch (2009) and Fabrika and 
Pretzsch (2013) provided a comprehensive review of yield tables developed since 
the eighteenth century.

These models mainly rely on the classical assumption of the stationarity of site 
conditions (Vanclay and Skovsgaard 1997; Skovsgaard and Vanclay 2008) and thus 
are not capable of predicting forest growth under changing environmental condi-
tions. They predict stand characteristics, such as stand height and diameter, standing 
volume (merchantable), stand density, etc., and do not consider inter-tree and inter-
specific competition when used to simulate the growth under different forest man-
agement. They use a species site index (top or mean stand height at a standard age, 
e.g. 100 years) based on height-age curves to consider site potentials to produce 
wood. In mixed forests, they are used to predict the growth of individual species and 
their predictions are subsequently combined to a stand level. An exception is the 
YM developed for mixed forests (Christmann 1949).

These models are, in many cases, well suited to estimate the current amount of 
wood in forests based on a few measurements but not to predict the future growth of 
tree species under scenarios of various environmental changes.

7 Modelling Future Growth of Mountain Forests Under Changing Environments
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7.3.1.2  Empirical Growth Simulators

ES have the second longest tradition in forest modelling after YM. Therefore, in the 
recent decades, these models began to be intensively used to forecast the development 
of the forest and to study the impact of changed conditions (environmental, 
economic, socio-economic) on the growth and structure of the forests (Sodtke et al. 
2004). Compared to YMs, the range of conditions for ES application has been 
largely expanded. Their applications are no longer limited to monospecific and 
even-aged forests. ESs can model forest stands of various species, age spatial struc-
tures. Their ability to account for these forest characteristics depends on the spatial 
detail of modelling (population, class/cohort or individual) and how the model 
accounts for the spatial changes in environmental conditions due to inter-tree com-
petition for resources (Fabrika and Pretzsch 2013). Based on the competition for 
resources, we recognise distance-independent models (Sterba 1995; Nagel 1996) 
and distance-dependent models (Hasenauer 1994; Pretzsch et al. 2002) (Fig. 7.3). 
Distance-independent models are biogroup-, ecosystem- or landscape-scale mod-
els, whereas distance-dependent models simulate individual trees and thus require 
spatial coordinates of trees in the stand. The emergence and development of ES 
made it possible to address the impact of different forest management on forest 
growth and structure (e.g. thinning) and thus eliminated the limitations of YM, i.e. 
their applicability only for a few methods of forest management. The range of appli-
cable forest management variants is increasing from population through class/
cohort to individual-tree models and from distance-independent to distance- 
dependent models (Fabrika et al. 2019). This advance in the modelling has opened 
the space for the use of models, if they are, at the same time, sensitive to climate, to 
assess the impact of climate change on forest growth and structure (Hlásny et al. 
2011). However, an additional limitation related to the response of the increment in 
tree size to environmental conditions needed to be further addressed in EMs. First 
EMs used the phytocentric method to quantify site quality that affects the growth of 
trees and stands (Nagel 1999). However, the static nature of the site index (dis-
cussed in Sect. 7.3.1.1) is at odds with the principle of the forest’s response to cli-
mate change. Therefore, models with a geocentric method (Kahn 1994) have been 
developed. The geocentric approach considers a direct response of the tree/stand 
growth to climatic and soil characteristics, for example, expressed by a direct regres-
sion model (Monserud and Sterba 1996) or by means of a dose-effect function 
(Kahn 1994). The link between environmental conditions and diameter/height/
volume increment is ensured through empirical (statistically derived) relationships. 
Such a modification of the models allows their use to assess the impact of climate 
change on forest growth and structure. Although the introduction of the geocentric 
approach has expanded the range of ES applications for environmental studies, the 
very nature of empirical models still limits their use. They cannot be used outside 
the range of environmental conditions for which they were developed. Therefore, to 
assess the climate smartness of forest management, statistical relationships should 
be replaced with causal relationships, which represents the shift from empirical to 
process-based (mechanistic) models.

M. Bosela et al.
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7.3.1.3  Dendroecological Models

Dendroecology refers to the use of annual tree rings and dendrochronological tech-
niques to address questions in ecology (Fritts and Swetnam 1989). Tree rings are the 
products of multiple processes related to the energy, water, carbon and nutrient bud-
get (Babst et al. 2014a). They represent a part of the above-ground carbon accumu-
lation. Dendroecological models establish relationships between tree-ring 
measurements and environmental factors (Fritts 2001). Originally, dendrochronolo-
gists used the relationships between tree-ring formation and climate variance as a 
proxy to estimate climate variability in a distant past for which weather measure-
ments did not exist. Recently, tree rings have been increasingly used by forest sci-
entists to investigate and model the effects of climate on tree growth and to build 
empirical models to predict the future growth of forest tree species (Girardin et al. 
2008; Chen et al. 2010).

Although tree rings represent only radial stem growth at a particular stem height, 
tree-ring data-based estimation of above-ground carbon sequestration has been 
found to be coherent with the net ecosystem productivity measured using eddy 
covariance techniques (Babst et al. 2014b). However, the contrasting results found 
in other studies dealing with tree-ring data (Rocha et al. 2006) suggest that there is 
often a problem with scaling from a tree stem to a forest ecosystem because of sam-
pling bias and stand dynamics (Cherubini et al. 1998; Nehrbass-Ahles et al. 2014).

The developed models were often based on linear relationships between mean 
tree-ring width (TRW) chronologies and climate variables (Cook and Kairiukstis 
1990; Fritts 2001; Dorado-Liñán et al. 2019). They did not consider changes in the 
relationships over time due to changes in the environment other than climate varia-
tion (Guiot et al. 2014). Such empirically-based models should not be used to pre-
dict the growth outside the period and the range of site characteristics for which they 
were developed. Therefore, process-based dendroecological models have been 
developed to reproduce the daily cellular development (Wilson and Howard 1968; 
Rauscher et al. 1990; Fritts et al. 1991; Tolwinski-Ward et al. 2011). The first den-
droecological process-based model was the TRACH model (Fritts et  al. 1991). 
More recently, the Vaganov-Shashkin (VS) model of tree-ring formation was devel-
oped (Vaganov et  al. 2006). The VS model and its simplified version called the 
VS-light model (Tolwinski-Ward et  al. 2011), which uses daily climatic input 
variables and more than 30 parameters for simulating secondary growth of xylem 
and anatomical features of annual rings, are now frequently used in dendroecological 
studies (e.g. Sánchez-Salguero et al. 2017).

Although some studies indicated the potential of empirical models developed 
from tree-ring data for predicting the future growth of forest trees (Dorado-Liñán 
et al. 2019), process-based models are currently preferred over EMs. However, the 
crucial role of tree-ring data is to inform vegetation models about long-term forest 
growth variability and disturbance regime from local to global scales (Babst et al. 
2014a). Moreover, process-based models, in general, should be compared against 
regional and stand-level tree-ring data in shorter periods to avoid potentially biased 
estimations of net primary productivity by mechanistic models.

7 Modelling Future Growth of Mountain Forests Under Changing Environments
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7.3.2  Process-Based Growth Models

Unlike empirical model and dendroecological process-based models that focus only 
on tree-ring formation, PMs simulate physiological processes in the whole plant 
(photosynthesis, respiration, allocation, mortality, transpiration, translocation and 
nutrient uptake) and their interactions with processes in the atmosphere and soil. 
The models relate plant carbon budgets to environmental drivers, climatic variables 
and/or biogeochemical processes (Battaglia and Sands 1998). This enables PMs to 
simulate forest responses to changing environmental conditions (e.g. future climate 
change).

However, our understanding of individual processes differs, some being under-
stood better than others. For example, carbon allocation, which has a critical role in 
forest adaptation to environmental changes, is often simplified due to insufficient 
knowledge on driving mechanisms (Mergani ová et  al. 2019). The other crucial 
uncertainties in PMs include mortality and regeneration (Mäkelä et  al. 2000; 
Bugmann et al. 2019).

In contrast to EMs, PMs usually work at a finer temporal resolution, starting 
from less than a minute (Fontes et al. 2010; Pretzsch et al. 2015). Only a few process 
models, such as 3-PG, FORMIND or TRAGIC, use a coarser scale than 1 day 
(Hauhs et al. 1995; Köhler and Huth 1998; Forrester and Tang 2016). Many process- 
based models use different temporal resolutions for simulating different processes, 
e.g. carbon allocation is frequently simulated at a coarser scale than photosynthesis 
(Mergani ová et al. 2019).

To incorporate physiological processes as realistically as possible, PMs use 
many physiological parameters as well as input stand and environmental variables. 
Environmental variables often include solar radiation, temperature, precipitation, 
wind speed and direction, vapour pressure deficit, nitrogen deposition, CO2 content 
in the atmosphere and available soil water content measured at fine temporal 
resolutions. Long-term, cost-effective and highly instrumented monitoring plots 
may provide such data, enabling key forest indicators to be modelled. Discussion on 
highly instrumented experimental plots is presented in Chaps. 10 and 16 of this 
book (respectively, Tognetti et al. 2021; Pappas et al. 2021). Several models are 
more simplistic and use only some of these variables and at a coarser temporal 
resolution (e.g. 3-PG, Landsberg and Waring 1997), whereas others are more 
complex requiring most of the variables at a finer scale (e.g. ANAFORE, Deckmyn 
et al. 2008, or FORCLIM, Bugmann 1996). The models range from biome-scale 
(e.g. Biome-BGC, Thornton et al. 2005) to individual-tree models (e.g. BALANCE, 
Rötzer et al. 2010).

Landscape dynamics or forest landscape models (LDM) are another group of 
PMs. The LDMs are based on the interaction of spatial patterns and ecological 
processes at various spatio-temporal scales. They usually simulate forest dynamics 
at a site scale (up to 300 ha) and landscape processes at a larger scale (He 2008; 
Shifley et  al. 2017). For example, the process-based model of forest landscape 
dynamics iLand (Seidl et  al. 2012) simulates forest landscape dynamics via 
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modelling spatially explicit resource availability at the landscape scale and 
integrating local resource competition and physiological resource use. Moreover, it 
simulates spatial and temporal interactions of vegetation and disturbance agents, 
which place this model among the most complex models from the point of simulated 
landscape dynamics. Another widely used LDM in Europe is LandClim (Schumacher 
et al. 2004). It basically uses a gap-model approach to simulate forest dynamics in 
individual grid cells of 25 × 25 m of a landscape wide up to 50 km2 and accounts for 
spatial processes, such as wind, fire disturbance, bark beetle, seed dispersal and 
forest management. Recent applications include estimates of adaptive management 
effects on forest ecosystem service provision (Temperli et al. 2012), reconstruction 
of species range shifts in the Holocene (Henne et al. 2013), analyses of disturbance 
interaction with climate change (Temperli et  al. 2015) and biodiversity (Schuler 
et al. 2019). The FLM TreeMig is also raster based but can be applied from the 
watershed to the continental scale (Lischke et al. 2006). While it primarily focuses 
on tree migration under climate drivers (Meier et al. 2012; Scherrer et al. 2020), it 
has also been applied to assess avalanche-forest interactions (Zurbriggen et  al. 
2014). Remote sensing technologies may contribute with spatially explicit time 
series of vegetation traits to estimate temporal changes in CSF indicators at the 
landscape scale as well as to serve as input for models. Benefits and challenges of 
remote sensing for monitoring forest ecosystems are presented in Chaps. 11 and 16 
of this book (respectively, Torresan et al. 2021; Pappas et al. 2021).

Reliability of growth predictions using PMs depends on various factors, includ-
ing the spatio-temporal scale of the predictions, level of details available to calibrate 
and validate the models, etc. The scale and detail of various types of forest monitor-
ing data strongly influence the reliability of simulations. In this regard, new 
approaches include, for example, model-data fusion with Bayesian inference, which 
have the potential to strongly reduce the prediction biases and increase their reli-
ability (Trotsiuk et al. 2020).

PMs are thus well placed to address the CSF and support decisions in adaptation 
and mitigation strategies, because they consider species sensitivity to environmental 
conditions via physiological processes. PMs can be used to test different scenarios 
of future environmental conditions. However, there are some components that still 
need to be developed or improved in PMs to predict future forest growth and 
landscape dynamics more realistically. These include, for example, intra- and 
interspecific competition/facilitation, tree mortality, deadwood, natural regeneration 
and carbon allocation to different tree components. In particular, below-ground 
carbon allocation needs to be further validated in most of the PMs and analysed with 
greater accuracy, since it can strongly affect the ecosystem response to climate 
change. Management is often not simulated by PMs in detail – particularly in the 
group of models that do not account for the inter-tree competitive interactions in the 
stand. In such cases, simplified rules need to be applied to test the impact of different 
management scenarios, e.g. the proportion of biomass extracted (Mergani ová 
et al. 2005).
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7.3.3  Considering Environmental Conditions 
in Growth Models

In the case of YMs, environmental conditions are indirectly considered by the site 
index. Site index usually refers to the mean (Halaj and Petráš 1998) or dominant 
(Burkhart and Tomé 2012b) stand height at a standard age (e.g. 100 years). However, 
YMs consider that site index is a temporarily static parameter that represents site 
conditions at the time of data collection. Once used for predictions outside the con-
ditions and region of empirical data, small to large systematic errors can be expected, 
and reliability of predictions is strongly limited. Recently, advanced methods were 
proposed to develop dynamic site index models (Socha and Tymi ska-Czaba ska 
2019), which consider the changes of site index due to changing environmental 
conditions.

In ESs and SESs, site conditions affect tree or forest growth potential defined by 
a growth function (Burkhart and Tomé 2012c) using a modifier based on, for exam-
ple, ecological site classification (Pretzsch et al. 2002). Among the ESs that apply 
this growth reduction approach are SILVA (Pretzsch et  al. 2002) and SIBYLA 
(Fabrika 2005). Other ESs use explicit empirical relationships between climate pre-
dictors (temperature, precipitation, drought indices) and growth, regeneration and 
mortality processes to simulate forest development (Stadelmann et al. 2019; Zell 
et al. 2019).

Unlike YMs and ESs, PMs simulate physiological mechanisms that are directly 
affected by environmental conditions. PMs are thus more reliable and better suited 
to simulate future growth of forests under alternative climate change scenarios 
under the assumption that processes are correctly described, whereas ESs are con-
fined to the climatic space that is represented by the data they have been parameter-
ised with.

7.3.4  Integrating the Effects of Species Mixture into 
Growth Models

Recently, a strong research activity with the aim to explore how species interactions 
influence wood and biomass production (Pretzsch and Schütze 2009, 2015; Rötzer 
et al. 2009; Pretzsch et al. 2010; Jucker et al. 2014; Toïgo et al. 2015) and how to 
improve forest multifunctionality (van der Plas et  al. 2016) has been ongoing. 
According to Pretzsch et al. (2015) and Bravo et al. (2019), one of the following 
four principles can be used to predict the growth of mixed-species forests: (1) by 
applying weighted means of monocultures, (2) multipliers, (3) species-specific 
growing space competition indices or (4) process-based representation of mixing 
effects. Most common single-species YM can be used to predict growth in mixed- 
species forests by simple weighted means of species growth predicted in 
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monocultures. This approach does not consider interspecific competition, and thus, 
it is less suitable to simulate the future growth of mixed-species forests. Individual-
based empirical growth simulators often include inter-tree and interspecific interac-
tions by means of various distance-dependent competition indices (Pretzsch et al. 
2002, 2015; Fabrika 2005). The use of empirically based multipliers or more 
advanced competition indices used in ES often assumes that interactions do not 
change over time. However, a few competition indices use tree dimensions in the 
calculation and thus consider competition changes over time. PMs have the poten-
tial to overcome the shortcomings of ES by modelling species interactions in a 
mechanistic way. PMs differ in which processes are considered to be affected by 
species-mixing effects, i.e. radiation, water, phenology, nutrients and structure 
(Pretzsch et  al. 2015). However, only a few PMs and LDMs consider species 
interactions in most of the processes to simulate the growth of mixed forests more 
realistically (Rötzer et al. 2010; Seidl et al. 2012; Temperli et al. 2012; Forrester and 
Tang 2016; Huber et al. 2018). Also, in this case, it is challenging to better understand 
how the species composition affects carbon allocation within the tree and among the 
trees belonging to different species and social positions, and its comprehension 
would dramatically improve the prediction ability of PMs.

7.3.5  Integrating Silvicultural Prescriptions and the Induced 
Treatment Responses into Growth Models

Forest management, specifically silvicultural treatments applied over the rotation 
period, can modify species composition and canopy structure, which in turn can 
influence forest response to environmental change, including direct effects of warm-
ing and drying or other disturbances caused by various factors, such as wind, snow, 
game and ice (Seidl et al. 2011; Mausolf et al. 2018). The effects of silvicultural 
interventions and past natural and human-induced perturbations should be correctly 
considered in forest growth simulation studies, especially in the case of intensively 
managed European forests (Spiecker 2003; Fontes et al. 2010). Silvicultural tech-
niques influence not only the productivity (and so the carbon sequestration) of the 
forest stand but also carbon allocation among the tree and stand components, forest 
vertical and horizontal structure, crown morphology, forest stability and vitality, 
which alter the resistance of forest to various types of disturbances (Noormets et al. 
2015). For example, “heavy thinning from below” applied in some European coun-
tries removes all suppressed trees and keeps dominant trees that are all directly 
exposed to macroclimate (Bosela et al. 2016c). On the other hand, vertically more 
diversified forests after “thinning from above” may be more resistant under predicted 
future climate change conditions. Applied silvicultural treatments, including 
different regeneration methods, have a significant role in creating more complex 
forests that are expected to be more resistant and resilient to changes in environmental 
conditions and natural disturbances (O’Hara 2006; Puettmann 2011; O’Hara and 
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Ramage 2013; Lafond et al. 2014; Fahey et al. 2018). Forest microclimate, altered 
by different silvicultural treatments, will probably have a crucial role in buffering 
extreme weather events in the future (Zellweger et al. 2020).

Several models consider silvicultural treatments as a very important component 
of future growth predictions (Fontes et al. 2010; Fabrika et al. 2018). The most com-
mon management intervention employed in growth models is thinning, which can 
vary by type, intensity and timing. Different types of thinning are implemented 
mostly in individual-tree process-based models, functional-structural plant models, 
distance-dependent and distance-independent empirical tree models, tree and cohort 
gap models or distribution stand models (Fabrika et al. 2018). Other management 
prescriptions rather rarely applied in growth models are early stand treatments 
(weeding, cleaning), fertilisation often combined with thinning and harvesting 
(Weiskittel et al. 2011).

Up to now, less than one-third of all existing growth models consider species- 
mixing effects and can be directly applied to mixed forests (Pretzsch et al. 2015). 
The present tendency in silvicultural prescriptions to convert monospecific to mul-
tispecies stands or establish new mixed forests is very much favoured, considering 
matching species composition to site conditions, and requires the development and 
implementation of appropriate silvicultural strategies for mixtures into growth mod-
els (Bravo et al. 2019).

Despite the importance of silvicultural treatments on stand productivity and cli-
mate sensitivity of tree species, forest growth models are not always capable of 
simulating the effects at individual tree level. This limited capacity is because some 
of the models operate at a stand or biome level and thus are unable to consider inter- 
and intraspecific competition or facilitation (Jucker et al. 2014). Stand- and biome- 
scale distance-independent models can simulate the growth under varying stand 
densities (Horemans et al. 2016), whereas individual-tree distance-dependent ESs/
SESs and PMs are well placed to simulate the growth of individual trees and forest 
stands under different silvicultural treatments and/or forest disturbances (Pretzsch 
et al. 2002; Fabrika 2005; Seidl et al. 2012; Mina et al. 2017). Other constraints of 
the wider application of silvicultural methods in growth models include the quality 
and quantity of experimental data available and appropriate determination of tem-
poral resolution (Weiskittel et al. 2011).

Nevertheless, much effort needs to be invested to improve the existing forest 
growth models to include an entire portfolio of silvicultural strategies and forest 
management that would address global climate change (D’Amato et al. 2011).

7.3.6  Effects of Genetic Structure on Forest Growth

Postglacial migrations have altered the genetic diversity of organisms (Hewitt 
2004). Evidence has suggested that the populations in refugial areas are typically 
genetically more diverse and the allelic richness may gradually decline along the 
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migration routes (Hewitt 2000; Petit et al. 2003). A certain level of genetic diversity 
is required to allow populations to adapt to changing conditions (Howe et al. 2003). 
A recent study showed the impact of postglacial migration on genetic diversity of 
European silver fir, Abies alba Mill. (Liepelt et al. 2009), which might have had 
strong effects on the growth and climate responses of the species (Bosela et  al. 
2016a). Climate-driven natural selection also leads to local adaptation if the climate 
remains static over at least one tree generation. It may be questioned whether this 
was ever the case in any tree species’ history since the last glaciation in Europe. 
Tree populations usually exhibit moderate to strong local adaptation; however, fast 
environmental change may cause local populations experience conditions to which 
they are not yet adapted (Howe et al. 2003; Wang et al. 2010). Therefore, the higher 
the genetic diversity is at the population level, the more chance for populations to 
adapt to the changing environmental conditions (Howe et al. 2003). Consequently, 
recommendations have stressed the importance of high genetic variability of forest 
plant material for uncertain futures (Eriksson et al. 1993; Yousefpour et al. 2017). 
Strong selection, especially among seedlings, would play a crucial role for local 
selection in natural forests, and varying adaptation effects would recur and act dif-
ferently in time and space (at different locations and on each tree generation). How 
far such effects also come to bear on plant material raised under optimal conditions 
in nurseries and planted under growth-promoting forest management measures 
remains an open question (Namkoong 1998). Co-occurring tree species can develop 
quite different adaptive strategies under identical environmental conditions. 
Contrasting genecological patterns reported for spruce and fir (strong climate- 
related differentiation in spruce vs. modest differentiation in fir) suggested that 
spruce can be considered an adaptive specialist while fir is more an adaptive gener-
alist (Frank et al. 2017).

Strong latitudinal clines in the bud burst of tree species (Kramer et al. 2015), 
which depends on critical temperature sums specific to the climate a provenance is 
adapted to, and the effects of genetic diversity on tree growth (Bosela et al. 2016a) 
suggest (successful) genetic adaptations to local environmental conditions in the 
standing tree generation. However, the bud burst response of, e.g. European beech 
(Fagus sylvatica L.) to temperature sums proved to be plastic (Kramer et al. 2017), 
which further complicates the evaluation of the issue. Despite that the effects of 
intraspecific genetic variability on the responses to local climate conditions were 
ascertained (Neale and Wheeler 2019), still only a very few forest growth models 
address this aspect (Kramer et al. 2015; Berzaghi et al. 2020). It is important to 
stress that strongest selection/adaptation effects are experienced by tree populations 
in the seedling stage (when individuals are most vulnerable to extreme conditions) 
or in the event of catastrophic disturbances that kill the less resilient individuals. 
Ignoring the above effects in predicting future adaptive responses of tree species 
may under- or overestimate the potential of species under changing environmental 
conditions. Moreover, phenotypic plasticity and adaptive capacity of tree species 
may be significantly modified by epigenetic variation (Bräutigam et al. 2013).
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7.4  Source of Data to Parameterise, Calibrate and Validate 
Growth Models

In this section, we review different sources of forest data, including national and 
stand-wise forest inventories, long-term research plots, eddy covariance system, 
dendrochronological networks (e.g. ITRB), climate and soil databases and remotely 
sensed data that can be acquired or are available to be used for forest growth models.

7.4.1  National Forest Inventory

It was as early as in the 1910s and 1920s when the European Nordic countries, 
namely, Norway, Sweden and Finland, launched the first sample-based national for-
est inventories (NFIs) as a response to the increasing importance of forests and 
wood for their economy (Vidal et al. 2016a). However, sample-based inventories 
were not initiated in the rest of Europe until after World War II. Since then, their 
importance has increased, and the country-scale inventories were launched in 
France (1958), Austria, Spain, Portugal and Greece (1960s), followed by 
Switzerland, Italy, Germany (1980s) and other countries. Nowadays, almost all 
countries in Europe conduct their NFI (Vidal et al. 2016a).

NFIs represent the main source of information about the state and changes of 
wood resources primarily at a national scale, but in some cases also at a regional 
scale. However, varying sampling designs among the European countries due to 
varying policy needs in the past limited the use of European NFIs for international 
reporting. Recent international activities were successful in harmonising the outputs 
of the European NFIs at European scale (Vidal et al. 2008, 2016a, b; Bosela et al. 
2016b; Fischer et al. 2016; Gschwantner et al. 2016; Alberdi et al. 2020).

NFIs are valuable sources of data for parameterisation and calibration of forest 
growth models and simulators, because they often provide repeated measurements, 
representative of a region, landscape and country (McCullagh et al. 2017). They 
cover a broad range of site conditions, where tree species grow. Data from NFIs 
have been successfully used to calibrate and validate empirical growth simulators 
(Fabrika 2005; McCullagh et al. 2017). In Switzerland, the NFI-based forest man-
agement scenario model MASSIMO is, among others, successfully used to simulate 
future harvesting potentials, forest-related carbon budgets and forest reference lev-
els used in greenhouse gas reporting (Stadelmann et  al. 2019). In Germany, the 
NFI-based forest model WEHAM is used to evaluate the sustainability of potential 
future forest policy scenarios (Seintsch et al. 2017). Similarly, the Câldis system 
was recently used to evaluate climate-smart management scenarios in terms of 
standing biomass and carbon as well as soil carbon based on the data of the Austrian 
NFI (Jandl et  al. 2018). NFI data were also used to parameterise or calibrate 
physiological forest development models (van Oijen et al. 2013; Gutsch et al. 2018; 
Minunno et al. 2019).
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Recently, NFI data of 23 European countries have been used to prepare future 
projections of the forest growing stock, above-ground carbon and harvesting until 
2040 (Vauhkonen et al. 2019). The European Forest Dynamics Model (EFDM) was 
parameterised using NFI data, and future development of forest resources was sim-
ulated under business-as-usual forest management. Further, the large-scale European 
Forest Information Scenario model (EFISCEN) (Schelhaas et al. 2007) uses data of 
European NFIs and has been applied to evaluate the development of forest resources 
in the future under various management scenarios (Verkerk et al. 2011). These mod-
elling activities suggest that European NFIs are suitable to serve the increasing 
information demands from national to international levels. As they are statistically 
sound and sufficiently cover the European forest area, NFIs can become the main 
source of data to aid in sustaining the resilience and climate smartness of the 
European mountain forests. However, the shortcoming of NFI data is that stand his-
tory is not known, and extreme densities and treatments are often insufficiently 
represented, although these are of special importance for model parameterisation 
and evaluation. The strength and limitation of NFI-derived CSF indicators, as well 
as an example of their application in two case studies, are presented in Chap. 4 of 
this book (Temperli et al. 2021).

7.4.2  Stand-Wise Forest Inventory

Stand-wise inventory, or inventory by compartments, is the assessment of wood 
resources of the forest stand defined as “geographically contiguous parcels of land 
whose site type and growing stock is homogenous” (Koivuniemi and Korhonen 
2006). The first stand-wise forest inventories were often local and conducted by 
timber producers to estimate timber resources (Tomppo et al. 2010). For Central and 
Eastern European countries (especially the former socialistic countries with 
centrally planned economy), it has been typical to collect forest data at a stand level 
for management planning. State administration used these data to strictly regulate 
the use of forest resources at stand and forest district levels. In many Central-Eastern 
European countries (including the Czech Republic, Slovakia, Romania, Poland, 
Slovenia, etc.), stand-level inventories continue to be the main source of data for 
strategic management planning and regulation, despite the fact that the countries 
have already launched their sample-based NFIs. However, stand-wise inventory 
data are not available in most European countries. Moreover, stand-wise inventories 
are often conducted as surveys of forest managers and include expert assessments 
of forest characteristics, such as species composition, of unknown or limited preci-
sion, which strongly limits their use for scientific investigations (Gr nvalds 2014). 
Stand-wise inventory data are also limited in the spectrum of provided variables. 
They often only include mean stand variables, such as mean stand diameter and 
height, growing stock and stand density. The stand (compartment) area largely 
varies and often changes over time, which also limits the use of these data for 
temporal studies.
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7.4.3  Long-Term Research and Monitoring Plots

Long-term research or monitoring plots are a unique source of data that can be used 
to either build empirical models or to calibrate and validate available growth models 
and simulators (Pretzsch et al. 2014; Pretzsch 2020). Compared to tree-ring data, 
long-term plots usually include mortality data and thus provide information on the 
true development of forest stands. The spectrum of variables assessed and measured 
in the plots depends on the aims of monitoring but is often reduced to dendrometric 
characteristics, which limits their use for assessing the indicators of SFM and 
CSF. Long-term monitoring plots often include only simple diameter and height 
measurements, because volume stock estimation was the main purpose of establish-
ing such plots in the past, and thus bring uncertainty when scaling to estimations of 
biomass and carbon stocks and fluxes. However, the European network of forest 
condition monitoring plots (International Co-operative Programme on Assessment 
and Monitoring of Air Pollution Effects on Forests, ICP Forests) provide an exam-
ple of the long-term monitoring plots (from national to European scales) that go 
beyond the measurement of basic dendrometric characteristics (Michel et al. 2019). 
The biggest advantages of long-term monitoring plots are the long time period they 
cover (often several decades and in few cases more than 100 years) and the known 
management treatments. In an actual example, such data were used for estimating 
parameters of the process-based 3-PG model (Landsberg and Waring 1997) in con-
junction with other data sources such as NFI data (Trotsiuk et al. 2020). Zell (2018) 
used data from long-term experimental forest management plots to parameterise an 
empirical climate-sensitive stand development model that includes an empirical 
management module. Thanks to long-term data, the capacity of forest gap-models 
to simulate accurate forest management prescriptions has greatly increased over the 
past decade (Rasche et  al. 2011; Mina et  al. 2017). A shortcoming of long-term 
plots is their uneven spatial distribution, covering only a small portion of the range 
of site conditions and only a few tree species. These include mostly productive sites 
and commercially interesting tree species, for studying the growth of which long- 
term plots have historically been set up. Moreover, monitoring plots that span across 
centuries are scarce and missing for most regions. However, establishing long-term 
monitoring plots across the range of site conditions is crucial to calibrate and vali-
date growth simulators under changing climatic conditions and to support climate- 
smart forest management decision-making (Thrippleton et  al. 2020). In Chap. 5 
(Pretzsch et al. 2021), the design of a smart network of observational forest plots 
across European mountain regions is described, and a discussion on their relevance 
for monitoring growth patterns in monospecific European beech and mixed-species 
stands of Norway spruce, European beech and silver fir is provided.
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7.4.4  Eddy Covariance Measurements

The eddy covariance (EC) technique is an atmospheric measurement technique 
based on measuring vertical turbulent fluxes within atmospheric boundary layers. It 
is one of the most appropriate ways to measure local turbulent fluxes of CO2 (Wang 
et  al. 2009). The technique is used to estimate seasonal fluctuations in carbon 
exchange between the forest and the atmosphere (Baldocchi 2003). This technique 
has been successfully used to estimate the net ecosystem productivity (NEP). EC 
measurements are often used for calibration and validation of NEP estimated by 
growth simulators (Kramer et al. 2002; Mo et al. 2008; Meyer et al. 2018). However, 
using the EC technique (but not only EC) includes two potential sources of uncer-
tainty: measurement error and representativeness error (Lasslop et al. 2008; Youhua 
et al. 2016). Measurement error can be minimised by, for example, the calibration 
of the instruments. However, representativeness error depends on surface roughness 
and thermal stability, which further depends on the vegetation heterogeneity 
(Youhua et al. 2016). EC measurements are more accurate when the atmospheric 
conditions are steady, the terrain is flat and the surrounding vegetation is homoge-
neous (Baldocchi 2003). Hence, in the mountainous areas, i.e. in highly complex 
terrain, and in forests strongly affected by natural disturbances (e.g. fire, diseases, 
insect infestation), the precision of EC estimates of NEP strongly decreases. The 
more complicated orography and vegetation heterogeneity were likely the reason 
for different findings from nearly no link to the high correlation between biometric 
data and EC measurements (Rocha et  al. 2006; Zweifel et  al. 2010; Babst et  al. 
2014b). The distance between the forest under study and the nearest EC tower is 
another factor affecting the coherence between biometric and EC data (Babst et al. 
2014b). A recent study based on a 5 km × 5 km gridded EC measurements revealed 
large variability in the representativeness of single EC towers to estimate NEP 
(Youhua et al. 2016).

7.4.5  Remote and Proximal Sensing

Remotely sensed data, such as Landsat or Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite imagery, are increasingly used to estimate 
gross or net primary productivity (GPP, NPP, Neumann et al. 2016) and NEP or to 
derive vegetation indices further used in large-scale ecological studies, including 
the characterisation of forest disturbance regimes (Yuan et al. 2010; Jin and Eklundh 
2014; Liang et al. 2015; Hart et al. 2017; Liu et al. 2018; Yang et al. 2020). Light- 
use efficiency (LUE), defined as the amount of carbon produced per unit of absorbed 
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photosynthetically active radiation (APAR), has been successfully used to quantify 
the dynamics in GPP. The models to estimate LUE, and therefore GPP, are usually 
based on normalised difference vegetation index (NDVI), photosynthetically active 
radiation (PAR), fraction of PAR, air temperature, moisture and other environmental 
conditions (Yuan et al. 2010). There are, however, various definitions of LUE used 
in developing LUE models, which have implications for the estimation of forest 
productivity (Gitelson and Gamon 2015). Ecosystem respiration (ER) is an essential 
component of water and energy budgets and is used to estimate NPP of forest 
ecosystems by its subtracting from GPP. It is, however, the most difficult component 
to estimate because of the heterogeneity of the landscape, soil properties and 
topography, among other factors (Yuan et al. 2010; Zhang et al. 2016). NDVI is a 
remotely sensed vegetation index frequently used to assess leaf phenology or 
changes in the canopy due to disturbances, such as bark beetle outbreak or wind 
storms (Jönsson et al. 2009; Meddens et al. 2013; Jin and Eklundh 2014). Although 
it is popular because of its robustness against noise, in some forest types, the index 
is too sensitive to snow cover and much less sensitive to growth of close-canopy 
forests (Jönsson et  al. 2009). Canopy nitrogen content and chlorophyll light- 
absorbance variables, used as indices to nutrient cycling and maximum photosyn-
thetic capacity, can be estimated using both aerial and satellite optical hyperspectral 
imagery. Variables, such as above-ground tree height and vertical and horizontal 
distribution of tree crowns, used for the model parameterisation, can be computed 
using light detection and ranging (LiDAR) data and interferometric synthetic aper-
ture radar (SAR). Other vegetation indices used in ecological studies include the 
enhanced vegetation index (EVI), normalized difference water index (NDWI), wide 
dynamic range vegetation index (WDRVI), phenology index (PI) and leaf area 
index (LAI). To obtain the remotely sensed data, the MODIS instrument aboard the 
Terra satellite is often used. MODIS is viewing the entire Earth’s surface every 1 to 
2 days and acquires data in 36 spectral bands, or groups of wavelengths. The spatial 
resolution of MODIS images is 250 m (bands 1–2), 500 m (bands 3–7) and 1000 m 
(bands 8–36). To increase the spatial resolution of MODIS-derived indices, a com-
bination of MODIS and Landsat time series (available at finer 30  m resolution) 
provides a solution (Yang et  al. 2020). Another promising remote sensing-based 
data sources are the Sentinel-1 and Sentinel-2 SAR data that can be collected inde-
pendently from daylight or weather conditions and were recently used for rapid 
detection of windthrows (Frampton et al. 2013; Rüetschi et al. 2019).

There are various models able to utilise remote sensing data in different ways, but the 
satellite-driven version of the 3-PG model (Physiological Principles in Predicting 
Growth), developed by Landsberg and Waring 1997 and Waring et al. 2010 is probably 
the most known and used. The physiological variables used in the model can be esti-
mated from remote-sensing measurements of factors that influence those variables. In the 
model, GPP is ultimately a function of the APAR and the canopy quantum use efficiency.
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It is worth mentioning that recent data assimilation (DA) techniques have been 
used to estimate forest stand data by sequentially combining remote sensing-based 
estimates of forest variables with predictions from growth models (Nyström et al. 
2015). DA provides a way of blending the monitoring properties of remotely sensed 
data with the predictive and explanatory abilities of forest growth models (Huang 
et al. 2019). Input to the data assimilation may be canopy height models, obtained 
from airborne laser scanning (ALS) data or from image matching of digital aerial 
images at different time points during the growth season. With this approach, the 
prior forecast is updated to the posterior forecast when a new estimate is considered. 
This kind of approach needs modification of the existing growth models that would 
allow data assimilation and also requires the possibility to interrupt the model simu-
lations before the end and use remote sensing data to update specific 
characteristics.

7.4.6  Tree-Ring Time Series

Annually resolved TRW series represent a valuable source of information on past 
growth dynamics of individual trees and forests (Babst et al. 2018, 2019; Klesse 
et al. 2018). Over the past century, TRW data have been collected across the globe 
for many different purposes, and a high portion of these data has been archived in 
the International Tree-Ring Data Bank (ITRDB) managed by Paleoclimatology 
Team of National Centers for Environmental Information  and the World Data 
System for Paleoclimatology. ITRDB now includes TRW series from over 4000 
sites and six continents. Tree-ring networks were frequently used to reconstruct past 
climate as well as to investigate responses of forest trees to variation in environmen-
tal characteristics to assess species vulnerability to changing conditions (Babst et al. 
2013). Recently, TRW data have been successfully applied to predict future forest 
growth and climate responses (Charney et  al. 2016; Dorado-Liñán et  al. 2019). 
TRW data have also been used to reconstruct regimes of windthrow, bark beetle, 
storm and other disturbance regimes (Veblen et  al. 1994; Svoboda et  al. 2014). 
Explaining relationships between climate and disturbance dynamics (Hart et  al. 
2014) forms the basis to parameterise models of disturbance dynamics under cli-
mate change (Temperli et al. 2015; Thom et al. 2017). However, using TRW data for 
detecting long-term growth trends and species climate responses must follow 
purpose- oriented sampling designs (Nehrbass-Ahles et  al. 2014) and appropriate 
detrending methods (Peters et  al. 2015) to minimise potential prediction biases 
(Klesse et al. 2018).
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7.5  Conclusions and Perspectives

Expected rapid climate change will likely challenge the adaptation capacity of many 
forest ecosystems. Forest growth models represent a promising tool to predict the 
effects of different climate change scenarios on the growth of individual trees and 
forest stands as well as the future distribution of forest tree species under changing 
conditions and thus to support forest managers and policymakers in developing 
long-term strategies. Available forest growth models largely differ from each other 
in many ways due to which they provide a large range of future growth estimates. A 
multi-model averaging technique has been found a good way to avoid biased esti-
mates of single models due to shortcomings of individual modelling approaches 
(Picard et al. 2012; Hlásny et al. 2014; Dormann et al. 2018). Although modelling 
the relationships between forest production and future climate is complex and 
intrinsically uncertain, forest growth models may help to guide climate-smart strate-
gies aimed at overcoming mitigation, adaptation and production gaps. For example, 
synergies and trade-offs between biodiversity conservation and timber production 
can be assessed, and user-friendly interactive decision support tools can be devel-
oped, ensuring that all stakeholders envisage the risks of adapting their management 
strategies to changes in climate and society and anticipate the consequences of envi-
ronmental disturbances.

Past constraints that limited the capacity to model forest dynamics, such as the 
availability of data for model calibration and validation, the computing capacity, the 
model applicability to real-world problems and the ability to integrate biological, 
social and economic drivers of change, have become less restrictive. For this, the 
role of models for predicting forest growth and yield under changing environments 
is now central in applied decision-making. For that, to ensure their role, great atten-
tion is required to evaluate the performance, to expand the driver of changes and to 
incorporate variables as input social and economic trends and needs.

Acknowledgements We would like to thank Laura Dobor, Sonja Vospernik and Thomas 
Ledermann for their valuable information regarding the ability of iLand and PROGNAUS models 
to address the indicators of climate-smart forestry. Michal Boše a received support from the 
Slovak Research and Development Agency via the grants No. APVV-15-0265 and APVV-19-0183. 
Katarína Mergani ová was supported by the grant “EVA4.0”, No. CZ.02.1.01/0.0/0.0/16_01
9/0000803, financed by OP Research, Development and Education, and the project “Scientific 
support of climate change adaptation in agriculture and mitigation of soil degradation” 
(ITMS2014 + 313011 W580), supported by the Integrated Infrastructure Operational Programme 
funded by the European Regional Development Fund. Ilona Mészáros was supported by grant No. 
NKFI-125652 from the National Research, Development, and Innovation Office, Hungary. In 
memory of Giustino Tonon, a co-author of this chapter, who had passed away prior to the publica-
tion of the book. 

M. Bosela et al.



247

 A
pp

en
di

x

A
nn

ex
 7

.1
 

Id
en

tifi
ca

tio
n 

of
 a

bi
lit

y 
of

 s
el

ec
te

d 
gr

ow
th

 m
od

el
s 

(r
ep

re
se

nt
in

g 
th

e 
m

od
el

 g
ro

up
s 

de
fin

ed
 in

 F
ig

. 7
.3

) 
to

 a
dd

re
ss

 th
e 

in
di

ca
to

rs
 o

f 
cl

im
at

e-
sm

ar
t 

fo
re

st
ry

 (
in

di
ca

to
r 

lis
t b

as
ed

 o
n 

(B
ow

di
tc

h 
et

 a
l. 

20
20

))

In
di

ca
to

r
Sp

ec
ifi

c 
in

di
ca

to
r

Y
ie

ld
 ta

bl
es

PR
O

G
N

A
U

S
SI

B
Y

L
A

B
io

m
e-

B
G

C
iL

an
d

1.
1 

Fo
re

st
 a

re
a

N
ot

 p
ro

vi
de

d
In

pu
t a

nd
 o

ut
pu

t
N

ot
 p

ro
vi

de
d

N
ot

 p
ro

vi
de

d
In

pu
t a

nd
 o

ut
pu

t
1.

2 
G

ro
w

in
g 

st
oc

k
O

ut
pu

t
In

pu
t a

nd
 o

ut
pu

t
O

ut
pu

t
D

er
iv

ed
 f

ro
m

 o
ut

pu
t

O
ut

pu
t

1.
3 

A
ge

 
st

ru
ct

ur
e 

an
d/

or
 

di
am

et
er

 
di

st
ri

bu
tio

n

A
ge

 s
tr

uc
tu

re
In

pu
t a

nd
 o

ut
pu

t 
in

 th
e 

fo
rm

 o
f 

m
ea

n 
st

an
d 

ag
e

M
ay

 b
e 

ob
ta

in
ed

 a
s 

ou
tp

ut
In

pu
t a

nd
 

ou
tp

ut
St

an
d 

ag
e 

as
 a

 p
ar

am
et

er
 

dr
iv

in
g 

th
e 

st
ar

t o
f 

no
rm

al
 

si
m

ul
at

io
n

In
pu

t a
nd

 o
ut

pu
t

D
ia

m
et

er
 

di
st

ri
bu

tio
n

N
ot

 in
te

rn
al

ly
 

co
ns

id
er

ed
In

pu
t a

nd
 o

ut
pu

t
In

pu
t a

nd
 

ou
tp

ut
N

ot
 c

on
si

de
re

d
In

pu
t a

nd
 o

ut
pu

t

1.
4 

C
ar

bo
n 

st
oc

k
C

ar
bo

n 
st

oc
k 

in
 

fo
re

st
 b

io
m

as
s

N
ot

 p
ro

vi
de

d,
 m

ay
 

be
 d

er
iv

ed
 f

ro
m

 
gr

ow
in

g 
st

oc
k

N
ot

 p
ro

vi
de

d,
 m

ay
 

be
 d

er
iv

ed
 f

ro
m

 
gr

ow
in

g 
st

oc
k

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

C
ar

bo
n 

st
oc

k 
in

 
fo

re
st

 s
oi

ls
N

ot
 p

ro
vi

de
d

N
ot

 p
ro

vi
de

d
N

ot
 p

ro
vi

de
d

O
ut

pu
t

O
ut

pu
t

C
ar

bo
n 

st
oc

k 
in

 
ha

rv
es

te
d 

w
oo

d 
pr

od
uc

ts

N
ot

 p
ro

vi
de

d,
 m

ay
 

be
 d

er
iv

ed
 f

ro
m

 
m

od
el

 o
ut

pu
t i

f 
co

up
le

d 
w

ith
 

as
so

rt
m

en
t m

od
el

N
ot

 p
ro

vi
de

d,
 m

ay
 

be
 d

er
iv

ed
 f

ro
m

 
m

od
el

 o
ut

pu
t i

f 
co

up
le

d 
w

ith
 

as
so

rt
m

en
t m

od
el

C
an

 b
e 

de
ri

ve
d 

fr
om

 m
od

el
 

ou
tp

ut

N
ot

 p
ro

vi
de

d,
 m

ay
 b

e 
de

ri
ve

d 
fr

om
 m

od
el

 o
ut

pu
t i

f 
co

up
le

d 
w

ith
 a

ss
or

tm
en

t 
m

od
el

N
ot

 p
ro

vi
de

d,
 m

ay
 b

e 
de

ri
ve

d 
fr

om
 m

od
el

 
ou

tp
ut

 if
 c

ou
pl

ed
 w

ith
 

as
so

rt
m

en
t m

od
el

2.
1 

D
ep

os
iti

on
 

of
 a

ir
 p

ol
lu

ta
nt

s
C

ar
bo

n 
di

ox
id

e
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
In

pu
t

In
pu

t
In

pu
t

N
itr

og
en

 d
ep

os
iti

on
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
In

pu
t

In
pu

t
In

pu
t

Su
lp

hu
r 

de
po

si
tio

n
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
O

th
er

 (
C

O
, O

3, 
…

)
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d (c
on

tin
ue

d)

7 Modelling Future Growth of Mountain Forests Under Changing Environments



248

A
nn

ex
 7

.1
 

(c
on

tin
ue

d)

In
di

ca
to

r
Sp

ec
ifi

c 
in

di
ca

to
r

Y
ie

ld
 ta

bl
es

PR
O

G
N

A
U

S
SI

B
Y

L
A

B
io

m
e-

B
G

C
iL

an
d

2.
2 

So
il 

co
nd

iti
on

pH
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
C

E
C

 =
 c

at
io

n 
ex

ch
an

ge
 c

ap
ac

ity
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d

C
/N

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

C
an

 b
e 

de
ri

ve
d 

fr
om

 m
od

el
 

ou
tp

ut
In

pu
t

O
rg

an
ic

 C
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
O

ut
pu

t
O

ut
pu

t
B

as
e 

sa
tu

ra
tio

n 
(p

er
ce

nt
ag

e 
of

 C
E

C
 

oc
cu

pi
ed

 b
y 

ba
se

s 
(C

a2+
, M

g2+
, K

+
 a

nd
 

N
a+

))

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

So
il 

ty
pe

N
ot

 c
on

si
de

re
d

In
pu

t
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
So

il 
fe

rt
ili

ty
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
In

pu
t

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

So
il 

m
oi

st
ur

e
N

ot
 c

on
si

de
re

d
In

pu
t

In
pu

t
O

ut
pu

t
O

ut
pu

t
Si

te
 in

de
x

In
pu

t
N

ot
 c

on
si

de
re

d
In

pu
t

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

G
ro

w
th

 r
eg

io
n

In
pu

t
In

pu
t

In
pu

t
N

ot
 a

pp
lie

d
N

ot
 a

pp
lie

d
2.

3 
D

ef
ol

ia
tio

n
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d

M. Bosela et al.



249

In
di

ca
to

r
Sp

ec
ifi

c 
in

di
ca

to
r

Y
ie

ld
 ta

bl
es

PR
O

G
N

A
U

S
SI

B
Y

L
A

B
io

m
e-

B
G

C
iL

an
d

2.
4 

Fo
re

st
 

da
m

ag
e

W
in

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
O

ut
pu

t
N

ot
 in

te
rn

al
ly

 c
on

si
de

re
d,

 
ca

n 
be

 a
pp

ro
xi

m
at

ed
 b

y 
m

od
if

yi
ng

 m
or

ta
lit

y 
ra

te

In
pu

t o
f 

w
in

ds
to

rm
 

ch
ar

ac
te

ri
st

ic
s 

(l
en

gt
h,

 
se

ve
ri

ty
) 

an
d 

ou
tp

ut
/

si
m

ul
at

ed
 s

pa
tia

lly
 a

nd
 

ex
pl

ic
itl

y 
at

 la
nd

sc
ap

e 
sc

al
e

Fi
re

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

O
ut

pu
t

In
pu

t (
an

nu
al

 fi
re

 m
or

ta
lit

y 
ra

te
) 

an
d 

ou
tp

ut
In

pu
t a

nd
 o

ut
pu

t

B
ar

k 
be

et
le

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

O
ut

pu
t

N
ot

 in
te

rn
al

ly
 c

on
si

de
re

d,
 

ca
n 

be
 a

pp
ro

xi
m

at
ed

 b
y 

m
od

if
yi

ng
 m

or
ta

lit
y 

ra
te

O
ut

pu
t

D
ef

ol
ia

to
rs

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

O
ut

pu
t

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

3.
1 

In
cr

em
en

t 
an

d 
fe

lli
ng

s
A

nn
ua

l i
nc

re
m

en
t i

n 
vo

lu
m

e,
 b

io
m

as
s 

or
 

ca
rb

on
 s

to
ck

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

C
an

 b
e 

de
ri

ve
d 

fr
om

 
m

od
el

 o
ut

pu
t

A
nn

ua
l f

el
lin

g 
of

 
w

oo
d 

vo
lu

m
e,

 
bi

om
as

s 
or

 c
ar

bo
n 

st
oc

k

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

3.
2 

R
ou

nd
w

oo
d

Q
ua

nt
ity

 o
f 

ro
un

dw
oo

d
O

ut
pu

t f
ro

m
 

as
so

rt
m

en
t y

ie
ld

 
ta

bl
es

O
ut

pu
t

O
ut

pu
t

N
ot

 c
on

si
de

re
d,

 m
ay

 b
e 

de
ri

ve
d 

fr
om

 m
od

el
 o

ut
pu

t i
f 

co
up

le
d 

w
ith

 a
ss

or
tm

en
t 

ta
bl

es

C
an

 b
e 

de
ri

ve
d 

fr
om

 
m

od
el

 o
ut

pu
t

M
ar

ke
t v

al
ue

 o
f 

ro
un

dw
oo

d
N

ot
 c

on
si

de
re

d,
 

m
ay

 b
e 

de
ri

ve
d 

fr
om

 a
ss

or
tm

en
t 

yi
el

d 
ta

bl
es

C
an

 b
e 

de
ri

ve
d 

fr
om

 m
od

el
 o

ut
pu

t
O

ut
pu

t
N

ot
 c

on
si

de
re

d
C

an
 b

e 
de

ri
ve

d 
fr

om
 

m
od

el
 o

ut
pu

t (c
on

tin
ue

d)

7 Modelling Future Growth of Mountain Forests Under Changing Environments



250

A
nn

ex
 7

.1
 

(c
on

tin
ue

d)

In
di

ca
to

r
Sp

ec
ifi

c 
in

di
ca

to
r

Y
ie

ld
 ta

bl
es

PR
O

G
N

A
U

S
SI

B
Y

L
A

B
io

m
e-

B
G

C
iL

an
d

3.
5 

Fo
re

st
s 

un
de

r 
m

an
ag

em
en

t 
pl

an
s

Fo
re

st
s 

un
de

r 
FM

P
N

ot
 c

on
si

de
re

d
In

pu
t a

nd
 o

ut
pu

t i
f 

pr
ov

id
ed

 b
y 

a 
us

er
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
In

pu
t

4.
1 

T
re

e 
sp

ec
ie

s 
co

m
po

si
tio

n
N

um
be

r 
of

 tr
ee

 
sp

ec
ie

s
N

ot
 c

on
si

de
re

d 
by

 
in

di
vi

du
al

 m
od

el
s

In
pu

t a
nd

 o
ut

pu
t

In
pu

t a
nd

 
ou

tp
ut

N
ot

 in
te

rn
al

ly
 c

on
si

de
re

d
In

pu
t a

nd
 o

ut
pu

t

4.
2 

R
eg

en
er

at
io

n
N

ot
 c

on
si

de
re

d
O

ut
pu

t
In

pu
t a

nd
 

ou
tp

ut
N

ot
 c

on
si

de
re

d
In

pu
t a

nd
 o

ut
pu

t

4.
3 

N
at

ur
al

ne
ss

N
ot

 c
on

si
de

re
d

C
an

 b
e 

de
ri

ve
d 

fr
om

 m
od

el
 o

ut
pu

t
N

ot
 c

on
si

de
re

d 
bu

t c
an

 b
e 

de
ri

ve
d 

fr
om

 
m

od
el

 o
ut

pu
t

N
ot

 in
te

rn
al

ly
 c

on
si

de
re

d,
 

bu
t t

he
 d

eg
re

e 
of

 n
at

ur
al

ne
ss

 
(n

ot
 a

re
a)

 c
an

 b
e 

co
ns

id
er

ed
 

as
 in

pu
t i

nf
or

m
at

io
n 

af
fe

ct
in

g 
si

m
ul

at
io

n 
se

t-
up

 
(p

as
t m

an
ag

em
en

t 
sp

ec
ifi

ca
tio

n)

N
ot

 c
on

si
de

re
d 

bu
t c

an
 

be
 d

er
iv

ed
 f

ro
m

 m
od

el
 

ou
tp

ut

4.
4 

In
tr

od
uc

ed
 

tr
ee

 s
pe

ci
es

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

In
pu

t (
se

ed
s 

or
 p

la
nt

in
g)

 
an

d 
ou

tp
ut

4.
5 

D
ea

dw
oo

d
V

ol
um

e 
of

 
de

ad
w

oo
d

N
ot

 c
on

si
de

re
d

O
ut

pu
t

O
ut

pu
t

C
an

 b
e 

de
ri

ve
d 

fr
om

 m
od

el
 

ou
tp

ut
O

ut
pu

t

C
ar

bo
n 

st
oc

k 
in

 
de

ad
w

oo
d

N
ot

 c
on

si
de

re
d

C
an

 b
e 

de
ri

ve
d 

fr
om

 m
od

el
 o

ut
pu

t
C

an
 b

e 
de

ri
ve

d 
fr

om
 m

od
el

 
ou

tp
ut

O
ut

pu
t

O
ut

pu
t

4.
6 

G
en

et
ic

 
re

so
ur

ce
s

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

4.
7 

L
an

ds
ca

pe
 

pa
tte

rn
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d 
bu

t c
an

 
be

 d
er

iv
ed

 f
ro

m
 m

od
el

 
ou

tp
ut

4.
8 

T
hr

ea
te

ne
d 

fo
re

st
 s

pe
ci

es
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d

M. Bosela et al.



251

In
di

ca
to

r
Sp

ec
ifi

c 
in

di
ca

to
r

Y
ie

ld
 ta

bl
es

PR
O

G
N

A
U

S
SI

B
Y

L
A

B
io

m
e-

B
G

C
iL

an
d

4.
9 

Pr
ot

ec
te

d 
fo

re
st

s
N

ot
 c

on
si

de
re

d
In

pu
t a

nd
 o

ut
pu

t i
f 

pr
ov

id
ed

 b
y 

a 
us

er
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
In

pu
t

5.
1 

Pr
ot

ec
tiv

e 
fo

re
st

s 
– 

so
il 

an
d 

w
at

er

N
ot

 c
on

si
de

re
d

In
pu

t a
nd

 o
ut

pu
t i

f 
pr

ov
id

ed
 b

y 
a 

us
er

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

6.
7 

W
oo

d 
co

ns
um

pt
io

n
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d

6.
8 

T
ra

de
 in

 
w

oo
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

6.
9 

E
ne

rg
y 

fr
om

 
w

oo
d 

re
so

ur
ce

s
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d
N

ot
 c

on
si

de
re

d

6.
10

 
A

cc
es

si
bi

lit
y 

fo
r 

re
cr

ea
tio

n

N
ot

 c
on

si
de

re
d

In
pu

t a
nd

 o
ut

pu
t i

f 
pr

ov
id

ed
 b

y 
a 

us
er

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d

N
ot

 c
on

si
de

re
d 

bu
t c

an
 

be
 d

er
iv

ed
 f

ro
m

 m
od

el
 

ou
tp

ut
M

an
ag

em
en

t 
sy

st
em

Pr
ed

efi
ne

d
In

pu
t

In
pu

t
In

pu
t

In
pu

t

Sl
en

de
rn

es
s 

co
ef

fic
ie

nt
C

an
 b

e 
de

ri
ve

d 
fr

om
 m

ea
n 

st
an

d 
va

lu
es

O
ut

pu
t

O
ut

pu
t

N
ot

 c
on

si
de

re
d

In
pu

t, 
ca

n 
be

 d
er

iv
ed

 
fr

om
 o

ut
pu

t a
s 

w
el

l

V
er

tic
al

 
di

st
ri

bu
tio

n 
of

 
tr

ee
 c

ro
w

ns

N
ot

 c
on

si
de

re
d

O
ut

pu
t

O
ut

pu
t

M
od

el
 in

pu
t –

 s
im

pl
ifi

ed
 

tw
o-

la
ye

r 
st

ru
ct

ur
e

In
cl

ud
ed

 in
 m

od
el

 
si

m
ul

at
io

ns
 b

ut
 w

ith
ou

t 
an

y 
ou

tp
ut

 in
fo

rm
at

io
n

H
or

iz
on

ta
l 

di
st

ri
bu

tio
n 

of
 

tr
ee

 c
ro

w
ns

T
re

es
 p

er
 h

ec
ta

re
, 

ba
sa

l a
re

a 
pe

r 
he

ct
ar

e

O
ut

pu
t

O
ut

pu
t

O
ut

pu
t

N
ot

 c
on

si
de

re
d

In
pu

t a
nd

 o
ut

pu
t

C
ro

w
n 

ar
ea

, t
re

e 
cr

ow
n 

di
am

et
er

N
ot

 p
ro

vi
de

d
O

ut
pu

t
O

ut
pu

t
N

ot
 c

on
si

de
re

d
In

cl
ud

ed
 in

 m
od

el
 

si
m

ul
at

io
ns

 b
ut

 w
ith

ou
t 

an
y 

ou
tp

ut
 in

fo
rm

at
io

n

7 Modelling Future Growth of Mountain Forests Under Changing Environments



252

References

Alberdi I, Bender S, Riedel T et al (2020) Assessing forest availability for wood supply in Europe. 
For Policy Econ 111:102032. https://doi.org/10.1016/j.forpol.2019.102032

Albrich K, Rammer W, Seidl R (2020) Climate change causes critical transitions and irreversible 
alterations of mountain forests. Glob Chang Biol. https://doi.org/10.1111/gcb.15118

Babst F, Poulter B, Trouet V et al (2013) Site- and species-specific responses of forest growth to cli-
mate across the European continent. Glob Ecol Biogeogr 22:706–717. https://doi.org/10.1111/
geb.12023

Babst F, Alexander MR, Szejner P et al (2014a) A tree-ring perspective on the terrestrial carbon 
cycle. Oecologia 176:307–322. https://doi.org/10.1007/s00442- 014- 3031- 6

Babst F, Bouriaud O, Papale D et al (2014b) Above-ground woody carbon sequestration measured 
from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New 
Phytol 201:1289–1303. https://doi.org/10.1111/nph.12589

Babst F, Bodesheim P, Charney N et al (2018) When tree rings go global: challenges and oppor-
tunities for retro- and prospective insight. Quat Sci Rev 197:1–20. https://doi.org/10.1016/j.
quascirev.2018.07.009

Babst F, Bouriaud O, Poulter B et al (2019) Twentieth century redistribution in climatic drivers of 
global tree growth. Sci Adv 5:eaat4313. https://doi.org/10.1126/sciadv.aat4313

Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide 
exchange rates of ecosystems: past, present and future. Glob Chang Biol 9:479–492. https://
doi.org/10.1046/j.1365- 2486.2003.00629.x

Battaglia M, Sands PJ (1998) Process-based forest productivity models and their application in for-
est management. For Ecol Manag 102:13–32. https://doi.org/10.1016/S0378- 1127(97)00112- 6

Berzaghi F, Wright IJ, Kramer K et al (2020) Towards a new generation of trait-flexible vegetation 
models. Trends Ecol Evol 35:191–205. https://doi.org/10.1016/j.tree.2019.11.006

Bosela M, Popa I, Gömöry D et al (2016a) Effects of postglacial phylogeny and genetic diversity 
on the growth variability and climate sensitivity of European silver fir. J Ecol 104:716–724. 
https://doi.org/10.1111/1365- 2745.12561

Bosela M, Redmond J, Ku era M et al (2016b) Stem quality assessment in European National 
Forest Inventories: an opportunity for harmonised reporting? Ann For Sci 73. https://doi.
org/10.1007/s13595- 015- 0503- 8

Bosela M, Štefan ík I, Petráš R, Vacek S (2016c) The effects of climate warming on the growth of 
European beech forests depend critically on thinning strategy and site productivity. Agric For 
Meteorol 222:21–31. https://doi.org/10.1016/j.agrformet.2016.03.005

Bowditch E, Santopuoli G, Binder F et al (2020) What is climate-smart forestry? A definition from 
a multinational collaborative process focused on mountain regions of Europe. Ecosyst Serv 
43:101113. https://doi.org/10.1016/j.ecoser.2020.101113

Bräutigam K, Vining KJ, Lafon-Placette C et al (2013) Epigenetic regulation of adaptive responses 
of forest tree species to the environment. Ecol Evol 3:399–415. https://doi.org/10.1002/
ece3.461

Bravo F, Fabrika M, Ammer C et  al (2019) Modelling approaches for mixed forests dynamics 
prognosis. Research gaps and opportunities. For Syst 28:eR002. https://doi.org/10.5424/
fs/2019281- 14342

Bugmann HKM (1996) A simplified Forest model to study species composition along climate 
gradients. Ecology 77:2055–2074. https://doi.org/10.2307/2265700

Bugmann H, Seidl R, Hartig F et al (2019) Tree mortality submodels drive simulated long-term 
forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10:e02616. 
https://doi.org/10.1002/ecs2.2616

Burkhart HE, Tomé M (2012a) Modeling forest stand development. In: Burkhart HE, Tomé M 
(eds) Modeling Forest trees and stands. Springer, Dordrecht, pp 233–244

Burkhart HE, Tomé M (2012b) Evaluating site quality. In: Burkhart HE, Tomé M (eds) Modeling 
forest trees and stands. Springer, Dordrecht, pp 131–173

M. Bosela et al.



253

Burkhart HE, Tomé M (2012c) Growth functions. In: Burkhart HE, Tomé M (eds) Modeling forest 
trees and stands. Springer, Dordrecht, pp 111–130

Charney ND, Babst F, Poulter B et al (2016) Observed forest sensitivity to climate implies large 
changes in 21st century North American forest growth. Ecol Lett 19:1119–1128. https://doi.
org/10.1111/ele.12650

Chen PY, Welsh C, Hamann A (2010) Geographic variation in growth response of Douglas-fir to 
interannual climate variability and projected climate change. Glob Chang Biol 16:3374–3385. 
https://doi.org/10.1111/j.1365- 2486.2010.02166.x

Cherubini P, Dobbertin M, Innes JL (1998) Potential sampling bias in long-term forest growth 
trends reconstructed from tree rings: a case study from the Italian Alps. For Ecol Manag 
109:103–118. https://doi.org/10.1016/S0378- 1127(98)00242- 4

Christmann (1949) Ertragstafel für Kiefern-Fichten-Mischbestand. In: Ertragstafeln der wichtig-
sten Holzarten bei verschiedener Durchforstung sowie einiger Mischbestandsformen. Schaper, 
Hannover, p 100

Cook E, Kairiukstis L (1990) Methods of dendrochronology: applications in the environmental 
sciences. Springer, Berlin

Cornes R, van der Schrier G, van der Besselaar EJM, Jones PD (2018) An ensemble version of the 
E-OBS temperature and precipitation datasets. J Geophys Res Atmos 123:9391–9409. https://
doi.org/10.1029/2017JD028200

D’Amato AW, Bradford JB, Fraver S, Palik BJ (2011) Forest management for mitigation and adap-
tation to climate change: insights from long-term silviculture experiments. For Ecol Manag 
262:803–816. https://doi.org/10.1016/j.foreco.2011.05.014

Deckmyn G, Verbeeck H, Op de Beeck M et al (2008) ANAFORE: a stand-scale process-based 
forest model that includes wood tissue development and labile carbon storage in trees. Ecol 
Model 215:345–368. https://doi.org/10.1016/j.ecolmodel.2008.04.007

Dorado-Liñán I, Piovesan G, Martínez-Sancho E et al (2019) Geographical adaptation prevails 
over species-specific determinism in trees’ vulnerability to climate change at Mediterranean 
rear-edge forests. Glob Chang Biol 25:1296–1314. https://doi.org/10.1111/gcb.14544

Dormann CF, Calabrese JM, Guillera-Arroita G et al (2018) Model averaging in ecology: a review 
of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecol 
Monogr 88:485–504. https://doi.org/10.1002/ecm.1309

Eriksson G, Namkoong G, Roberds JH (1993) Dynamic gene conservation for uncertain futures. 
For Ecol Manag 62:15–37. https://doi.org/10.1016/0378- 1127(93)90039- P

Fabrika M (2005) Simulátor biodynamiky lesa SIBYLA, koncepcia, konštrukcia a programové 
riešenie. Technical University in Zvolen

Fabrika M, Pretzsch H (2013) Forest ecosystem analysis and modelling, 1st edn. Technical 
University in Zvolen, Zvolen

Fabrika M, Pretzsch H, Bravo F (2018) Models for mixed forests BT – dynamics, silviculture and 
management of mixed forests. In: Bravo-Oviedo A, Pretzsch H, del Río M (eds) . Springer, 
Cham, pp 343–380

Fabrika M, Valent P, Merganicova K (2019) Forest modelling and visualisation – state of the art 
and perspectives. Cent Eur For J 66:147–165. https://doi.org/10.2478/forj- 2019- 0018

Fahey RT, Alveshere BC, Burton JI et  al (2018) Shifting conceptions of complexity in for-
est management and silviculture. For Ecol Manag 421:59–71. https://doi.org/10.1016/j.
foreco.2018.01.011

Fischer C, Gasparini P, Nylander M et al (2016) Joining criteria for harmonizing European Forest 
available for wood supply estimates. Case studies from National Forest Inventories. Forests 
7:104. https://doi.org/10.3390/f7050104

Fontes L, Bontemps J-D, Bugmann H et al (2010) Models for supporting forest management in a 
changing environment. For Syst 3:8. https://doi.org/10.5424/fs/201019s- 9315

FOREST EUROPE (2015) State of Europe’s Forests:2015
Forrester DI, Tang X (2016) Analysing the spatial and temporal dynamics of species interactions 

in mixed-species forests and the effects of stand density using the 3-PG model. Ecol Model 
319:233–254. https://doi.org/10.1016/j.ecolmodel.2015.07.010

7 Modelling Future Growth of Mountain Forests Under Changing Environments



254

Frampton WJ, Dash J, Watmough G, Milton EJ (2013) Evaluating the capabilities of Sentinel-2 for 
quantitative estimation of biophysical variables in vegetation. ISPRS J Photogramm Remote 
Sens 82:83–92. https://doi.org/10.1016/j.isprsjprs.2013.04.007

Frank A, Sperisen C, Howe GT et  al (2017) Distinct genecological patterns in seedlings of 
Norway spruce and silver fir from a mountainous landscape. Ecology 98:211–227. https://doi.
org/10.1002/ecy.1632

Fritts HC (2001) Tree rings and climate. The Blackburn Press, New York/San Francisco
Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present 

forest environments. Academic
Fritts HC, Vaganov EA, Sviderskaya IV, Shashkin AV (1991) Climatic variation and tree-ring 

structure in conifers: empirical and mechanistic models of tree-ring width, number of cells, 
cell size, cell-wall thickness and wood density. Clim Res 1:97–116

Girardin MP, Raulier F, Bernier PY, Tardif JC (2008) Response of tree growth to a changing cli-
mate in boreal Central Canada: a comparison of empirical, process-based, and hybrid model-
ling approaches. Ecol Model 213:209–228. https://doi.org/10.1016/j.ecolmodel.2007.12.010

Gitelson AA, Gamon JA (2015) The need for a common basis for defining light-use efficiency: 
implications for productivity estimation. Remote Sens Environ 156:196–201. https://doi.
org/10.1016/j.rse.2014.09.017

Gr nvalds A (2014) The accuracy of standwise forest inventory in mature stands. Proc Latv Univ 
Agric 32:1–8. https://doi.org/10.2478/plua- 2014- 0007

Gschwantner T, Lanz A, Vidal C et al (2016) Comparison of methods used in European National 
Forest Inventories for the estimation of volume increment: towards harmonisation. Ann For 
Sci:73. https://doi.org/10.1007/s13595- 016- 0554- 5

Guiot J, Boucher E, Gea-Izquierdo G (2014) Process models and model-data fusion in dendroecol-
ogy. Front Ecol Evol 2:52

Gutsch M, Lasch-Born P, Kollas C et  al (2018) Balancing trade-offs between ecosystem ser-
vices in Germany’s forests under climate change. Environ Res Lett 13:45012. https://doi.
org/10.1088/1748- 9326/aab4e5

Haines-Young R, Potschin MB (2018) Common International Classification of Ecosystem Services 
(CICES) V5.1

Halaj J, Petráš R (1998) Rastové tabu ky hlavných drevín [Growth tables of the main tree species]. 
SAP – Slovak Academic Press, Bratislava

Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic 
observations – the CRU TS3.10 Dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/
joc.3711

Hart SJ, Veblen TT, Eisenhart KS et  al (2014) Drought induces spruce beetle (Dendroctonus 
rufipennis) outbreaks across northwestern Colorado. Ecology 95:930–939

Hart SJ, Veblen TT, Schneider D, Molotch NP (2017) Summer and winter drought drive the ini-
tiation and spread of spruce beetle outbreak. Ecology 98:2698–2707. https://doi.org/10.1002/
ecy.1963

Hasenauer H (1994) Ein Einzelbaumsimulator für ungleichaltrige Fichten-Kieferen- und Buchen- 
Fichtenmischbestände. Forstliche Schriftenreihe Universität für Bodenkultur, Wien, Band 8

Hauhs M, Kastner-Maresch A, Rost-Siebert K (1995) A model relating forest growth to 
ecosystem-scale budgets of energy and nutrients. Ecol Model 83:229–243. https://doi.
org/10.1016/0304- 3800(95)00101- Z

He HS (2008) Forest landscape models: definitions, characterization, and classification. For Ecol 
Manag 254:484–498. https://doi.org/10.1016/j.foreco.2007.08.022

Henne PD, Elkin C, Colombaroli D et  al (2013) Impacts of changing climate and land use on 
vegetation dynamics in a Mediterranean ecosystem: insights from paleoecology and dynamic 
modeling. Landsc Ecol 28:819–833. https://doi.org/10.1007/s10980- 012- 9782- 8

Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913. https://doi.
org/10.1038/35016000

Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos Trans R 
Soc Lond Ser B Biol Sci 359:183–195. https://doi.org/10.1098/rstb.2003.1388

M. Bosela et al.



255

Hlásny T, Barcza Z, Fabrika M et al (2011) Climate change impacts on growth and carbon balance 
of forests in Central Europe. Clim Res 47:219–236. https://doi.org/10.3354/cr01024

Hlásny T, Barcza Z, Barka I et al (2014) Future carbon cycle in mountain spruce forests of Central 
Europe: modelling framework and ecological inferences. For Ecol Manag 328:55–68. https://
doi.org/10.1016/j.foreco.2014.04.038

Horemans JA, Bosela M, Dobor L et al (2016) Variance decomposition of predictions of stem bio-
mass increment for European beech: contribution of selected sources of uncertainty. For Ecol 
Manag:361. https://doi.org/10.1016/j.foreco.2015.10.048

Howe GT, Aitken SN, Neale DB et al (2003) From genotype to phenotype: unraveling the com-
plexities of cold adaptation in forest trees. Can J Bot 81:1247–1266

Huang J, Gómez-Dans JL, Huang H et al (2019) Assimilation of remote sensing into crop growth 
models: current status and perspectives. Agric For Meteorol 276–277:107609. https://doi.
org/10.1016/j.agrformet.2019.06.008

Hubau W, Lewis SL, Phillips OL et al (2020) Asynchronous carbon sink saturation in African and 
Amazonian tropical forests. Nature 579:80–87. https://doi.org/10.1038/s41586- 020- 2035- 0

Huber N, Bugmann H, Lafond V (2018) Global sensitivity analysis of a dynamic vegetation 
model: model sensitivity depends on successional time, climate and competitive interactions. 
Ecol Model 368:377–390. https://doi.org/10.1016/j.ecolmodel.2017.12.013

IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and 
III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core 
Writing Team, Pachauri RK, Meyer LA (eds)]

Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change 
projections for European impact research. Reg Environ Chang 14:563–578. https://doi.
org/10.1007/s10113- 013- 0499- 2

Jandl R, Ledermann T, Kindermann G et al (2018) Strategies for climate-smart forest management 
in Austria. Forest 9

Jin H, Eklundh L (2014) A physically based vegetation index for improved monitoring of plant 
phenology. Remote Sens Environ 152:512–525. https://doi.org/10.1016/j.rse.2014.07.010

Jönsson AM, Appelberg G, Harding S, Bärring L (2009) Spatio-temporal impact of climate change 
on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob Chang Biol 
15:486–499. https://doi.org/10.1111/j.1365- 2486.2008.01742.x

Jucker T, Bouriaud O, Avacaritei D, Coomes DA (2014) Stabilizing effects of diversity on 
aboveground wood production in forest ecosystems: linking patterns and processes. Ecol Lett 
17:1560–1569. https://doi.org/10.1111/ele.12382

Kahn M (1994) Modellierung der Höhenentwicklung ausgewählter Baumarten in Abhängigkeit 
vom Standort. Forstliche Forschungsber. München, vol 141

Kapos V, Rhind J, Edwards M et al (2000) Developing a map of the world’s mountain forests. In: 
Price MF, Butt N (eds) Forests in sustainable mountain development: a state-of knowledge 
report for 2000. CAB International, Wallingford, pp 4–19

Keenan TF, Hollinger DY, Bohrer G et al (2013) Increase in forest water-use efficiency as atmo-
spheric carbon dioxide concentrations rise. Nature 499:324–327. https://doi.org/10.1038/
nature12291

Klesse S, DeRose RJ, Guiterman CH et al (2018) Sampling bias overestimates climate change 
impacts on forest growth in the southwestern United States. Nat Commun 9:1–9. https://doi.
org/10.1038/s41467- 018- 07800- y

Köhler P, Huth A (1998) The effects of tree species grouping in tropical rainforest modelling: 
simulations with the individual-based model Formind. Ecol Model 109:301–321. https://doi.
org/10.1016/S0304- 3800(98)00066- 0

Koivuniemi J, Korhonen K (2006) Inventory by compartments. In: Kangas A, Maltamo M (eds) 
Forest inventory: methodology and applications. Springer Dordrecht, pp. 271–278

Kramer K, Leinonen I, Bartelink HH et al (2002) Evaluation of six process-based forest growth 
models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in 
Europe. Glob Chang Biol 8:213–230. https://doi.org/10.1046/j.1365- 2486.2002.00471.x

7 Modelling Future Growth of Mountain Forests Under Changing Environments



256

Kramer K, Degen B, Buschbom J et al (2010) Modelling exploration of the future of European 
beech (Fagus sylvatica L.) under climate change-range, abundance, genetic diversity and adap-
tive response. For Ecol Manag 259:2213–2222. https://doi.org/10.1016/j.foreco.2009.12.023

Kramer K, van der Werf B, Schelhaas M-J (2015) Bring in the genes: genetic-ecophysiological 
modeling of the adaptive response of trees to environmental change. With application to the 
annual cycle. Front Plant Sci 5:1–10. https://doi.org/10.3389/fpls.2014.00742

Kramer K, Ducousso A, Gömöry D et  al (2017) Chilling and forcing requirements for foli-
age bud burst of European beech (Fagus sylvatica L.) differ between provenances and are 
phenotypically plastic. Agric For Meteorol 234–235:172–181. https://doi.org/10.1016/j.
agrformet.2016.12.002

Lafond V, Lagarrigues G, Cordonnier T, Courbaud B (2014) Uneven-aged management options to 
promote forest resilience for climate change adaptation: effects of group selection and harvest-
ing intensity. Ann For Sci 71:173–186. https://doi.org/10.1007/s13595- 013- 0291- y

Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified con-
cepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–228. 
https://doi.org/10.1016/S0378- 1127(97)00026- 1

Lasslop G, Reichstein M, Kattge J, Papale D (2008) Influences of observation errors in eddy 
flux data on inverse model parameter estimation. Biogeosciences 5:1311–1324. https://doi.
org/10.5194/bg- 5- 1311- 2008

Liang L, Di L, Zhang L et al (2015) Estimation of crop LAI using hyperspectral vegetation indices 
and a hybrid inversion method. Remote Sens Environ 165:123–134. https://doi.org/10.1016/j.
rse.2015.04.032

Liepelt S, Cheddadi R, de Beaulieu JL et al (2009) Postglacial range expansion and its genetic 
imprints in Abies alba (Mill.) – a synthesis from palaeobotanic and genetic data. Rev Palaeobot 
Palynol 153:139–149. https://doi.org/10.1016/j.revpalbo.2008.07.007

Lischke H, Zimmermann NE, Bolliger J et  al (2006) TreeMig: a forest-landscape model for 
simulating spatio-temporal patterns from stand to landscape scale. Ecol Model 199:409–420. 
https://doi.org/10.1016/j.ecolmodel.2005.11.046

Liu Q, Fu YH, Liu Y et  al (2018) Simulating the onset of spring vegetation growth across the 
Northern Hemisphere. Glob Chang Biol 24:1342–1356. https://doi.org/10.1111/gcb.13954

Mäkelä A, Landsberg J, Ek AR et  al (2000) Process-based models for forest ecosystem man-
agement: current state of the art and challenges for practical implementation. Tree Physiol 
20:289–298. https://doi.org/10.1093/treephys/20.5- 6.289

Mäkelä A, Grace DG et al (2010) Simulating wood quality in forest management models. For Syst 
19:48–68. https://doi.org/10.5424/fs/201019S- 9314

Mäkelä A, del Río M, Hynynen J et  al (2012) Using stand-scale forest models for estimating 
indicators of sustainable forest management. For Ecol Manag 285:164–178. https://doi.
org/10.1016/j.foreco.2012.07.041

Mausolf K, Wilm P, Härdtle W et al (2018) Higher drought sensitivity of radial growth of European 
beech in managed than in unmanaged forests. Sci Total Environ 642:1201–1208. https://doi.
org/10.1016/j.scitotenv.2018.06.065

McCullagh A, Black K, Nieuwenhuis M (2017) Evaluation of tree and stand-level growth mod-
els using national forest inventory data. Eur J For Res 136:251–258. https://doi.org/10.1007/
s10342- 017- 1025- 8

Meddens AJH, Hicke JA, Vierling LA, Hudak AT (2013) Evaluating methods to detect bark beetle- 
caused tree mortality using single-date and multi-date Landsat imagery. Remote Sens Environ 
132:49–58. https://doi.org/10.1016/j.rse.2013.01.002

Meier ES, Lischke H, Schmatz DR, Zimmermann NE (2012) Climate, competition and connec-
tivity affect future migration and ranges of European trees. Glob Ecol Biogeogr 21:164–178. 
https://doi.org/10.1111/j.1466- 8238.2011.00669.x

Mergani  J, Mergani ová K, Výbo ok J et al (2020) Searching for Pareto fronts for forest stand 
wind stability by incorporating timber and biodiversity values. Forest 11

Mergani ová K, Pietsch SA, Hasenauer H (2005) Testing mechanistic modeling to assess impacts 
of biomass removal. For Ecol Manag 207:37–57. https://doi.org/10.1016/j.foreco.2004.10.017

M. Bosela et al.



257

Mergani ová K, Mergani  J, Lehtonen A et al (2019) Forest carbon allocation modelling under 
climate change. Tree Physiol 39:1937–1960. https://doi.org/10.1093/treephys/tpz105

Meyer G, Black TA, Jassal RS et al (2018) Simulation of net ecosystem productivity of a lodgepole 
pine forest after mountain pine beetle attack using a modified version of 3-PG. For Ecol Manag 
412:41–52. https://doi.org/10.1016/j.foreco.2018.01.034

Michel A, Prescher A-K, Schwärzel K (2019) Forest condition in Europe: 2019 technical report of 
ICP forests. Report under the UNECE Convention on Long-range Transboundary Air Pollution 
(Air Convention). BFW-Dokumentation 27/2019, Vienna, Austria

Mina M, Bugmann H, Klopcic M, Cailleret M (2017) Accurate modeling of harvesting is key for 
projecting future forest dynamics: a case study in the Slovenian mountains. Reg Environ Chang 
17:49–64. https://doi.org/10.1007/s10113- 015- 0902- 2

Minunno F, Peltoniemi M, Härkönen S et al (2019) Bayesian calibration of a carbon balance model 
PREBAS using data from permanent growth experiments and national forest inventory. For 
Ecol Manag 440:208–257. https://doi.org/10.1016/j.foreco.2019.02.041

Mo X, Chen JM, Ju W, Black TA (2008) Optimization of ecosystem model parameters through 
assimilating eddy covariance flux data with an ensemble Kalman filter. Ecol Model 
217:157–173. https://doi.org/10.1016/j.ecolmodel.2008.06.021

Monserud RA, Sterba H (1996) A basal area increment model for individual trees growing in 
even- and uneven-aged forest stands in Austria. For Ecol Manag 80:57–80. https://doi.
org/10.1016/0378- 1127(95)03638- 5

Moreno A, Hasenauer H (2016) Spatial downscaling of European climate data. Int J Climatol 
36:1444–1458. https://doi.org/10.1002/joc.4436

Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate 
change research and assessment. Nature 463:747–756. https://doi.org/10.1038/nature08823

Nabuurs G-J, Lindner M, Verkerk PJ et al (2013) First signs of carbon sink saturation in European 
forest biomass. Nat Clim Chang 3:792–796. https://doi.org/10.1038/nclimate1853

Nabuurs GJ, Arets EJMM, Schelhaas MJ (2018) Understanding the implications of the 
EU-LULUCF regulation for the wood supply from EU forests to the EU 07 Agricultural and 
Veterinary Sciences 0705 Forestry Sciences Georgii Alexandrov. Carbon Balance Manag 
13:18. https://doi.org/10.1186/s13021- 018- 0107- 3

Nagel J (1996) Anwendungsprogramm zur Bestandesbewertung und zur Prognose der 
Bestandesentwicklung. Forst und Holz 3:76–78

Nagel J (1999) Konzeptionelle Überlegungen zum schrittweisen Aufbau eines waldwachstum-
skundlichen Simulationssystems für Nordwestdeutschland. Schriften aus der Forstlichen 
Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt. 
J. D. Sauerländer’s verlag, Frankfurt am Main

Nakicenovic N, Davidson O, Davis G et al (2000) Special report on emissions scenarios: a special 
report of the Working Group III of the Intergovernmental Panel on Climate Change

Namkoong G (1998) Forest genetics and conservation in Europe. In: Turok J, Palmberg-Lerche C, 
Skroppa T, Ouedraogo AS (eds) Conservation of forest genetic resources in Europe. Proceedings 
of the European Forest Genetic Resources Workshop, 21 November 1995. International Plant 
Genetic Resources Institute, Sopron, Hingary, pp. 3–10

Neale DB, Wheeler N (2019) The conifers: genomes, variation and evolution. Springer International 
Publishing

Nehrbass-Ahles C, Babst F, Klesse S et al (2014) The influence of sampling design on tree-ring- 
based quantification of forest growth. Glob Chang Biol 20:2867–2885. https://doi.org/10.1111/
gcb.12599

Neumann M, Moreno A, Thurnher C et al (2016) Creating a regional MODIS satellite-driven net 
primary production dataset for European forests. Remote Sens 8

Noormets A, Epron D, Domec JC et al (2015) Effects of forest management on productivity and 
carbon sequestration: a review and hypothesis. For Ecol Manag 355:124–140. https://doi.
org/10.1016/j.foreco.2015.05.019

Nyström M, Lindgren N, Wallerman J et  al (2015) Data assimilation in forest inventory: first 
empirical results. Forests 6:4540–4557

7 Modelling Future Growth of Mountain Forests Under Changing Environments



258

O’Hara KL (2006) Multiaged forest stands for protection forests: concepts and applications. For 
Snow Landsc Res 80:45–55

O’Hara KL, Ramage BS (2013) Silviculture in an uncertain world: utilizing multi-aged man-
agement systems to integrate disturbance†. For An Int J For Res 86:401–410. https://doi.
org/10.1093/forestry/cpt012

Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. 
Science 333:988–993. https://doi.org/10.1126/science.1201609

Pappas C, Bélanger N, Bergeron Y, et al (2021) Smartforests Canada - A network of monitoring 
plots for forest management under environmental change. In: Managing Forest Ecosystems, 
Vol. 40, Tognetti R, Smith M, Panzacchi P (Eds): Climate-Smart Forestry in Mountain Regions. 
Springer Nature, Switzerland, AG

Peters RL, Groenendijk P, Vlam M, Zuidema PA (2015) Detecting long-term growth trends 
using tree rings: a critical evaluation of methods. Glob Chang Biol 21:2040–2054. https://doi.
org/10.1111/gcb.12826

Petit RJ, Aguinagalde I, de Beaulieu J-L et al (2003) Glacial refugia: hotspots but not melting pots 
of genetic diversity. Science (80-) 300:1563–1565. https://doi.org/10.1126/science.1083264

Picard N, Henry M, Mortier F et al (2012) Using Bayesian model averaging to predict tree aboveg-
round biomass in tropical moist forests. For Sci 58:15–23. https://doi.org/10.5849/forsci.10- 083

Porté A, Bartelink HH (2002) Modelling mixed forest growth: a review of models for forest man-
agement. Ecol Model 150:141–188. https://doi.org/10.1016/S0304- 3800(01)00476- 8

Pretzsch H (2009) Forest Dynamics, Growth and Yield. From Measurement to Model. Springer- 
Verlag Berlin Heidelberg, 664 pp. https://doi.org/10.1007/978- 3- 540- 88307- 4

Pretzsch H (2020) The course of tree growth. Theory and reality. For Ecol Manag 478:118508. 
https://doi.org/10.1016/j.foreco.2020.118508

Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands 
of Norway spruce and European beech in Central Europe: evidence on stand level and 
explanation on individual tree level. Eur J For Res 128:183–204. https://doi.org/10.1007/
s10342- 008- 0215- 9

Pretzsch H, Schütze G (2015) Effect of tree species mixing on the size structure, density, and yield 
of forest stands. Eur J For Res. https://doi.org/10.1007/s10342- 015- 0913- z

Pretzsch H, Biber P, urský J (2002) The single tree-based stand simulator SILVA: construc-
tion, application and evaluation. For Ecol Manag 162:3–21. https://doi.org/10.1016/
S0378- 1127(02)00047- 6

Pretzsch H, Block J, Dieler J et al (2010) Comparison between the productivity of pure and mixed 
stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 
67:712–712. https://doi.org/10.1051/forest/2010037

Pretzsch H, Biber P, Schütze G et al (2014) Forest stand growth dynamics in Central Europe has 
accelerated since 1870. Nat Commun 5:4967. https://doi.org/10.1038/ncomms5967

Pretzsch H, Forrester DI, Rötzer T (2015) Representation of species mixing in forest growth 
models: a review and perspective. Ecol Model 313:276–292. https://doi.org/10.1016/j.
ecolmodel.2015.06.044

Pretzsch H, Hilmers T, Uhl E, et  al (2021) Efficacy of trans-geographic observational network 
design for revelation of growth pattern in mountain forests across Europe. In: Managing Forest 
Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P (Eds): Climate-Smart Forestry in 
Mountain Regions. Springer Nature, Switzerland, AG

Puettmann KJ (2011) Silvicultural challenges and options in the context of global change: “sim-
ple” fixes and opportunities for new management approaches. J For 109:321–331. https://doi.
org/10.1093/jof/109.6.321

Rasche L, Fahse L, Zingg A, Bugmann H (2011) Getting a virtual forester fit for the challenge of 
climatic change. J Appl Ecol 48:1174–1186. https://doi.org/10.1111/j.1365- 2664.2011.02014.x

Rauscher HM, Isebrands JG, Host GE et  al (1990) ECOPHYS: an ecophysiological growth 
process model for juvenile poplar. Tree Physiol 7:255–281. https://doi.org/10.1093/
treephys/7.1- 2- 3- 4.255

M. Bosela et al.



259

Rocha A, Goulden M, Dunn A, Wofsy S (2006) On linking interannual tree ring variability 
with observations of whole-forest CO2 flux. Glob Chang Biol 12:1378–1389. https://doi.
org/10.1111/j.1365- 2486.2006.01179.x

Rötzer T, Seifert T, Pretzsch H (2009) Modelling above and below ground carbon dynamics in a 
mixed beech and spruce stand influenced by climate. Eur J For Res 128:171–182. https://doi.
org/10.1007/s10342- 008- 0213- y

Rötzer T, Leuchner M, Nunn AJ (2010) Simulating stand climate, phenology, and photosynthesis 
of a forest stand with a process-based growth model. Int J Biometeorol 54:449–464. https://doi.
org/10.1007/s00484- 009- 0298- 0

Rüetschi M, Small D, Waser LT (2019) Rapid detection of windthrows using Sentinel-1 C-band 
SAR data. Remote Sens 11

Rummukainen M (2010) State-of-the-art with regional. Clim Chang 1:82–96. https://doi.
org/10.1002/wcc.008

Sánchez-Salguero R, Camarero JJ, Gutiérrez E et al (2017) Assessing forest vulnerability to cli-
mate warming using a process-based model of tree growth: bad prospects for rear-edges. Glob 
Chang Biol:2705–2719. https://doi.org/10.1111/gcb.13541

Schelhaas MJ, Eggers J, Lindner M et al (2007) Model documentation for the European Forest 
Information Scenario model (EFISCEN 3.1.3). Alterra, 268, Centrum Ecosystemen,

Scherrer D, Vitasse Y, Guisan A et al (2020) Competition and demography rather than dispersal 
limitation slow down upward shifts of trees’ upper elevation limits in the Alps. J Ecol. https://
doi.org/10.1111/1365- 2745.13451

Schuler LJ, Bugmann H, Petter G, Snell RS (2019) How multiple and interacting disturbances 
shape tree diversity in European mountain landscapes. Landsc Ecol 34:1279–1294. https://doi.
org/10.1007/s10980- 019- 00838- 3

Schumacher S, Bugmann H, Mladenoff DJ (2004) Improving the formulation of tree growth 
and succession in a spatially explicit landscape model. Ecol Model 180:175–194. https://doi.
org/10.1016/j.ecolmodel.2003.12.055

Seidl R, Schelhaas MJ, Lexer MJ (2011) Unraveling the drivers of intensifying for-
est disturbance regimes in Europe. Glob Chang Biol 17:2842–2852. https://doi.
org/10.1111/j.1365- 2486.2011.02452.x

Seidl R, Rammer W, Scheller RM, Spies TA (2012) An individual-based process model to simulate 
landscape-scale forest ecosystem dynamics. Ecol Model 231:87–100. https://doi.org/10.1016/j.
ecolmodel.2012.02.015

Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe 
and their impact on carbon storage. Nat Clim Chang 4:806–810. https://doi.org/10.1038/
nclimate2318

Seidl R, Albrich K, Erb K et  al (2019) What drives the future supply of regulating ecosystem 
services in a mountain forest landscape? For Ecol Manag 445:37–47. https://doi.org/10.1016/j.
foreco.2019.03.047

Seintsch B, Döring P, Dunger K et al (2017) Das WEHAM-Szenarien Verbundforschungsprojekt. 
AFZ/Der Wald 72:10–13

Shifley SR, He HS, Lischke H et al (2017) The past and future of modeling forest dynamics: from 
growth and yield curves to forest landscape models. Landsc Ecol 32:1307–1325. https://doi.
org/10.1007/s10980- 017- 0540- 9

Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendromet-
ric concepts for even-aged stands. Forestry 81:13–31. https://doi.org/10.1093/forestry/cpm041

Socha J, Tymi ska-Czaba ska L (2019) A method for the development of dynamic site index 
models using height–age data from temporal sample plots. Forest 10

Sodtke R, Schmidt M, Fabrika M et al (2004) Anwendung und Einsatz von Einzelbaummodellen 
als Komponenten von entscheidungsunterstützenden Systemen für die strategische 
Forstbetriebsplannung. Forstarchiv 75:51–64

Sperry JS, Venturas MD, Todd HN et al (2019) The impact of rising CO2 and acclimation on the 
response of US forests to global warming. Proc Natl Acad Sci 116:25734–25744. https://doi.
org/10.1073/pnas.1913072116

7 Modelling Future Growth of Mountain Forests Under Changing Environments



260

Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of for-
ests in Europe—temperate zone. J Environ Manag 67:55–65. https://doi.org/10.1016/
S0301- 4797(02)00188- 3

Stadelmann G, Temperli C, Rohner B et al (2019) Presenting MASSIMO: a management scenario 
simulation model to project growth, harvests and carbon dynamics of Swiss forests. Forest 10

Sterba H (1995) PROGNAUS – ein absandsunabhängiger Wachstumssimulator für ungleichaltrige 
Mischbestände. In: DVFF – Sektion Ertragskunde. Joachimstahl, pp 173–183

Stute M, Clement A, Lohmann G (2001) Global climate models: past, present, and future. Proc 
Natl Acad Sci U S A 98:10529–10530. https://doi.org/10.1073/pnas.191366098

Svoboda M, Janda P, Ba e R et  al (2014) Landscape-level variability in historical disturbance 
in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J Veg Sci 
25:386–401. https://doi.org/10.1111/jvs.12109

Temperli C, Bugmann H, Elkin C (2012) Adaptive management for competing forest goods and 
services under climate change. Ecol Appl 22:2065–2077. https://doi.org/10.1890/12- 0210.1

Temperli C, Veblen TT, Hart SJ et al (2015) Interactions among spruce beetle disturbance, climate 
change and forest dynamics captured by a forest landscape model. Ecosphere 6:art231. https://
doi.org/10.1890/ES15- 00394.1

Temperli C, Blattert C, Stadelmann G et al (2020) Trade-offs between ecosystem service provision 
and the predisposition to disturbances: a NFI-based scenario analysis. For Ecosyst 7:27. https://
doi.org/10.1186/s40663- 020- 00236- 1

Temperli C, Santopuoli G, Bottero A, et al (2021) National Forest Inventory data to evaluate Climate- 
Smart Forestry. In: Managing Forest Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P 
(Eds): Climate-Smart Forestry in Mountain Regions. Springer Nature, Switzerland, AG

Thom D, Rammer W, Seidl R (2017) The impact of future forest dynamics on climate: interactive 
effects of changing vegetation and disturbance regimes. Ecol Monogr 87:665–684. https://doi.
org/10.1002/ecm.1272

Thornton PE, Running SW, Hunt ER (2005) Biome-BGC: terrestrial ecosystem process model, 
Version 4.1.1

Thrippleton T, Lüscher F, Bugmann H (2020) Climate change impacts across a large forest enter-
prise in the Northern Pre-Alps: dynamic forest modelling as a tool for decision support. Eur J 
For Res 139:483–498. https://doi.org/10.1007/s10342- 020- 01263- x

Tognetti R, Valentini R, Belelli Marchesini L, Gianelle D, Panzacchi P, Marshall JD (2021) 
Continuous monitoring of tree responses to climate change for smart forestry – a cybernetic 
web of trees. In: Managing Forest Ecosystems, Vol. 40, Tognetti R, Smith M, Panzacchi P 
(Eds): Climate-Smart Forestry in Mountain Regions. Springer Nature, Switzerland, AG

Toïgo M, Vallet P, Perot T et al (2015) Overyielding in mixed forests decreases with site productiv-
ity. J Ecol 103:502–512. https://doi.org/10.1111/1365- 2745.12353

Tolwinski-Ward SE, Evans MN, Hughes MK, Anchukaitis KJ (2011) An efficient forward model 
of the climate controls on interannual variation in tree-ring width. Clim Dyn 36:2419–2439. 
https://doi.org/10.1007/s00382- 010- 0945- 5

Tomppo E, Gschwantner T, Lawrence M, McRoberts RE (2010) National forest inventories – path-
ways for common reporting. Springer

Torresan C, Luyssaert S, Filippa G, Imangholiloo M, Gaulton R (2021) Remote sensing technolo-
gies for assessing climate-smart criteria in mountain forests. In: Managing Forest Ecosystems, 
Vol. 40, Tognetti R, Smith M, Panzacchi P (Eds): Climate-Smart Forestry in Mountain Regions. 
Springer Nature, Switzerland, AG

Trotsiuk V, Hartig F, Cailleret M et  al (2020) Assessing the response of forest productivity to 
climate extremes in Switzerland using model–data fusion. Glob Chang Biol 26:2463–2476. 
https://doi.org/10.1111/gcb.15011

Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings: images of 
past and future environments. Springer, Berlin/Heidelberg

van der Plas F, Manning P, Allan E et  al (2016) Jack-of-all-trades effects drive biodiversity- 
ecosystem multifunctionality relationships in European forests. Nat Commun 7:11109. https://
doi.org/10.1038/ncomms11109

M. Bosela et al.



261

van Oijen M, Reyer C, Bohn FJ et al (2013) Bayesian calibration, comparison and averaging of six 
forest models, using data from Scots pine stands across Europe. For Ecol Manag 289:255–268. 
https://doi.org/10.1016/j.foreco.2012.09.043

Vanclay JK, Skovsgaard JP (1997) Evaluating forest growth models. Ecol Model 98:1–12. https://
doi.org/10.1016/S0304- 3800(96)01932- 1

Vauhkonen J, Berger A, Gschwantner T et  al (2019) Harmonised projections of future forest 
resources in Europe. Ann For Sci 76:79. https://doi.org/10.1007/s13595- 019- 0863- 6

Veblen TT, Hadley KS, Nel EM et al (1994) Disturbance regime and disturbance interactions in a 
Rocky Mountain Subalpine Forest. J Ecol 82:125–135. https://doi.org/10.2307/2261392

Verkerk PJ, Anttila P, Eggers J et al (2011) The realisable potential supply of woody biomass from 
forests in the European Union. For Ecol Manag 261:2007–2015. https://doi.org/10.1016/j.
foreco.2011.02.027

Vidal C, Lanz A, Tomppo E et al (2008) Establishing forest inventory reference definitions for 
forest and growing stock: a study towards common reporting. Silva Fenn 42:247–266. https://
doi.org/10.14214/sf.255

Vidal C, Alberdi I, Hernández L, Redmond J (2016a) National Forest Inventories: assessment of 
wood availability and use, 1st edn. Springer International Publishing, Cham

Vidal C, Alberdi I, Redmond J et al (2016b) The role of European National Forest Inventories for 
international forestry reporting. Ann For Sci. https://doi.org/10.1007/s13595- 016- 0545- 6

Wang Y-P, Trudinger CM, Enting IG (2009) A review of applications of model–data fusion to stud-
ies of terrestrial carbon fluxes at different scales. Agric For Meteorol 149:1829–1842. https://
doi.org/10.1016/j.agrformet.2009.07.009

Wang T, O’Neill GA, Aitken SN (2010) Integrating environmental and genetic effects to 
predict responses of tree populations to climate. Ecol Appl 20:153–163. https://doi.
org/10.1890/08- 2257.1

Waring RH, Coops NC, Landsberg JJ (2010) Improving predictions of forest growth using the 
3-PGS model with observations made by remote sensing. For Ecol Manag 259:1722–1729. 
https://doi.org/10.1016/j.foreco.2009.05.036

Weiskittel A, Hann D, Kershaw J, Vanclay J (2011) Forest growth and yield modeling
Wilson B, Howard R (1968) A computer model for cambial activity. For Sci 14:77–90
Yang Y, Anderson M, Gao F et  al (2020) Investigating impacts of drought and disturbance on 

evapotranspiration over a forested landscape in North Carolina, USA using high spatiotemporal 
resolution remotely sensed data. Remote Sens Environ 238:111018. https://doi.org/10.1016/j.
rse.2018.12.017

Youhua R, Li X, Sun R et al (2016) Spatial representativeness and uncertainty of eddy covariance 
carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agric For 
Meteorol 230–231:114–127

Yousefpour R, Temperli C, Jacobsen JB et al (2017) A framework for modeling adaptive forest 
management and decision making under climate change. Ecol Soc 22. https://doi.org/10.5751/
ES- 09614- 220440

Yousefpour R, Augustynczik ALD, Reyer CPO et  al (2018) Realizing mitigation efficiency 
of European commercial forests by climate smart forestry. Sci Rep 8:1–11. https://doi.
org/10.1038/s41598- 017- 18778- w

Yuan W, Liu S, Yu G et al (2010) Global estimates of evapotranspiration and gross primary pro-
duction based on MODIS and global meteorology data. Remote Sens Environ 114:1416–1431. 
https://doi.org/10.1016/j.rse.2010.01.022

Zell J (2018) Climate sensitive tree growth functions and the role of transformations. Forest 9
Zell J, Rohner B, Thürig E, Stadelmann G (2019) Modeling ingrowth for empirical forest predic-

tion systems. For Ecol Manag 433:771–779. https://doi.org/10.1016/j.foreco.2018.11.052
Zellweger F, De Frenne P, Lenoir J et al (2020) Forest microclimate dynamics drive plant responses 

to warming. Science (80-) 368:772–775. https://doi.org/10.1126/science.aba6880
Zhang K, Kimball JS, Running SW (2016) A review of remote sensing based actual evapotranspi-

ration estimation. WIREs Water 3:834–853. https://doi.org/10.1002/wat2.1168

7 Modelling Future Growth of Mountain Forests Under Changing Environments



262

Zurbriggen N, Nabel JEMS, Teich M et  al (2014) Explicit avalanche-forest feedback simula-
tions improve the performance of a coupled avalanche-forest model. Ecol Complex 17:56–66. 
https://doi.org/10.1016/j.ecocom.2013.09.002

Zweifel R, Eugster W, Etzold S et al (2010) Link between continuous stem radius changes and 
net ecosystem productivity of a subalpine Norway spruce forest in the Swiss Alps. New Phytol 
187:819–830. https://doi.org/10.1111/j.1469- 8137.2010.03301.x

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

M. Bosela et al.


