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Climate change is likely to result in novel conditions with no analogy to current 
climate. Therefore, the application of species distribution models (SDMs) based on 
the correlation between observed species’ occurrence and their environment is ques-
tionable and calls for a better understanding of the traits that determine species occur-
rence. Here, we compared two intraspecific, trait-based SDMs with occurrence-based 
SDMs, all developed from European data, and analyzed their transferability to the 
native range of Douglas-fir in North America.

With data from 50 provenance trials of Douglas-fir in central Europe multivariate 
universal response functions (URFs) were developed for two functional traits 
(dominant tree height and basal area) which are good indicators of growth and vitality 
under given environmental conditions. These trials included 290 North American 
provenances of Douglas-fir. The URFs combine genetic effects i.e. the climate of 
provenance origin and environmental effects, i.e. the climate of planting locations 
into an integrated model to predict the respective functional trait from climate data. 
The URFs were applied as SDMs (URF-SDMs) by converting growth performances 
into occurrence. For comparison, an ensemble occurrence-based SDM was developed 
and block cross validated with the BIOMOD2 modeling platform utilizing the 
observed occurrence of Douglas-fir in Europe. The two trait based SDMs and the 
occurrence-based SDM, all calibrated with data from Europe, were applied to predict 
the known distribution of Douglas-fir in its introduced and native range in Europe 
and North America.

Both models performed well within their calibration range in Europe, but model 
transfer to its native range in North America was superior in case of the URF-SDMs 
showing similar predictive power as SDMs developed in North America itself. The 
high transferability of the URF-SDMs is a testimony of their applicability under novel 
climatic conditions highlighting the role of intraspecific trait variation for adaptation 
planning in climate change.
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Introduction

Change in species composition and diversity due to unin-
tended invasion and intended human aided transport of spe-
cies beyond their native ranges is a major component of global 
environmental change. Particularly for long-living organisms 
such as forest trees, the rate of adaptation is likely to be slower 
compared to the rate of climate change leading to adapta-
tion lags or even extinction (Aitken et al. 2008, Aitken and 
Bemmels 2015). As such, there has been considerable interest 
in developing models to aid our understanding of species dis-
tribution limits (Sykes et al. 1996, Zimmermann et al. 2010, 
Guisan et al. 2013). These models are generally termed as 
species distribution models (SDMs) or niche models and are 
applied to 1) develop and test hypotheses about species dis-
tribution limits (Kreyling et al. 2015); 2) reconstruct changes 
of species distributions in the past, 3) predict species range 
in the future, and the consequences thereof for natural and 
artificial ecosystems (Sykes et al. 1996, Thuiller et al. 2008); 
and 4) develop conservation and management strategies 
with regard to ongoing climate change (Guisan et al. 2013, 
Hamann and Aitken 2013).

SDMs are often classified into 1) occurrence-based 
SDMs, which are based on statistical relationships between 
appropriate climate variables and the occurrence of a spe-
cies (Guisan et al. 2013), and 2) mechanistic or trait-based 
SDMs, where the occurrence of a species is modeled based on 
a functional understanding of its physiological, reproductive, 
or genetic limits (Higgins et al. 2012, Valladares et al. 2014, 
Gutiérrez et al. 2016). An in-depth review of major SDM 
approaches however found that the differences between the 
occurrence and trait-based SDMs are not strictly dichoto-
mous and some approaches are more mechanistic than cor-
relative and vice versa (Dormann et al. 2012). Moreover, the 
distinction between various model types is often rooted in the 
kind of niche estimated by the respective model rather than in 
technical or methodological differences (Pearson et al. 2006, 
Dormann et al. 2012, Peterson et al. 2015, Shabani et al. 
2016). Principally, occurrence-based SDMs represent the 
realized niche including abiotic as well as biotic constraints, 
whereas trait-based SDMs preferentially describe the species’ 
fundamental niche and might incorporate species interac-
tions, dispersal limitations, or genetic variation if a functional 
understanding of these processes exists (Kearney and Porter 
2009, Kearney et al. 2010, Peterson et al. 2015).

Occurrence-based SDMs statistically correlate observed 
species presence or presence/absence with environmental 
variables assuming that this correlation defines the causality 
of occurrence. In contrast, the trait-based SDMs indirectly 
formulate the causality of occurrence as mathematical func-
tions defining the variation in the species’ functional and life 
history traits (morphology, behavior, physiology, develop-
ment, growth, reproduction) as a response to environmental 
factors (Dormann et al. 2012). Therefore, trait-based SDMs 
are closer to a mechanistic approach and can be applied to 
access the likelihood of species’ occurrence although the 

underlying mathematical functions might be correlative in 
nature (Buckley et al. 2010, Dormann et al 2012).

The major advantage of occurrence-based SDMs is that 
they can be easily developed from species’ presence or pres-
ence/absence data and high-resolution environmental data, 
which have become available in the last decades (Peterson et al. 
2015). However, occurrence-based SDMs have been criti-
cized for only focusing on the species’ current distribution 
and thus realized niche, while under climate change SDMs 
are required to identify areas where a species could possibly 
occur (Wiens et al. 2009). Thus, their potential for appli-
cations under novel climates, or to be transferred to other 
region is limited (Randin et al. 2006, Kearney et al. 2010, 
Dormann et al. 2012). Modeling the potential distribution of 
a species in its introduced range poses additional challenges 
for occurrence-based SDMs, such as non-availability of reli-
able occurrence data (Brus et al. 2012) and lack of under-
standing of ‘niche conservation’ whereby species may or may 
not have similar niches in the native and introduced ranges 
(Broennimann et al. 2007, Camenen et al. 2016).

As trait-based SDMs incorporate the explicit relation-
ships between environmental conditions and functional and 
life history traits, they are conceptually independent of cur-
rently observed species distributions (Kearney and Porter 
2009, Buckley et al. 2010, Peterson et al. 2015). This offers a 
major advantage, in terms of the applicability of such SDMs 
to a novel environment (Buckley et al. 2010, Dormann et al. 
2012, Peterson et al. 2015).

A limitation shared by most occurrence-based and trait-
based SDMs is that they treat species as a homogenous unit  
in terms of intraspecific variations in distribution, functional 
and life history traits (Dormann et al. 2012, Peterson et al. 
2015). Particularly, in the case of species with wide intraspe-
cific variation in fitness-related traits such as morphology, 
physiology, development, growth, and reproduction, the 
cumulative niche of individual populations or subspecies is 
wider than that of a generic species (Pearman et al. 2010, 
Oney et al. 2013, Hällfors et al. 2016). These studies provide 
empirical evidence in favor of the assumption that intra-
specific genetic variation can be used to potentially buffer 
effects of climate change on future tree species distributions. 
Practically, this implies that if appropriate provenances/seed 
material needs are identified, the effects of climate change 
induced migration lag of trees can be overcome to a certain 
extent (Benito Garzón et al. 2011, Aitken and Bemmels 
2015). At present, the wide application of SDMs which 
account for intraspecific variation is limited by the availabil-
ity of sufficient provenance trial data and by the difficulty to 
validate the models for regions where a species may be intro-
duced. However, if in addition to intraspecific variation also 
the limited migration capacity of trees is being considered, 
the modeled species distributions in climate change may 
indicate an even more serious risk for species and populations 
(Valladares et al. 2014, Hällfors et al. 2016).

In a recent study, we developed two universal response 
functions (URFs), that predict the intraspecific phenotypic 
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variation of functional traits such as dominant tree height 
and basal area of the North American Douglas-fir Pseudotsuga 
menziesii for plantations in central Europe as a response 
to climatic drivers (Chakraborty et al. 2015, 2016). In 
URFs, the relationships between two functional traits (tree 
height and basal area) and the environmental variables are 
mathematically specified as causal relations allowing a mech-
anistic understanding of trait variation and species distribu-
tion although the model formulations are correlative and 
empirical in nature (Dormann et al. 2012). Functional traits 
such as dominant height are reliable indicators of the tree’s 
competitive status within a stand, thus representing vitality 
and reproductive potential. Moreover, basal area combines 
both radial growth and stem density and thus also depends 
on initial survival as another important life history trait 
(Díaz et al. 2015).

Currently, Douglas-fir is considered as one of the most 
attractive non-native conifers in Europe, because of its 
excellent growth performance and superior wood quality 
(Hermann and Lavender 1999). However, comparisons of 
climatic conditions in the native range in North America 
with potential future climate conditions in central Europe 
indicated, that the species’ future suitability might be ques-
tionable and cast doubts on the most appropriate seed sources 
(Isaac-Renton et al. 2014). In addition, recent occurrence 
based-SDMs (Boiffin et al. 2017) calibrated with presence/
absence data in North America failed to predict the observed 
occurrence of Douglas-fir in Europe, thus questioning the 
validity of such traditional models when extrapolated. Our 
universal response functions (URFs) (Wang et al. 2010), are 
based on extensive provenance trial data from Austria and 
southern Germany and can be applied at any putative plant-
ing site in Europe (Chakraborty et al. 2015) to predict future 
growth performance and to identify the most suitable plant-
ing stock for stand establishment (Chakraborty et al. 2016). 
The URFs combine genetic effects, i.e. the climate of prov-
enance origin and environmental effects, i.e. the climate of 
planting locations into an integrated model to predict the 
respective functional trait from climate data. The URFs 
were subjected to model evaluation to examine the effects 
of change in model coefficients (parameter uncertainty) and 
climate data (climate change uncertainty) on model perfor-
mance. Moreover, model results were evaluated on indepen-
dent trial data from across Europe. Although the models 
were calibrated within a relatively narrow geographic range 
in central Europe, the models were found to applicable under 
a wide range of environmental conditions and in particular 
for conditions of southeastern Europe which resemble the 
expected climate change (Chakraborty et al. 2016). This 
result prompted us to test if the URFs can be applied as 
SDMs in the sense of testing the suitable climate in which 
Douglas-fir can grow. This can be achieved by truncating 
the lower end of the estimated trait response curves, thereby 
converting the variation in functional traits to the climatic 
suitability of occurrence (Wang et al. 2010, Dormann et al. 
2012). Mathematically, this requires thresholds for predicted 

functional trait values above which the species is known to 
grow and reproduce (Buckley 2008, Buckley et al. 2010, 
Stahl et al. 2014, Gutiérrez et al. 2016).

In order to determine the applicability of SDMs both in 
space and time, the concept of transferability (Thomas and 
Bovee 1993, Glozier et al. 1997) has been conceived and 
applied for a wide range of questions, including, for example, 
tracing the evolutionary history of species (Nogués-Bravo 
2009), the assessment of species’ invasive potential into 
new habitats (Peterson et al. 2001, Peterson 2003), or sim-
ply the sensitivity of SDMs to extrapolation (Randin et al. 
2006, Barbosa et al. 2009). Transferability of the occurrence-
based SDMs depends on two major criteria, 1) within the 
occurrence data used for model development species are in 
equilibrium with their environment, 2) and the analogy of 
climate between training and application area. SDMs devel-
oped with data on functional traits such as the URFs do 
not rely on the assumption of species being in equilibrium 
with their environment and climate analogy and therefore 
are assumed to have superior transferability (Vanreusel et al. 
2007). However, comparison of transferability of occurrence-
based and functional trait-based SDMs are rare (but see, 
Kearney et al. 2010) and do not exist for SDMs built on 
intraspecific trait variation.

The aim of this study is to examine the transferability of 
SDMs based on intraspecific trait variation and to compare 
them with occurrence-based SDMs when applied outside of 
their calibration ranges. The study does not aim to replace 
existing SDMs calibrated with data from a species natural 
range, but rather focuses on testing approaches of predict-
ing climatic suitability for species for which reliable presence/
absence data does not exist.

Material and methods

Trait-based URF-SDMs

The URFs for the current study were developed from tree 
growth data of 50 provenance trials in Austria and southern 
Germany that included 290 provenances of both the coastal 
and interior variety of Douglas-fir and 77 000 individual tree 
measurements (Supplementary material Appendix 1 Fig. A1). 
Although these trials are located across a relatively narrow geo-
graphic range (Supplementary material Appendix 1 Fig. A1),  
they cover a wide climatic spectrum (Fig. 1). The tested 
provenances originate from a wide range of climatic condi-
tions in the native range of Douglas-fir in North America 
(Fig. 1) (see Chakraborty et al. 2015 for details).

All trials were established between 1973 and 1993 by the 
Austrian Research Centre for Forests BFW, Vienna, Austria 
and the Bavarian Office for Forest Seeding and Planting ASP, 
Teisendorf, Germany. The provenance trials were designed as 
randomized blocks. Within each block (replication) three to 
four year old pre-cultivated seedlings of selected provenances 
were planted in plots of 20–100 individuals with a spacing 
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of 2 × 2 m. After fifteen years, tree density was reduced to 
approximately ten trees per plot (i.e.1000 trees ha–1) in order 
to have equal stem density across all trials. At various ages 
(between 10–35 yr) diameter at breast height (DBH) of all 
trees and tree height of 50–100 randomly selected trees were 
measured at each trial. Mean tree survival across all the tri-
als were generally high (~ 74%) and differences in survival 
between provenances small as revealed by preliminary analy-
sis (see also Schultze and Raschka 2002). From this data, two 
functional traits, the dominant tree height at age 24 (H24) 
and the mean basal area per hectare (BA24) were used as 
response variables of the URFs (Chakraborty et al. 2015, 
2016). The URFs are quadratic models (Eq. 1) relating one 
of these functional traits to the climate of the trial locations 
in central Europe and the climate of the seed origins in North 
America.

Predictor candidates for developing the URFs consisted 
of 20 biologically relevant climate variables at each of the 
trial locations in Austria and southern Germany and the seed 
origin locations in North America (Supplementary material 
Appendix 1 Table A1). Climate variables of trial locations 
covering the period from the installation of each trial until the 
most recent measurements were obtained from regional net-
works of weather stations and from Haslinger et al. (2012). 
For each provenance trial, the daily mean temperature and 
precipitation from the four closest weather stations of the 
national meteorological service ZAMG were used. These data 
were adjusted to the altitude of the trial sites and thereaf-
ter interpolated to the trial coordinates by inverse distance 
weighted interpolation (Chakraborty et al. 2015). For cli-
mate data of the provenance origin, mean values of the same 
climate variables as in Supplementary material Appendix 1 
Table A1 were obtained for the period 1950–2000 for each 
provenance origin location using the high-resolution climate 
model Climate-WNA ver. 4.72 (Wang et al. 2012a).

Significant climate predictors for the URF model were 
selected using a multimodel approach, implemented with the 
R package ‘leaps’ (Lumley 2009) which performs an exhaus-
tive search for the best subsets of the explanatory variables 
using an efficient branch-and-bound algorithm independent 
of the criterion such as AIC, BIC, etc used for penalizing 
models with redundant explanatory variables (Jørgensen 
2004, Lumley 2009, Dormann et al. 2013) (Eq. 1):
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2

5 6
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Here, Ysp is the growth performance (either H24 or BA24) 
of the provenances p at the trial sites s; MATs and SHMs 
are the mean annual temperature and the summer heat 
moisture index of trial locations; MATp is the mean annual 
temperature of provenance origin; b0 to b7 are the intercept 
and regression coefficients, and esp is the residual error. The 
coefficients of the two URFs can be found in Table 1. The 
URFs explained ~ 89% of the variation in dominant height 
and basal area (Chakraborty et al. 2015, 2016). The URFs 
predict functional traits or growth performance which  
needed to be converted to the occurrence of the species or 
its climatic suitability. However, it is technically possible that 
the URFs can predict unrealistically small values of H24 and 
BA24 due to stochasticity in climate variables. Therefore, a 
minimum value of H24 and BA24 was needed which could 
define the threshold above which the climate was considered 
suitable for Douglas-fir to grow survive and reproduce. These 
thresholds were identified by examining the variation in true 
skill statistics (TSS) (Eq. 2) with a stepwise increase in thresh-
olds for climatic suitability (2 to15 m, in case of H24) and 
(2 to15 m2 ha–1 in case of BA24) following Gutiérrez et al. 
(2016).

TSS Sensitivity Specificity= + −( )1  (2)

The value at which increase in H24 and BA24 caused no 
further change in TSS was selected as the threshold to 
convert growth performance to climatic suitability. This cor-
responded to thresholds ≥ 10 m for H24 and ≥ 3 m2 ha–1 
for BA24 (Supplementary material Appendix 1 Fig. A2). The 
selected thresholds are also close to the shortest tree height 
and lowest basal area values in our provenance trial data set. 
We named this approach as the trait-based, URF-SDMs.

Species occurrence data

Current occurrence (presence and absence) of Douglas-fir  
was obtained from 588 983 inventory plots in Europe avail-
able from the database of Mauri et al. (2017) as well as from 
120 known locations of provenance trials of Douglas-fir 
in Europe (Isaac-Renton et al. 2014). Out of the total of 
589 103 locations, Douglas-fir was present at 5357 loca-
tions. The database of Mauri et al. (2017) combined observed 
presence and absence of major European tree species from 

Figure 1. Distribution of the provenance trials in central Europe 
(black), provenance origin in North America (dark gray) used to 
calibrate the universal response functions (Chakraborty et al. 2015) 
and observed occurrences of Douglas-fir in Europe (Isaac-
Renton et al. 2014, Mauri et al. 2017) (light gray) in a bioclimatic 
parameter space represented by mean annual temperature [°C] and 
annual precipitation sum [mm].
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the three existing datasets: the Forest Focus (Hiederer et al. 
2011), Biosoil (Houston et al. 2011) and from national for-
est inventories (Vidal et al. 2016). The climatic extent of the 
observed occurrences across Europe is much higher than that 
of provenance trials sites and encompasses Douglas-fir seed 
introductions from the last 150 yr (Fig. 1). Though the exact 
origin of seeds planted at these presence locations is unclear, 
it certainly covers a wide spectrum of coastal and interior 
provenances, because past provenance recommendations in 
European countries were highly diverse and included also 
interior seed material (Giese 1985) and the admixture of the 
subspecies can still be identified today (Konnert and Ruetz 
2006).

The current occurrence of Douglas-fir in Europe represents 
only artificial plantations and hence might not necessarily 
indicate locations of unsuitable habitat. To address this issue 
of unreliable absences we treated the observed absences as 
pseudoabsences by applying geographic and climatic con-
straints on occurrences according to Senay et al. (2013) in 
a three-step approach. With this approach we seek to iden-
tify absence locations which are both geographic as well as 
climatically different from the observed presence locations. 
This approach includes: specifying a geographical extent 
outside the observed presences; environmental profiling of 
the absences outside this geographic extent and k-means 
clustering of the environmental profiles and selecting ran-
dom samples within each cluster. In our case, a 2-degree 
buffer was found to be optimum following Senay et al. 
(2013). The absence locations outside this geographic 
extent were classified into 15 environmentally dissimilar 

clusters according to k-means clustering algorithm. The 
number of pseudoabsence locations was further reduced 
by randomly selecting a sample of locations defined by the 
95% confidence interval from each of the 15 clusters. The 
resultant dataset was used to calibrate an occurrence-based 
SDM.

Occurrence-based SDM

Utilizing this species occurrence (presence/absence) dataset, 
an SDM, based on the correlation between the current occur-
rence of Douglas-fir in Europe and its climate was developed. 
Climate was represented by 20 biologically relevant climate 
variables (Supplementary material Appendix 1 Table A1) 
obtained from ‘Climate-EU: historical and projected cli-
mate data for Europe’ (Wang et al. 2012a) for the average of 
the time period 1961–1990. The most influential variables 
explaining the current occurrence of Douglas-fir in Europe 
were identified by the recursive feature elimination (RFE) 
approach, accounting for multicollinearity (r ≥ 0.7) and 
implemented with the ‘party’ package (Strobl et al. 2009) of 
R. The relative importance of the most influential climate 
variables can be found in Supplementary material Appendix 1  
Table A2.

To calibrate the occurrence-based SDM an ensemble dis-
tribution modeling approach, BIOMOD2 (Thuiller et al. 
2013) was implemented in R programming environment (R 
Core Team).

BIOMOD2 offers a computational platform for 
multi-method modelling that generates the probability of 

Table 1. The universal response functions (URFs). Results of multiple regression analysis predicting dominant height at age 24 and basal area 
at age 24 of Douglas-fir populations from the site and seed origin climate as independent variables in an URF. Partial R2 refers to drop in R2 
of the full model when the climate variable is removed from the full URF model. For details see Chakraborty et al. (2015).

Independent variables Parameter estimate St error 95% confidence interval p-value Partial R2

URF for dominant tree height (H24) [m]
Intercept –19.280 0.163 –19.598 –18.959 < 0.001
MATs 6.204 0.037 6.131 6.277 < 0.001 0.084
MATs

2 –0.443 0.003 –0.448 –0.438 < 0.001 0.084
SHMs 0.442 0.006 0.430 0.454 < 0.001 0.015
SHMs

2 –0.005 0.000 –0.005 –0.004 < 0.001 0.017
MATp 1.517 0.022 1.474 1.561 < 0.001 0.014
MATp

2 –0.133 0.001 –0.136 –0.131 < 0.001 0.036
MATs × MATp 0.068 0.002 0.064 0.071 < 0.001 0.004
Model R2.adj 0.87

URF for basal area (BA24) [m² ha–1]
Intercept –41.810 1.017 –43.80 –39.81 < 0.001
MATs 10.890 0.237 10.42 11.35 < 0.001 0.0991
MATs

2 –0.636 0.017 –0.67 –0.60 < 0.001 0.0627
SHMs 0.547 0.039 0.47 0.62 < 0.001 0.0093
SHMs

2 –0.007 0.000 –0.008 –0.006 < 0.001 0.0145
MATp 3.839 0.130 3.58 4.09 < 0.001 0.0410
MATp

2 –0.241 0.008 –0.25 –0.22 < 0.001 0.0479
MATs × MATp –0.028 0.011 –0.04 –0.007 < 0.001 0.0003
Model R2.adj 0.88

MATs = mean annual temperature of planting site.
SHMs = summer heat moisture index (mean temperature of warmest month/(mean summer temperature (May–Sep)/1000)).
MATp = mean annual temperature of seed origin.
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presence outputs for each of the modeling approach as well 
as a variety of ensemble projections (Thuiller et al. 2013). 
Hence, BIOMOD2 attempts to combine the strengths of 
multiple modeling algorithms while accounting for their 
uncertainties. In this study we used all the 10 available 
algorithms of BIOMOD2 such as GLM (generalized linear 
models), GAM (generalized additive models), GBM (gen-
eralized boosted regression models), CTA (classification tree 
analysis), ANN (artificial neural networks), SRE (surface 
range envelop or BIOCLIM), FDA (flexible discriminant 
analysis), MARS (multivariate adaptive regression spline), 
RF (random forest for classification and regression), and 
MAXENT.Tsuruoka.

To avoid overfitting (Lever et al. 2016) of the models 
resulting from the likelihood of dependence in the train-
ing data, we performed a cross-validation by clustering the 
species occurrence data into 3 blocks based on climatic 
characteristics (Burman et al. 1994, Fielding and Bell 
1997, Vaughan and Ormerod 2005, Lieske and Bender 
2011, Roberts et al. 2017). A principal component analysis 
with the 20 bioclimatic variables (Supplementary material 
Appendix 1 Table A1) suggested that the first three com-
ponents accounted for 97% of the total variation in cli-
mate. Utilizing these three principal components the species 
occurrence dataset was partitioned into 3 blocks each with 
a relatively homogeneous climate following the partition-
ing around medoids routine. This method allowed us speci-
fying the number of clusters and ensuring that each block 
had enough presence and absence values as suggested by 
Roberts et al. (2017). The ‘k-fold’ approach (Burman et al. 
1994, Fielding and Bell 1997, Roberts et al. 2017) was 
adopted for cross validation whereby three model clusters 
M1, M2, and M3 (Supplementary material Appendix 1 Fig. 
A3) were developed, each withholding a block for model 
validation and two for model calibration.

Predicted probabilities from the individual models of the 
BIOMOD2 within each model cluster were ensembled as a 
consensus model which combined the median probability 
over the selected models with TSS > 0.7. The median was 
chosen because it is known to be less sensitive to outliers than 
the mean. Predicted probability of occurrence of Douglas-
fir from the ensemble model was converted to presence and 
absence with the maximizing TSS approach (Thuiller et al. 
2013). This maximizing TSS approach was found to be one 
of the most reliable approaches for choosing a reclassifica-
tion threshold by a large number of studies (Liu et al. 2005, 
Freeman and Moisen 2008, Nenzén and Araújo 2011). All 
the three ensemble model clusters were then applied to pre-
dict the distribution of Douglas-fir in Europe and North 
America.

The ensembled predictions of the tree model clusters were 
then combined into a single final model which represented 
the median predictions of the three ensemble model clusters 
and plotted as maps (see Supplementary material Appendix 1 
Fig. A2 for details). This final ensembled model was referred 
to as ‘occurrence-based SDM’.

Transferability of the SDMs

The two trait-based URF-SDMs and the occurrence-based 
SDM were applied to predict the observed occurrence of 
Douglas-fir in both its introduced range in Europe and native 
range in North America. This included the 589 103 locations 
in Europe (Isaac-Renton et al. 2014, Mauri et al. 2017) and 
71 182 inventory plots in North America (Schroeder et al. 
2010, Coops et al. 2011). Climate of trial location was set 
to be equal to climate of provenance origin (MATs = MATp 
in Eq. 1) for applying the URF-SDMs in both Europe and 
North America.

The performance of the three SDMs was quantified by 
model sensitivity, specificity, true skill statistics (TSS) and 
transferability index (TTSS). Sensitivity is the proportion of 
true presences correctly identified by the model, and speci-
ficity the proportion of true absences correctly identified. 
TSS (Eq. 2), also known as Hansen Knuipers discriminant 
(Allouche et al. 2006) is independent of the size of the dataset 
and the prevalence of the species and accounts for both 
commission and omission errors (Allouche et al. 2006). TSS 
values range from –1 to +1 where +1 indicate perfect agree-
ment and values ≤ 0 indicate a performance equivalent to a 
random guess (Allouche et al. 2006).

Transferability index TTSS is the ratio of TSS in the extrap-
olated region (TSSex) and TSS in the model calibration region 
(TSSin) as given in Eq. 3.

T
Tss
TSSTSS

ex

in

=  (3)

In this study, the true skill statistics (TSS) and transferability 
index (TTSS) (Heikkinen et al. 2012) were adopted as a 
measure of transferability of the models from its calibration 
range to application area.

Data deposition

Data available from Figshare Digital Repository: < http://
dx.doi.org/10.6084/m9.figshare.1468400 > (Schueler 2015).

Results

Performance and transferability of SDMs in the native 
and introduced range of Douglas-fir

Cross-validation reveals that all the model clusters performed 
equally well in predicting the evaluation data with TSS rang-
ing from 0.43–0.99 with an average of 0.80 (Supplementary 
material Appendix 1 Table A3). However, significant 
differences existed in performances of the individual model 
algorithm (Supplementary material Appendix 1 Table A3).

When applied in their calibration range in Europe, the 
occurrence-based SDM (median of the three ensembled 
model clusters) obtained a model sensitivity and specific-
ity of 0.99 and thus a remarkable TSS of 0.98 (Table 2, 
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Fig. 2, Supplementary material Appendix 1 Table A4). The 
machine learning algorithms such as RF, GBM, ANN per-
formed consistently better in all the three model clusters 
whereas SRE performed consistently poorer in comparison 
(Supplementary material Appendix 1 Table A4).

The performance of the two URF-SDMs to predict the 
species’ presence, i.e. its sensitivity is similarly high (0.98 for 
H24 and 0.99 for BA24) but the performance to correctly 
predict absences (specificity) is comparatively lower (0.55 for 
H24 and 0.55 for BA24) resulting in TSS of 0.53 for both 
URF-SDMs (Table 2). Sites where the URF-SDMs failed to 
predict observed absences lie mainly in the Scandinavia and 
eastern Europe (Fig. 2C, D).

When applied in the native range of Douglas-fir in North 
America, the sensitivity of the URF-SDMs to correctly predict 
observed presences was 0.66 and 0.67 and thus significantly 
higher than the occurrence-based SDM with a sensitivity 
of only 0.12 (Table 2). In contrast, the performance of the 
occurrence-based SDM in predicting the observed absences 
in NA (i.e. median specificity = 0.92) was higher compared 
to the URF-SDMs which has a sensitivity ranging from 
(0.70–0.72, Table 2). In particular, the URF-SDMs have 
a lower ability to predict the absence of Douglas-fir in the 
south and southeast of the Rocky Mountains (Fig. 3C, D) 
and at the northern range limit of the species.The URF-
SDMs performed well to predict the observed occurrence 
of Douglas-fir at the north and center of its distribution in 
North America, whereas failed partly to predict observed 
occurrences at the south of the coastal range in California and 
southern Oregon (Fig. 3C, D). The occurrence-based SDM 
performed particularly well in predicting the observed occur-
rences of Douglas-fir in the coastal range of North America 
(Fig. 3B) whereas it failed completely to predict observed 
occurrences in the interior range of Douglas-fir (Fig. 3B). 

Overall, the URF-SDMs have better performance in North 
America than the occurrence-based SDM in terms of TSS 
(0.37–0.38 vs 0.05).

When transferred to North America the TSS of the URF-
SDMs declined by 28% in case of the URF-SDM for H24 
and by 30% in case of URF-SDM for BA24 (Table 2). In 
contrast, the TSS of the occurrence-based declined strongly 
by 96% (Table 2). The transferability of the trait-based 
URF-SDMs were superior (TTSS = 0.68–0.71) compared to 
the occurrence-based SDMs not only for the final ensemble 
model (TTSS = 0.04) but also for all model cluster and indi-
vidual models within the model cluster (Supplementary 
material Appendix 1 Table A4).

The URF-SDMs did not differ significantly in their 
performance irrespective of being applied in the introduced 
or native range of Douglas-fir. Whereas the transferability of 
the SDM based on the correlation between observed occur-
rence and current climate declined significantly when applied 
in a climate outside its calibration range.

Discussion

Predicting species distributions is crucial for understand-
ing the impacts of climate change on ecosystems and for 
developing effective adaptation strategies. One of the major 
challenges of distribution modeling is model evaluation and 
application to the novel or non-analogous climate regimes 
outside of the species’ current environment. Present climates 
will at least partly disappear and future conditions will con-
stitute new combinations of annual and seasonal climate 
factors (Ohlemüller et al. 2006, Williams and Jackson 2007).

In the present study, we compared two intraspecific, trait-
based SDMs with a occurrence-based SDM, all developed 

Table 2. Performance and transferability of SDMs. The performance of the three SDMs for predicting observed presence/absence of  
Douglas-fir in its introduced range in Europe (EU) and its native range in North America (NA). Performances of SDMs in recently published 
literature in NA and EU are reported in cells highlighted in gray.

Type of SDM Developed in Applied in Sensitivity Specificity TSS TTss

URF-SDM for H24 EU EU 0.98 0.55 0.53
NA 0.66 0.72 0.38 0.71

URF-SDM for BA24 EU EU 0.99 0.54 0.53
NA 0.67 0.70 0.37 0.68

Occurrence-based SDM EU EU 0.99* 0.99* 0.98*
NA 0.12* 0.92* 0.05* 0.05

Boiffin et al. 2017 NA NA – – 0.83  
EU – – 0.03 0.04

Coops et al. 2011 NA NA 0.76 0.7 0.46  
Rehfeldt et al. 2014 NA NA 0.99 0.95 0.93  
Weiskittel et al. 2012 NA NA 0.9 0.79 0.69  

Sensitivity = the proportion of true presences correctly identified by the model.
Specificity = the proportion of true absences correctly identified by the model.
True skill statistics = measure of model performance independent of prevalence. TSS value range from –1 to +1 where +1 indicate perfect 
agreement and values ≤ 0 indicate a performance equivalent to a random guess.
TTss = transferability index (Heikkinen et al. 2012). TTSS < 1 provides higher predictive accuracy in interpolative forecasting than in extrapola-
tion, and vice versa.
*Median sensitivity, specificity and TSS and TTss of the three ensemble model clusters (see Supplementary material Appendix 1 Fig. A2 for 
details).
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from European data, and analyzed their transferability to 
the native range of Douglas-fir in North America as a testi-
mony for their application in novel climate. The non-analogy 
of climate between Europe and North America has been 
demonstrated by recent studies (Isaac-Renton et al. 2014, 
Chakraborty et al. 2015, Boiffin et al. 2017). We found that 
the occurrence-based SDM, based on presence/absence data 
across Europe, had very low transferability and largely failed 
to predict the species natural distribution. In contrast, the 
trait-based URF-SDMs showed significantly higher transfer-
ability despite the fact that the geographic and climatic range 
of the test sites in Europe was comparatively smaller than the 
climatic range of occurrences for the occurrence-based SDMs 
(Fig. 1). On the other hand, the precipitation gradient from 
which the provenances originate in North America was wider 
than the precipitation gradient of the European occurrence 
locations (Fig. 1), while the thermal gradient depicted by 
MAT was similar for provenance origin and European occur-
rences. Within the trait-based URF-SDMs the temperature 
was found the dominant drivers of height and basal area 
growth, whereas precipitation of provenance origin was not 

found to effect the observed trait variation (Chakraborty et al. 
2015). Overall, our trait-based URF-SDMs show predic-
tive power (Table 2) comparable to occurrence-based SDMs 
developed in North America itself (Weiskittel et al. 2012, 
Rehfeldt et al. 2014) or physiological process-based growth 
models (Coops et al. 2011, Gutiérrez et al. 2016).

The occurrence-based SDM showed an excellent perfor-
mance in Europe (Fig. 2) and also a high accuracy to pre-
dict the absence of Douglas-fir in North America (Fig. 3). 
However, the occurrence-based SDM was unable to predict 
the presence of the species within the species interior native 
range (Fig. 3B). This imbalance between sensitivity and spec-
ificity of the occurrence-based SDM (Table 2) can also be 
interpreted as its inferior transferability or lack of generality 
(Qiao et al. 2017, Yen et al. 2017).

The superior transferability of the trait-based SDMs in 
North America may also be argued to driven by the data 
used to calibrate the two types of models. Provenances from 
both coastal and interior Douglas-fir were used to calibrate 
our trait-based SDMs (Chakraborty et al. 2015, 2016), 
whereas the exact information on the provenance origin of 

Figure 2. Observed and predicted distribution of Douglas-fir in Europe. (A) The observed distribution of Douglas-fir in 588 983 inventory 
plots in Europe. The predicted distributions with: (B) occurrence-based SDM calibrated in Europe; (C) the trait-based URF-SDM for 
dominant height and (D) the trait-based URF-SDM for mean basal area. Black represent areas predicted by the models to have climate 
suitable for Douglas-fir whereas gray area represents climatically unsuitable areas.
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Figure 3. Observed and predicted distribution of Douglas-fir in North America. (A) The observed distribution of Douglas-fir in 71 182 
inventory plots in North America. The predicted distributions with: (B) occurrence-based SDM calibrated in Europe; (C) the trait-based 
URF-SDM for dominant height and (D) the trait-based URF-SDM for mean basal area. Black represent areas predicted by the models to 
have climate suitable for Douglas-fir whereas gray area represents climatically unsuitable areas.
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the occurrence dataset for calibrating the occurrence-based 
SDM is unknown. Nevertheless, the occurrence dataset 
likely consists of both coastal and interior Douglas-fir. This is 
because there have been several introductions of Douglas-fir 
in Europe during the last 150 yr and initially no genetic pref-
erence of the planting material was involved, whereby both 
coastal and interior provenances were planted. Therefore, 
stands older than 50 yr in the inventory are likely to have a 
fair share of interior provenances or being admixed of vari-
ous provenances and varieties (Konnert and Ruetz 2006, 
Hintsteiner et al. 2018). It was only later that results from 
IUFRO coordinated provenance trials revealed the advan-
tages of planting coastal Douglas-fir which might have been 
implemented in younger plantations. In addition, until 
recently, interior provenances were recommended for planta-
tions under more continental site conditions because of their 
frost tolerance and survival rates (Kohl and Nather 1976, 
Giese 1985). However, it should be noted that the occur-
rence-based SDMs cannot utilize information on provenance 
differentiation since it is based on the correlation between 
occurrence and local climate.

Nevertheless, we tested if a constrained dataset for the 
calibration of the URF will compromise its transferability. 
Therefore, we developed URFs with only coastal provenances 
and applied them as URF-SDMs by converting height and 
basal area predictions to presence/absence with the same 
thresholds as the URF-SDMs calibrated with both interior 
and coastal Douglas-fir. These trait-based URF-SDMs cali-
brated with coastal provenances and the occurrence-based 
SDM were applied to predict presence/absence of 1) full 
occurrence dataset with both coastal and interior areas, and 
2) coastal only occurrences of Douglas-fir in North America. 
The occurrence locations in North America were delimited 
to the coastal and interior Douglas-fir distribution according 
to Rehfeldt et al. (2014), whereby the crest of the Coastal 
Mountains of British Columbia separated the var. menziesii 
(coastal Douglas-fir) in the west from var. glauca (interior 
Douglas-fir) populations in the east. We found that the URFs 
with only coastal provenances have very similar model coeffi-
cients as the URFs with both coastal and interior provenances 
(Supplementary material Appendix 1 Table A5). Hence, the 
URF-SDMs on the basis of coastal only Douglas-fir had sim-
ilar transferability as the URF-SDMs on basis of both coastal 
and interior provenances (Supplementary material Appendix 
1 Table A6). The transferability of the occurrence-based 
SDMs remained inferior compared to the trait-based URF-
SDMs when predicting the coastal Douglas-fir. This result 
supports the supposition that SDMs based on functional 
traits are rather independent of specific climate-occurrence 
correlations and thus closer to a mechanistic approach.

The choice of modeling method which is known to influ-
ence the transferability of SDMs (Heikkinen et al. 2012, 
Lever et al. 2016, Werkowska et al. 2017) is not likely to 
affect our findings since low transferability of the occurrence-
based SDMs were consistent across a wide range of models 
and their ensembles (Supplementary material Appendix 1 

Table A4). A similar low transferability was recently reported 
by Boiffin et al. (2017) for an occurrence-based SDM of 
Douglas-fir developed in North America and transferred to 
Europe, confirming the low performance of such SDMs if 
transferred to non-analogous climate of another continent. 
Thus, our occurrence-based SDM seems to suffer mainly 
from the non-analogy between European climate at the inte-
rior range for Douglas-fir, where cold continental climate 
conditions prevail (Boiffin et al. 2017). Moreover, Douglas-
fir in Europe might have never been planted at such climati-
cally extreme sites, and thus presence data for fitting a better 
occurrence-based SDM are not available.

In this study, the uncertainties due to modeling algorithms 
were accounted for with an ensemble modeling approach, 
BIOMOD2. The ensemble approach which obtains model 
consensus by combining predictions across a range of model 
algorithms (such as the median predictions of all models 
used in this study), were found to provide higher accuracies 
in predictions compared to single models (Araújo and New 
2007, Coetzee et al. 2009, Buisson et al. 2010, Thuiller et al. 
2013). Uncertainties due to the choice of thresholds to con-
vert predicted probability to binary presence and absence 
was accounted with the maximizing TSS approach whereby 
several thresholds are tested and the one which results in 
maximum sensitivity and specificity and therefore maximum 
TSS is selected. In absence of reliable independent data 
for model validation, the commonly used cross-validation 
approach by randomly splitting training data was found 
to violate the assumption of independence of the training 
dataset resulting in overfitted models (Burman et al. 1994, 
Vaughan and Ormerod 2005, Roberts et al. 2017). Although 
a cross-validation was not required in our case because the 
independent occurrence dataset in North America was avail-
able for validation of the occurrence-based SDMs, the pos-
sibility of overfitting due to spatial dependence in our data 
still existed. Therefore we adopting a block cross-validation 
approach whereby dependency in the training data is broken 
by clustering the occurrence dataset into blocks of similar 
entities (climatically similar blocks in our case); an approach 
which was found to be effective for avoiding overfitting of 
models (Burman et al. 1994, Heikkinen et al. 2012, Wenger 
and Olden 2012, Bahn and McGill 2013, Radosavljevic and 
Anderson 2014, Fithian et al. 2015, Roberts et al. 2017). 
Although the provenance trials used to build the models 
cover only a part of the climate conditions of the observed 
distribution of Douglas-fir in Europe (Fig. 1), the URF-
SDMs demonstrate superior performance in its native as well 
as the introduced ranges (Table 2).

The choice of threshold for converting variations in func-
tional traits to species occurrence is very crucial. In this study, 
the choice of threshold is unlikely to cause serious bias in 
our results since the selected threshold (Supplementary mate-
rial Appendix 1 Fig. A2) does not change model performance 
with a change in threshold value. Moreover, our choice of 
threshold (Supplementary material Appendix 1 Fig. A2) also 
corresponds to the smallest observed tree height and basal area 
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in our dataset. A comparable method of selecting thresholds 
for process-based SDMs was also reported by Gutiérrez et al. 
(2016).

The result of this study can be considered as a successful 
test case for model application in climate change. Hence, the 
URF-SDMs can be used to identify present and future cli-
mate suitability of Douglas-fir in Europe, North America or 
in other plantation areas worldwide (Hermann and Lavender 
1999). Due to the integrated use of climate variables from 
both seed sources and planting sites, the URF model has 
considerably reduced its dependence on a large sample size 
and on the analogy between the present and future climate 
regimes (Wang et al. 2010). The superiority in transferabil-
ity of the trait-based URF-SDMs supports previous studies 
that proposed functional, fitness-related traits as a basis for 
developing SDMs (Violle and Jiang 2009, Stahl et al. 2014, 
Funk et al. 2016). Dominant height and basal area are two 
such functional traits incorporated in our URF-SDMs. The 
dominant height is closely related to a tree’s competitive fitness 
for capturing available light and basal area incorporates both 
initial tree mortality and diameter growth (Chakraborty et al. 
2015). Tree size and density related traits were found to rep-
resent two-thirds of the total variation in plant functional 
traits critical for growth and survival (Díaz et al. 2015), fur-
ther supporting the need of SDMs based on such functional 
traits. While H24 and BA24 may well represent traits critical 
for growth and survival, reproduction is not as well charac-
terized. Therefore, future URFs may also integrate additional 
functional traits (seed characteristics, wood characteristics, 
phenological observations, etc.) to allow more specific risk-
benefit analysis of assisted migration or assisted gene flow 
management (Aitken and Bemmels 2015).

The present limitations of our URFs to predict the coastal 
range of Douglas-fir in California and to match observed 
absences at the species northern limit (Fig. 3C, D) is likely 
caused by missing provenances from California and north-
ern BC in the European trial sites. This highlights the fact 
that despite the reliability of predictions of the URF-SDMs, 
they are not totally free from limitations when extrapolated 
(Kearney et al. 2010, Peterson et al. 2015). Also, none of 
the European test sites experienced similar cold conditions as 
occurring in northern BC and this might result in an over-
estimation of the species growth potential at the northern 
limits were absolute temperature minimum and frost restricts 
the species occurrence (Thompson et al. 1999, Coops et al. 
2011). Within Europe, the trait-based URF-SDMs show 
relative low accuracy in correctly predicting absences (speci-
ficity) in Scandinavia and eastern Europe, where observed 
absences were predicted as presences (Fig. 2C, D). This may 
arise from the micro scale effects of soil and moisture regimes 
not characterized by the 20 climate variables screened in this 
study. This may also indicate that the observed absences may 
not necessarily indicate unsuitable sites for Douglas-fir in the 
introduced regions. Instead, it may simply indicate that in 
these areas Douglas fir was not planted as a preferred alterna-
tive tree species to domestic conifers such as Norway spruce.

Therefore we identified those locations which are both 
climatically and geographically distant from the observed 
presence locations with a three step approach according to 
Senay et al. (2013) assuming such locations as unsuitable for 
Douglas-fir. Traditionally when reliable absences or no absence 
locations are available pseudoabsences are selected randomly 
or based on geographic or climate alone profiling (Barbet-
Massin et al. 2012, Iturbide et al. 2015). In general, the 
random selection of pseudoabsence was found to be the most 
error prone strategy (Barbet-Massin et al. 2012, Senay et al. 
2013, Iturbide et al. 2015). Conceptually, climatic alone or 
geographic alone strategies for defining absence are not suf-
ficient because climate and geographic features do not influ-
ence species occurrence in isolation but interact with each 
other (Barbet-Massin et al. 2012). The geo-climatic profiling 
of the absence data allowed obtaining a clearer data structure 
with lower uncertainty and the k-means clustering ensured 
that geo-climatically dissimilar absences points are selected. 
Therefore, the three step profiling of pseudoabsence based on 
both climate and geographic constraints is likely to generate 
reliable absence locations which is crucial requirement when 
the species being studied is a non-native one such as Douglas-
fir in Europe.

Conceptually, the trait-based URF-SDMs seek to approxi-
mate the fundamental niche which is larger than the observed 
current distribution of the species in Europe (Soberon 
and Peterson 2005) and is therefore closer to a mechanis-
tic approach (Dormann et al. 2012, Peterson et al. 2015, 
Shabani et al. 2016). Missing trials at climatically extreme 
sites underpin known limitations of historical common 
garden trials, where provenances from the entire natural 
range were not consistently tested at the species range limits 
(Matyas 1994, Leites et al. 2012). While current provenance 
trials were established for foresters to select the most produc-
tive planting stock, future trial series should rather aim at 
achieving a better understanding of the species-specific cli-
mate constraints and the correlations between functional trait 
variation and the environmental conditions of test sites and 
seed sources. Such trials should be carefully designed with 
provenances from the entire climatic range and test sites 
established including locations outside of the species range. 
Thanks to the availability of gridded climate data and the 
URF approach, such trial series can be achieved with fewer 
provenances planted on fewer trial sites without affecting the 
prediction accuracy of the models (Wang et al. 2010). For 
forest tree species, new trials will be able to provide meaning-
ful data within 15 to 20 yr. Also, for endangered annual and 
smaller perennial plants, such trials can deliver data for build-
ing URF-SDMs in a few years (Bradley St Clair et al. 2013, 
Wilczek et al. 2014).

More important than the accuracy of any SDM is 
the potential application in climate change adaptation. 
Occurrence-based SDMs based on presence/absence data 
allow to identify putative retraction areas at species trail-
ing edges and expansion areas at the species leading edges 
(Thuiller et al. 2008) and thus may be used to identify 
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vulnerable populations, species or ecosystems and poten-
tial new habitats (Wang et al. 2012b, Schueler et al. 2014). 
However, for concrete recommendations of seed transfer 
either into novel climates or within the species current range, 
occurrence-based SDMs are rather unsuitable. To a certain 
extent, the same is also true for other mechanistic SDMs as 
they rarely address the intraspecific variation of the underly-
ing physiological principles and come at higher costs of cali-
bration (Gutiérrez et al. 2016). In contrast, URFs explicitly 
consider genetic variations and are able to predict the future 
performance of individual populations or seed sources. This 
advantage can be used in two directions (Wang et al. 2010): 
first, to identify the best-performing provenance planting 
stock for any given planting site under current climate and 
any climate change scenario; and second, to identify the most 
appropriate future habitat for a given seed provenance. The 
first option is important for forest and restoration managers, 
as they are interested in increasing productivity of future for-
ests or the stability and long-term persistence of the managed 
ecosystems. Since forest trees are often dominant species for a 
specific ecosystem, a change to better adapted genetic materi-
als of the same species might be favored against a complete 
change in species composition that may result in cascading 
changes of the forest communities. The second option is the 
perspective of a genetic conservation manager, searching for a 
new habitat for endangered local populations.

Species distribution models are likely to guide a wide 
range of decisions in forest management and conservation. 
Our findings indicate that using occurrence-based SDMs for 
such decisions may be error-prone, especially if the environ-
mental conditions of the application and calibration range 
are not analogous. The non-analogy of site conditions is very 
common in Europe because many local tree species have been 
planted outside their natural distribution. Under such condi-
tion, the existing presence/absence data is likely to violate the 
assumption of the equilibrium between the current occur-
rence of a species and its environment.

The URF-SDMs have the potential to overcome this prob-
lem, but they require data from provenance trials. Provenance 
trials are probably the greatest contribution of forest science 
to evolutionary biology (Aitken and Bemmels 2015) and con-
stitute a valuable source of data for developing SDMs based 
on ecophysiological constraints of species distribution. Our 
study can be regarded as a case study of incorporating genetic 
variation in functional traits to model species distribution 
ranges; however, a multi species-multi-model comparison is 
likely to further improve the generalization of the results. Our 
analysis strongly suggests that such field experiments should 
be established not only for forest trees but also for other wild 
plants species, as they can provide crucial information on the 
species adaptive capacity and their potential distribution in a 
changing environment. However practical challenges exist in 
establishing and maintaining such long-term trial series.
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