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Abstract
European aspen is a keystone species in boreal forests, which support numerous ecologically important and endangered

species. As detection of those species by remote sensing is impossible, we instead investigated the detection of large aspen
trees using airborne laser scanning and aerial image data. However, this is a challenge due to their low quantity and scattered
occurrence. The performance was assessed with representative and unrepresentative (where aspens were over-represented)
samples of the population. First, we detected individual trees and then the random forest (RF) classifier was used to identify
large aspens. The RF classification was implemented with and without synthetic minority oversampling technique (SMOTE)
to balance the training data due to the rarity of large aspens. At the tree-level, the best F1-score (0.44) was obtained when the
unrepresentative plot data were used with SMOTE. However, the F1-score decreased to 0.21 when the representative data were
used. The best plot-level (plots with at least one aspen tree) F1-score with the representative plot data was 0.41. We conclude
that although data augmentation may improve the result, it is difficult to detect large aspen trees in genuine populations.
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1. Introduction
European aspen (Populus tremula L.) (hereafter aspen) is a

keystone species and pioneer in boreal forests. Both living
and dead aspen are important hosts for many forest-dwelling
species, which include birds, fungi, invertebrates and mam-
mals (Kouki et al. 2004; Kivinen et al. 2020). Numerous sec-
ondary hole-nesters, such as flying squirrels and tits also
utilise aspen trees (Baroni et al. 2020). The ecological im-
portance of the species is highlighted by the fact that many
aspen-dependent species are also Red-listed species (Jonsell et
al. 1998; Tikkanen et al. 2006), which means that the species
is in danger of extinction (International Union for Conser-
vation of Nature 2023). Old-growth, large-diameter (>20 or
25 cm) aspen trees are especially valuable from a biodiver-
sity perspective (Latva-Karjanmaa et al. 2007; Maltamo and
Packalen 2014). Aspen favours open areas for regeneration
but is highly adaptive.

As a keystone species, there is a need for information
on the abundance and occurrence of these trees at the
landscape-level. This information is valuable in the planning
and implementation of sustainable forest management and
conservation. Also, a time series of aspen occurrence would
provide valuable information on landscape health and in-
tegrity (Kay 1997). However, the number of aspen and other
deciduous trees in boreal forests is limited due to traditional
forest silviculture that has favoured coniferous trees, and

also because natural disturbances rarely occur (Esseen et
al. 1997; Kuuluvainen 2002). This type of information re-
mains limited in northern Europe, although remote sensing
technologies could bridge this information gap.

Current operative forest inventory methods employ a wide
range of remote sensing data that range from optical images
(aerial or satellite) to light detection and ranging (lidar) data
(Maltamo and Packalen 2014; Næsset 2014). In the former, im-
ages contain information related to the emitted or reflected
intensity of electromagnetic radiation. Lidar is an active re-
mote sensing technology that can be spaceborne, airborne, or
terrestrial. Airborne laser scanning (ALS or airborne lidar) is
often utilised in 3D ecosystem assessments because these sur-
veys provide valuable 3D information of the vegetation over
large areas (Bakx et al. 2019). Forest inventory methods that
use ALS data can be divided into two categories: area-based
approach (e.g., Næsset 2002) or individual tree detection (e.g.,
Hyyppä et al. 2001). In the former, point cloud metrics are
calculated at the plot- or raster cell-level and are used as pre-
dictor variables for stand attributes, while in the latter, the
derivation of tree- or stand attributes is based on the predic-
tion of tree dimensions from trees that are segmented from
the ALS data. The required scale of information will deter-
mine the method used (Maltamo et al. 2014); for example, it
may be desirable to detect dead standing trees or large aspen
trees at the tree-level.
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In recent years, ALS technologies have become increas-
ingly popular in the fields of ecology, biodiversity, and con-
servation as they can characterise vertical and horizontal for-
est structures (Bergen et al. 2009; Davies and Asner 2014).
Many studies have suggested that remote sensing informa-
tion can serve as a relevant proxy for biodiversity and ecosys-
tem assessment in vertically complex ecosystems, such as
forests (Clawges et al. 2008; Bergen et al. 2009; Vihervaara
et al. 2015; Toivonen et al. 2023). Earlier studies have high-
lighted the potential of 3D data for the mapping of as-
pen (Li et al. 2013;Alonzo et al. 2018). In addition, optical
data (Erikson 2004; Alonzo et al. 2018) and unmanned aerial
vehicle-based photogrammetric point clouds (Hardenbol et
al. 2021; Kuzmin et al. 2021) have been reported to be ef-
fective for the detection of aspen, while the combined use
of lidar and optical data for the detection of aspen and their
attributes has also received attention (Säynäjoki et al. 2008;
Breidenbach et al. 2010; Mäyrä et al. 2021). However, as large
aspens are very rare and are easily mixed with surrounding
broadleaved trees, their detection by remote sensing is a dif-
ficult task (Maltamo et al. 2015; Viinikka et al. 2020). Indeed,
the research setup in previous studies has not always cap-
tured this important aspect. Moreover, the overlapping spec-
tral response of aspen with other broadleaved trees, such as
birch, is problematic (Korpela et al. 2010; Pippuri et al. 2013;
Hovi et al. 2017), while the overlapping ALS-intensity proper-
ties of aspen and spruce have also been reported (Ørka et al.
2007).

The objective of this study was to evaluate the performance
of the combined use of ALS data and aerial images for the de-
tection of large aspen trees. The presence of aspens can be re-
garded as an indicator of important structure for forest biodi-
versity. Here, we define large aspen by its diameter at breast
height (DBH), and our analyses are repeated across a range
of DBH threshold values. The study was conducted with rep-
resentative data at the population level, where the propor-
tion of large aspen trees is very small, as is typical in Finnish
forests. The performance of the investigated approaches was
assessed by precision, recall and the F1 classification score.
Our analyses evaluated how the classification performance
varies when the rarity of large aspen trees in a forest stand is
not properly considered in a research setting. This is demon-
strated by repeating the analysis with an unrepresentative
dataset, where the proportion of aspen is much greater than
in natural forest environments.

2. Materials and methods

2.1. Study site
The study site is located in the south-boreal zone in eastern

Finland and covers an area of approximately 3082 km2 (Fig.
1). The rectangular shape of the study site was determined by
the area covered by ALS data in the national data acquisition
programme (Section 2.3). The main tree species in the study
area are Scots Pine (Pinus sylvestris L.) and Norway spruce (Picea
abies (L.) H. Karst). The most common deciduous tree species
are silver birch (Betula pendula Roth) and downy birch (Betula
pubescens Ehrh.). Other deciduous species, such as European

aspen and grey alder (Alnus incana (L.) Moench), are in the mi-
nority. Most of the stands are mixed, i.e., there are multiple
tree species in a stand.

2.2. Field data
Field data consisted of two types of field plots: National

Forest Inventory (NFI) plots provided by Natural Resources
Institute Finland (Luke) and treemap plots provided by the
Finnish Forest Centre. The latter were measured in 2020 and
2021, whereas the NFI plots were measured between 2018
and 2021. To account for the obvious time lag, NFI trees from
2018, 2019, and 2020 were “extrapolated” to 2021 using inter-
nal (Luke) growth models (unpublished) based on NFI12 data
(Korhonen et al. 2021). The sampling design of the Finnish
NFI is explained in Korhonen et al. (2021). Treemap plots were
subjectively placed within the study area as part of the oper-
ational stand-level forest management inventory.

Plot measurement protocols differed between the two plot
types. In the NFI plots, all trees with DBH > 45 mm were mea-
sured in plots with a 9 m radius and smaller trees were mea-
sured in plots with either a 5.64 m (2018) or 4 m radius (af-
ter 2018). In the treemap plots, all trees with DBH > 30 mm
were measured. Treemap plots were irregular in their shape
and size (i.e., neither round nor rectangular). In the NFI plots,
tree height was measured for sample trees and the heights of
the other trees were predicted using the height model (model
18) proposed by Myllymäki (2016). In the treemap plots, the
height of every fifth living tree was measured, and heights for
trees clearly identifiable from ALS data were taken from the
ALS data. For the remainder of the trees in the treemap plots,
height was predicted separately for each tree species group
with the height model described in Näslund (1937). Tree
species information was recorded for both plot types. Tree
locations were determined differently between plot types. In
the NFI plots, location was included as a bearing and as the
distance from the individual tree to the plot centre. In the
treemap plots, locations had been determined by the Finnish
Forest Centre using the TerraHärp system implemented with
Masser ExCaliper II callipers (Kostensalo et al. 2023).

Tree measurements were harmonised by only selecting
trees that had DBH values > 45 mm. For the analysis, we pri-
marily used measured tree height as tree height, but where
that data were not available, we used the abovementioned
height model based predicted height. We also had to account
for the differences in the shapes of the two types of plot data.
As the shape of treemap plots varied and were considerably
larger than the NFI plots, we placed a 9 m radius sub-plot
within each treemap plot to create a corresponding 9 m ra-
dius circular plot (as in the NFI). Each sub-plot was located
as the centre of each treemap plot as much as possible. Trees
recorded inside these sub-plots were used in the analyses.

In total, there were 33 195 field-measured trees distributed
across 701 plots, which included both NFI and treemap sub-
plots. The number of deciduous trees other than aspen was
9079, which corresponded to 27.4% of the trees in the field
data. There were only 167 aspen trees in the dataset, which
corresponded to 0.5% of all field-measured trees. Of those, 35
aspen trees had DBH values ≥ 22 cm, which corresponded
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Fig. 1. Location of the aspen study site and the remote sensing (RS) and field (treemap plots and Finnish National Forest
Inventory (NFI) plots) data used. Figs was created using QGIS version 3.34.3 and assembled from the following data sources:
clipped map of Northern Europe (Esri World Countries Generalized) and a large background aerial image (National Land Survey
of Finland).

to 1.96 large (DBH ≥ 22 cm) aspen per hectare. The corre-
sponding mean estimate in the NFI for the larger Etelä-Savo
region in which the study site was located, is 2.21 large as-
pen per hectare (DBH ≥ 22 cm, computed specifically for this
study using NFI data between 2019 and 2021). The diameter
distributions of aspen and other trees in the field data are dis-
played in Fig. 2, where the left-hand side y-axis indicates the
absolute number of aspen (bars) and the right-hand side y-axis
indicates the number of other trees (displayed as a smoothed
red line). The shape of the diameter distribution of aspen ap-
proximately follows the diameter distribution of the other
trees (Fig. 2).

2.3. Remote sensing data
Remote sensing data consisted of ALS data and aerial im-

ages. Both datasets are part of the national data collection
campaign (KALLIO) organised by the National Land Survey of
Finland and are freely available, although some restrictions
apply to the acquisition of high-density ALS data. The ALS
data and aerial images were acquired during leaf-on condi-
tions in June 2020 (Tables 1 and 2). As proposed by Axelsson
(2000), the ALS echoes were classified as ground and non-
ground. The original echo heights in the N2000 vertical co-
ordinate reference system were normalised to above ground

level (a.g.l) using a digital terrain model interpolated from
ground echoes by Delaunay triangulation. Resulting negative
echo heights were set to zero.

We used the original multispectral bands (Level-2) from a
Vexcel UltraCam Eagle camera, without pan-sharpening or
orthorectification. Pan-images were not used. First of many
and only echoes were projected to unrectified colour bands
using the parameters of internal and external orientation (see
details in Packalén et al. 2009). External orientation was de-
termined using the bundle block adjustment technique with
tie points, control points, and GNSS (global navigation satel-
lite system) IMU (inertial measurement unit) values as ancil-
lary observations (Mikhail et al. 2001). The pixel values of the
colour bands (red, green, blue, and near-infrared (NIR)) were
then assigned as attributes to the ALS echoes. Note: Due to
the overlap of images, each ALS echo was linked to multiple
images.

2.4. Tree detection and tree metrics
Trees were identified from the canopy height model (CHM)

interpolated by the ground normalised ALS echoes. The pixel
size of the CHM was 0.5 m and the initial CHM was interpo-
lated by setting the pixel value either to the maximum ALS
echo height within each pixel or as NoData (if there were no
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Fig. 2. Histogram for the diameter distribution of aspen (bars) and other trees (smoothed red line) used in this study. Each bar
equates to the 3 cm diameter at breast height class.

Table 1. Metadata of the applied airborne laser scanning data
used to detect aspen in this study.

Time 14 June 2020–25 June 2020

Laser scanner RIEGL VQ-1560i

Flying altitude 1525 m a.g.l.

Flying speed 155 knots

Scanning frequency 148 Hz

Pulse density 1400 kHz

Point density 7.2 points/m2

Maximum scanning angle 20◦

Side overlap 20.8%

Table 2. Metadata of the aerial images used in aspen
detection.

Time 12 June 2020

Multispectral Camera Vexcel UltraCam Eagle Mk.∗

Image format, mm 68.016 × 104.052

Image format, pixels 4360 × 6670

Pixel size (in CCD) 15.600 μm × 15.600 μm

Focal length 100.5 mm

Spectral bands (FWHM∗) Red: 580–690 nm

Green: 490–580 nm

Blue: 420–500 nm

NIR: 690–880 nm

Flying altitude 7700 m a.g.l.

Flying speed 257 knots

Ground sampling distance of
multispectral camera

120 cm

∗
Full width at half maximum.

ALS echoes within a pixel). NoData pixels were then replaced
with the median value in a 3 × 3 neighbourhood, and this
was repeated until no NoData pixels remained. After that, a
pixel was considered as a pit if at least six of its neighbours
in the 8-neighbourhood were >5 m higher than the pixel it-
self. These pit pixels were replaced with the median values
of their neighbourhood. The CHM was low-pass filtered us-
ing a Gaussian kernel and the magnitude of low-pass filter-
ing was determined by the value of a sigma (σ ) parameter.
After preliminary testing, we used a σ value of 1.2 (in pixel
coordinates).

Tree tops were identified from the low-pass filtered CHM
by assuming that the local maximum in the 8-neighbourhood
corresponded to a tree. Trees were delineated from the CHM
using marker-controlled watershed segmentation with iden-
tified treetops as seeds. Watershed segments were delineated
using a drainage direction following an algorithm (Narendra
and Goldberg 1980; Gauch 1999) within the inverted (low-
pass filtered) CHM. To maintain separation between the
crown and ground, pixels with heights of <5 m were ex-
cluded. Finally, tree segments with a crown size < 3 m2 or a
local maximum height < 14 m were removed. Note: Tree de-
tection parameters were selected to detect large aspen rather
than for generic forest inventory purposes.

Field measured trees were linked to remotely detected
trees to attach the information related to a field tree (here
DBH and tree species) to the detected tree (Fig. 3). As a link-
ing criterion, we used a 2.5 m limit in the X and Y planes, and
a 3 m limit in the Z direction. If multiple trees were found
within these limits, the nearest tree was selected. This link-
ing resulted in 12 189 linked trees.
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Fig. 3. Workflow for the classification of large aspen trees.

The ALS and image metrics were calculated for the CHM
segmented tree polygons. The ALS metrics were calculated
for the first, intermediate, last and all echo categories and in-
cluded commonly used height and intensity percentiles (5th,
10th, …100th) for echoes ≥ 2 m a.g.l. Also, we calculated the
proportion of the different echo categories, mean, standard
deviation, skewness, and kurtosis for height and intensity.
Density metrics (e.g., D15 and D20) were calculated as cu-
mulative proportions of echoes above certain heights (e.g.,
15 and 20 m). Image metrics, which contained mean and
standard deviation values for each band, ratios between the
bands (e.g., red/blue) and normalised difference vegetation in-
dex (NDVI), were computed for trees from the pixel values
linked to echoes. Only echoes with a height > 0.5 × the pre-
dicted height of the tree were accepted. For this purpose, tree
height was predicted for detected trees using a linear model
fitted with all the detected and appropriately linked trees. In
the model, the maximum height of the remotely sensed tree
polygon (hPoly) explained the measured/predicted height of
the tree (hTree):

hTreei = β0 + β1 × hPolyi(1)

where β0 is a constant in the model and β1 is the coefficient of
the model. Model coefficients were estimated using the least
squares method, which resulted in values of 1.24 for β0 and
1.00 for β1 (i.e., only the intercept was required at the end).

2.5. Classification of aspen trees
We used the random forest (RF) classifier to separate large

aspen from other remotely detected trees (Fig. 3). The RF clas-
sifier is a well-established algorithm in data science and has
been widely used in remote sensing (Belgiu and Drăguţ 2016).
It is a supervised learning method that constructs multiple
decision trees at the training stage. Each decision tree con-
sists of nodes that are chosen based on optimum splitting
of features. In our analysis, we used Gini importance (a.k.a.
Gini impurity) as a node splitting criterion. Output of the al-
gorithm is the class selected by most of the trees, i.e., majority
voting. We used the “fast implementation of random forest
algorithm” from package ranger (Wright and Ziegler 2017) in
the R environment (R Core Team 2022).

Our dataset was strongly unbalanced as the proportion of
large aspen was very small compared to other trees (e.g., 35
aspen with DBH > 22 cm from a total of 33 195 trees). Also,
the number of aspen was small compared to other deciduous
trees; aspens comprised approximately 1.8% of all deciduous
trees (167 aspens from a total of 9246 deciduous trees). To ac-
count for the imbalance, we adopted the synthetic minority
oversampling technique (SMOTE) (Chawla et al. 2011) where
new instances are generated by combining features of the tar-
get observation and its k-nearest neighbours in the feature
space. The user defined parameters of SMOTE are the percent-
ages for minority case increment and/or majority decrement
and the number of nearest neighbours. For example, if one
wants to double the number of minority observations, the
percentage for minority increment is 200. In our analysis, we
calculated values for minority increment in such a way that
the numbers of aspen and other tree species in the training
data were approximately equal. For example, a total of 7627
trees were used in the modelling when the 22 cm DBH limit
for large aspen was applied, and only 29 of these were large
aspen. The use of SMOTE increased the number of large as-
pens to 7598 in the training data while the number of other
trees remained unchanged. This also corresponded better to
the number of other deciduous trees in the field data. We
used SMOTE implemented in the R-package performanceEs-
timation (Torgo 2016).

Initially, there were 179 ALS and 15 image metrics. Prior to
fitting the RF model, we removed ALS metrics until the corre-
lations between the remaining metrics were <0.8. All image
metrics were used as there were significantly more ALS met-
rics than image metrics. For the response class “large aspen,”
we defined those observations that were aspen and where
DBH was ≥a range of DBH limits (18, 20, 22, 24, and 26 cm).
The definition of large aspen may be ambiguous, as earlier
studies have used DBH values between 20 and 25 cm as a cri-
terion (e.g., Latva-Karjanmaa et al. 2007; Maltamo et al. 2015).

Our first classification (SC1) compared balanced (SMOTE-
RF; SRF) and unbalanced RF classifications, when the 22 cm
DBH limit for large aspen was used. In SC1, the data were
divided into A, B, and C datasets for both balanced and un-
balanced classifications. Dataset A denoted data where only
linked trees (i.e., trees for which tree polygons were assigned)
from the aspen plots were considered. Here, aspen plot indi-
cates that the plot contained at least one large aspen tree. In
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Table 3. Confusion matrices associated with our first classification (SC1) where the random forest (RF) algorithm and synthetic
minority oversampling technique augmented RF classification (SMOTE-RF) were compared across different datasets. Labels
“Aspen” and “Other” denote large aspens and other trees, respectively. Suffix “A” denotes the dataset where only linked trees
from aspen plots were considered, suffix “B” denotes the dataset where unlinked field-measured trees from aspen plots were
added to previous results, and suffix “C” denotes the dataset where all trees from all plots were used in the classification.

Observed class Observed class

RF-A Other Aspen Sum SRF-A Other Aspen Sum

Predicted class Other 430 19 449 Other 409 13 422

Aspen 8 10 18 Aspen 29 16 45

Sum 438 29 467 Sum 438 29 467

RF-B Other Aspen Sum SRF-B Other Aspen Sum

Predicted class Other 1371 25 1396 Other 1350 19 1369

Aspen 8 10 18 Aspen 29 16 45

Sum 1379 35 1414 Sum 1379 35 1414

RF-C Other Aspen Sum SRF-C Other Aspen Sum

Predicted class Other 33 159 34 33193 Other 33 136 28 33164

Aspen 1 1 2 Aspen 24 7 31

Sum 33160 35 33195 Sum 33160 35 33 195

dataset B, unlinked field measured trees from the aspen plots
were added to the data, while in dataset C, all trees from all
plots were considered in the classification. Dataset C was rep-
resentative of the population, while A and B were unrepre-
sentative. Our second classification (SC2) compared SMOTE-
RF classifications across a range of DBH limits for large aspen
(18, 20, 22, 24, and 26 cm).

We utilised the leave-one-plot-out cross-validation tech-
nique, which means that for each iteration, we used trees
from one plot as the test data and trees from all the other
plots as the training data. We report the following accuracy
statistics: precision, recall, and the F1-score. The latter is a
harmonic mean value of precision and recall (Sasaki 2007).
In SC1, we report tree-level accuracies for aspen plots (A, B)
and all plots (C). In SC2, we show accuracies only for all plots,
but the results are reported at both the tree- and plot-levels.

Finally, we analysed the most important metrics used in
the SMOTE-RF classification at the 22 cm DBH limit when data
from aspen plots and all plots were utilised. The importance
measure employed here was the decrease in Gini importance,
which is calculated as the number of times that a metric is
used to split a tree node divided by the number of all trees.
The importance measure values across RF runs with differ-
ent datasets are at different scales. To make them compara-
ble (between the aspen plots and all plots), we normalised
importance by dividing it by its overall mean value.

3. Results
In SC1 (22 cm DBH limit), 29 large aspens were linked to

remotely detected tree crowns. In addition, six large aspens
were not linked to a remotely detected tree. Therefore, the
total number of large aspen in SC1 was 35. In the aspen plots,
we were able to identify 10 large aspens (out of 29) with the RF

Table 4. Accuracy statistics associated with our first classifi-
cation (SC1) where the random forest (RF) algorithm and syn-
thetic minority oversampling technique augmented RF classi-
fication (SMOTE-RF) were compared across different datasets.

Precision Recall F1-score

RF-A 0.56 0.34 0.42

SRF-A 0.36 0.55 0.44

RF-B 0.56 0.29 0.38

SRF-B 0.36 0.46 0.40

RF-C 0.50 0.03 0.06

SRF-C 0.23 0.20 0.21

method (Table 3, RF-A) and 16 out of 29 with the SMOTE-RF
method (Table 3, SRF-A). When all 701 plots were used, the
number of correctly identified large aspen trees was 1 and
7 (out of a total of 35) with the RF and SMOTE-RF methods,
respectively.

The accuracy statistics for SC1 are shown in Table 4. The F1-
scores for dataset A were similar (0.42 vs. 0.44) because a con-
siderable number of large aspens were incorrectly predicted
in SMOTE-RF. This difference was also seen in the smaller pre-
cision values associated with SMOTE-RF, which indicated a
greater proportion of incorrectly predicted aspens. The re-
call values were greater for SMOTE-RF than for RF, i.e., the
predicted large aspens were more often correct in SMOTE-RF
than in RF. The accuracy statistics for dataset B highlighted
the errors that originated from the unlinked field-measured
trees (Table 4, RF-B, SRF-B). The recall values for dataset B with
RF and SMOTE-RF classification were 0.05 and 0.09 smaller,
respectively, than in dataset A. The F1-scores for both clas-
sifications were 0.04 smaller than dataset A. The difference
in the statistics with dataset A remained relatively small as
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Table 5. Confusion matrices associated with our second classification (SC2) where synthetic minority oversampling technique
augmented RF classification (SMOTE-RF) was used to identify large aspens across a range of diameter at breast height limits at
the tree- and plot-levels. Labels “Aspen” and “Other” at the tree-level denote large aspen trees and other trees, respectively. At
the plot-level, these correspond to non-large aspen plots and large aspen plots.

Tree-level Plot-level

18 cm Observed class 18 cm Observed class

Other Aspen Sum Other Aspen Sum

Predicted class Other 33 085 58 33143 Other 641 24 665

Aspen 46 6 52 Aspen 27 9 36

Sum 33131 64 33 195 Sum 668 33 701

20 cm 20 cm

Other Aspen Sum Other Aspen Sum

Predicted class Other 33 114 44 33158 Other 653 22 675

Aspen 32 5 37 Aspen 19 7 26

Sum 33146 49 33 195 Sum 672 29 701

22 cm 22 cm

Other Aspen Sum Other Aspen Sum

Predicted class Other 33 136 28 33164 Other 662 16 678

Aspen 24 7 31 Aspen 15 8 23

Sum 33160 35 33195 Sum 677 24 701

24 cm 24 cm

Other Aspen Sum Other Aspen Sum

Predicted class Other 33 157 19 33176 Other 674 13 687

Aspen 12 7 19 Aspen 7 7 14

Sum 33169 26 33 195 Sum 681 20 701

26 cm 26 cm

Other Aspen Sum Other Aspen Sum

Predicted class Other 33160 15 33175 Other 673 10 683

Aspen 13 7 20 Aspen 11 7 18

Sum 33173 22 33 195 Sum 684 17 701

most of the field-measured trees were non-aspen trees and
we were able to link most of our field measured large aspen
to a remotely detected tree. Precision values remained simi-
lar as the unlinked field-measured trees mostly belonged to
the “Other” class.

The advantage of SMOTE-RF was evident when all plots
were considered (Tables 3 and 4, dataset C). SMOTE-RF re-
sulted in a clearly greater F1-score than RF: 0.21 versus 0.06
(Table 4). Moreover, SMOTE-RF also predicted a greater num-
ber of large aspens, although many were incorrectly pre-
dicted (precision 0.23). In contrast, RF predicted only two
large aspens, and only one was correct (Table 3). Further in-
spection on the tree species distribution of false positives in
SRF-C revealed that most of the false positives (20 trees out
of 24) were birch trees (silver birch and downy birch), three
were spruce and one was pine.

Confusion matrices associated with SC2 are presented in
Table 5, and Fig. 4 depicts the F1-score, precision and recall

values for SC2. All the results are shown for a range of DBH
limits at the tree- and plot-levels. The total number of large
aspen trees in our dataset strongly declined when the DBH
limit increased from 18 cm (n = 64) to 26 cm (n = 22) (Table 5).
At the tree-level, the number of correctly classified aspens
was approximately similar (5–7) across a range of DBH limits
(Table 5). Tree-level F1-scores increased as the DBH limit in-
creased (Fig. 4A). The same trend applied with the precision
(Fig. 4B) and recall values (Fig. 4C), with the exception that
the precision value was greatest at the 24 cm DBH limit. At
the plot-level, the number of correctly classified aspen plots
remained approximately similar, although the number of as-
pen plots declined from the DBH limit of 18 cm (n = 33)
to 26 cm (n = 17) (Table 5). The F1-scores increased overall
with increasing DBH, although the 24 cm limit had greater
precision than the 26 cm limit (Fig. 4A). Precision exhibited
the same trend as the F1-score; the 24 cm limit exhibited
the greatest F1-score (0.50) followed by the 26 cm limit (0.39)
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Fig. 4. Plot- and tree-level F1-scores (A), precision (B), and recall values (C) associated with our second classification (SC2) where
the synthetic minority oversampling technique augmented RF classification (SMOTE-RF) was used to identify large aspen trees
across a range of diameter at breast height (DBH) limits at the tree- and plot-levels.

(Fig. 4B). Recall values showed a similar trend (Fig. 4C). All
accuracy statistics at the plot-level exhibited greater values
than their equivalents at the tree-level.

Normalised importance of the 20 most important ALS and
aerial image metrics for the two selected datasets are pre-
sented in Fig. 5. These correspond to previously reported
datasets SRF-B and SRF-C in SC1. Overall, image metrics were
clearly more important predictors than ALS metrics (Fig. 5).
In particular, metrics that contained the NIR band were con-
sidered to be very important. NDVI also exhibited high im-
portance values for both datasets. The green band appeared
to be the second most important spectral band. The most im-
portant ALS metric was ranked 8th in importance with the as-
pen plots and 12th with all plots (Fig. 5). The most important
ALS metrics listed here were related to lidar intensity (e.g.,
f_int5 = 5th intensity percentile of the first of many + only
echoes).

4. Discussion
The low accuracy statistics reported in this study high-

light the challenges in remote-sensing-based detection of as-
pen in large forest areas with diverse conservation and man-
agement targets. This was seen in SC1 as the highest F1-
scores were reported for the least representative dataset of
the population, whereas the lowest F1-scores were reported
with the most representative dataset of the population. SC1
also showed that data augmentation using SMOTE was ben-
eficial for the most representative dataset, although accura-
cies were still poor. In SC2, the number of correctly classified
large aspens varied slightly when different DBH limits were
applied. Further inspection revealed that the same four large
aspen trees were correctly identified for all DBH limits, and
six correctly classified large aspen trees were the same for
the 22, 24, and 26 cm DBH limits. One possible reason that
the same large aspen trees were correctly identified was that
their structure and/or spectral response were clearly differ-

ent to the surrounding trees in the same plot. This confirms
that large aspens are, to some extent, identifiable via remote
sensing.

From a biodiversity point of view, it is meaningful to iden-
tify large aspen trees, whether clustered or few and far be-
tween. Therefore, the basic unit of interest in our study was
the tree, and quantities were considered as less important.
In addition, we wanted to validate the classification accuracy
(absence or presence of large aspen) at the plot-level, which
was based on the predictions at the tree-level in each plot.
Stand-level assessment would have also been of interest, but
we did not have data for such an analysis. Tree- and plot-level
results were reported in SC2, where the plot-level accuracy
was greater than tree-level accuracy at each DBH limit. This
is an assumed outcome because we applied a chain of rea-
soning that allowed aspen plots to be predicted, even though
there were no observed large aspens in that plot. For exam-
ple, a plot would still be classified as an aspen plot if a single
large aspen was predicted, regardless of whether the predic-
tion was correct or incorrect.

Our study setting provides a realistic picture of the diffi-
culty in modelling rare phenomena in true populations. In
our field data, the proportion of aspen with respect to stem
number was 0.49%, while the corresponding mean estimate
in the Finnish NFI for the larger geographical area that sur-
rounds our study area is 0.5% (computed specifically for this
study using NFI data collected between 2019 and 2021). The
proportion of large aspens in our study area is much smaller,
around 0.1% for aspen with a DBH ≥ 22 cm. This rarity of
aspen in the population has not been adequately taken into
account in earlier research setups. For example, the propor-
tion of aspen in the studies by Viinikka et al. (2020) and Mäyrä
et al. (2021) was approximately 11%, and 27% in the study by
Kuzmin et al. (2021).

The overlapping spectral response between birch and as-
pen is a known issue in the identification of the latter
(e.g., Hovi et al. 2017; Viinikka et al. 2020). As such, our
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Fig. 5. Normalised importance for the 20 best remote sensing metrics used in the synthetic minority oversampling technique
augmented RF (SMOTE-RF) classification at the 22 cm diameter at breast height limit. Black and grey colours signify spectral
and airborne laser scanning metrics, respectively. A greater value signifies greater importance. Definitions: f——first and only
echoes, l——last and only echoes, i——intermediate echoes, a——all echoes, int——intensity metric, std——standard deviation, h——
height percentile (e.g., h5 = 5th height percentile), echo_prop——proportion of echo class from all echoes, hkurt——kurtosis (4th
moment) of vegetation heights, NDVI——normalised difference vegetation index, NIR——near-infrared,/– division of two image
bands.

investigation of tree species distribution of false positives in
classification SRF-C in SC1 revealed that most of the falsely
predicted large aspens were actually birch trees: 20 out of a
total of 24. Of the remainder, three were spruce and one was
pine. Therefore, our study underlines the misclassification is-
sue between aspen and birch. Other causes for misclassifica-
tion between aspen and other deciduous trees are similarities
in tree structure and high chlorophyll content (Dalponte et al.
2012).

Comparison of our results to other studies is difficult due
to the number of factors involved, including the proportion
of aspen in the dataset, the number of other species, the dif-
ference in overall vegetation structure, and the season of data
acquisition. In addition, our interest was specifically in large
aspen, not aspen in general. Kivinen et al. (2020) reviewed re-
mote sensing-based mapping of aspen at the tree- and stand-
levels and listed various studies in which the precision varied
between 0.56 and 0.86, and recall values ranged between 0.24
and 0.71. One of those tree-level studies was Ørka et al. (2007),
who utilised ALS intensity features in tree species classifica-
tion in a natural forest reserve in Norway. The proportion of
aspen in their field data were 9.4% of all trees and approxi-
mately 23% of deciduous trees. They reported relatively low
classification accuracies for aspen; a precision value of 0.56
and a recall value of 0.24. They also noted that there was over-
lap between aspen and spruce ALS intensity metrics, which
was also reported by Korpela et al. (2010). These accuracy
statistics are somewhat similar to the results presented here,
although the aspens in our study were more often mixed with
birch trees than with spruce.

In Koli National Park in eastern Finland, Säynäjoki et al.
(2008) utilised ALS data, combined with aerial images, to sep-
arate aspen from other deciduous trees. First, they visually
discriminated deciduous trees from coniferous trees using
aerial images. Second, ALS data were employed to classify the
remaining segments as aspen and other deciduous trees with
79% accuracy. One explanation for the greater accuracy com-
pared to our study is that they utilised manual segmentation
of tree crowns in the first stage. This procedure simplifies
classification by reducing the amount of confounding tree
delineations. However, this approach is not realistic in real
world applications. Moreover, they recorded a large number
of aspen trees (n = 140) compared to other deciduous trees
(n = 56) in their dataset. This was opposite to our dataset
where the proportion of aspens from all deciduous trees was
only 1.8%.

Li et al. (2013) utilised very high-density ALS data (90
points/m2) to classify individual tree crowns into four species,
one of which was quaking aspen (P. tremuloides Michx.). The
proportion of aspen in their field data was over 30% of all
trees and approximately 63% of deciduous trees, and they
recorded high precision (0.74) and recall (0.76) values. They
reported that the high ALS point density strongly contributed
to the classification accuracy. In Finland, Viinikka et al. (2020)
and Mäyrä et al. (2021) tested the performance of airborne hy-
perspectral data for the detection of aspen at the same study
site. They only utilised ALS data for the detection of individ-
ual tree crowns. In the former study, the main emphasis was
on finding the most important spectral features for the dis-
crimination of aspen from the other tree species, but also to
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compare the RF and support vector machine classifiers. The
latter study concentrated more on a comparison of the differ-
ent classifiers used in the identification of aspen. Both studies
reported similar accuracies for their best performing models:
a precision value of approximately 0.93 and a recall value of
approximately 0.89. Compared to our study, both Viinikka et
al. (2020) and Mäyrä et al. (2021) had a clearly greater pro-
portion of aspen in their field data. Also, the proportion of
aspens with regard to other deciduous trees was also clearly
greater in their field data (36.1% vs. 1.8%).

Unmanned aerial system (UAS)-based mapping of aspen
trees has been reported to result in similar accuracies as stud-
ies that have utilised conventional ALS data and multispectral
aerial images. For example, Tuominen et al. (2018) studied
the recognition of 26 tree species (2.8% aspen) in a Finnish
arboretum using UAS hyperspectral and 3D point cloud data.
They utilised manual delineation of tree crowns and reported
a precision value of 0.86 and a recall value of 0.63 for aspen
classification. Kuzmin et al. (2021) examined the mapping of
aspen trees using multispectral UAS point cloud data. The
best feature set obtained a precision value of 0.82 and a recall
value of 0.85 in a two-class scenario. Hardenbol et al. (2021)
utilised spectral and height information from UAS 3D point
clouds and reported precision values between 0.84 and 0.97
and recall values between 0.84 and 0.96 for different dates of
data acquisition. These studies reported much greater values
for accuracy statistics than in our study. A potential reason
for this is that study of Tuominen et al. (2018) was conducted
in an arboretum that had homogeneous stands, which made
them suitable for tree species recognition. In the studies of
Hardenbol et al. (2021) and Kuzmin et al. (2021), the propor-
tion of aspen in the field data was clearly greater than in our
data: 20.7% and 29.4% of all trees, and 39.8% and 54.5% of
deciduous trees, respectively. Furthermore, Hardenbol et al.
(2021) visually selected coniferous trees (spruce and pine) for
the classification, which might have made the classification
between aspen and other tree species easier.

In our study, the NIR band, the band ratios of NIR and other
bands, and NDVI were the most important metrics in the
detection of large aspen trees. Earlier studies have reported
similar findings with regard to the NIR band (e.g., Viinikka
et al. 2020). Hardenbol et al. (2021) suggested that the most
favourable time window for the detection of aspen was late
spring when aspen did not have leaves and birch had only
partially flushed leaves. Summer was considered the second
best and autumn the least favourable time. In operational ap-
plications, it is not practical to collect data in short time peri-
ods only in spring or autumn. Our remote sensing data were
collected in summertime when the leaves were fully opened.
The importance of NDVI has also been recognised in other
studies (e.g., Hardenbol et al. 2021).

Our results show that spectral metrics are more important
than ALS metrics for the classification of large aspen. This is
in line with the observations of Hardenbol et al. (2021) where
only one height metric (45th percentile of vegetation heights,
h45) was selected in the final model and had a comparatively
small effect in the classification. However, the most impor-
tant ALS metrics in our study were related to echo inten-
sities (e.g., f_int5 and l_intstd). The wavelength of the used

ALS instrument is 1064 nm, which provides intensity values
that perform well in the separation of tree species (see e.g.,
Korpela et al. 2023). Ørka et al. (2007) reported similar find-
ings and noted that the best performing combination of pre-
dictors included mean intensity values and associated stan-
dard deviation computed either from first or last echoes. Our
results underline this finding, as the standard deviation val-
ues associated with intensity either from last or first echoes
were included in the 20 most important metrics.

The optimal tuning parameters for the detection of large
aspens deviate from the parameters used in generic forest
inventories and are unfavourable for the detection of small
trees. One reason is the magnitude of the low-pass filtering
that is required for large-crowned aspen trees to have only
one local maximum. Here, we do not present the effect of
the tree detection parameters. These parameters have a cer-
tain effect, but because there are multiple tree detection al-
gorithms, all with different tuning parameters, such an anal-
ysis is not particularly useful. An issue related to delineation
of tree crowns in our study was the fact that our field data
contained many plots that had a multilayered canopy struc-
ture and were, therefore, problematic for individual tree de-
tection. In earlier studies, manual delineation of tree crowns
resulted in greater detection accuracies for aspen than ob-
tained from automatic delineation (Hardenbol et al. 2021).
Nevertheless, the use of manual delineation in real world ap-
plications is not a realistic option (Tuominen et al. 2018).

For future studies, we recommend that more resources are
allocated to the detection of ecologically valuable trees, such
as large aspen. One problem in separating aspen from other
deciduous trees are the subtle differences in the crown shape,
structure, and spectral response. It is obvious that the crown
shape of aspen is such that the assumption of one local max-
imum at the top of a tree is not always realistic. More em-
phasis is required to tackle the issue of mixing between as-
pen and other deciduous trees. Furthermore, future studies
should pay more attention that the used dataset is represen-
tative with respect to population, and if it is not, to state this
clearly and discuss its implications in a transparent manner.

5. Conclusion
We demonstrated here that both the rarity of large as-

pen trees and their mixing with surrounding broadleaved
trees, especially birch, make their detection with ALS data
and aerial images a difficult task in a genuine population.
This aspect of rarity has not been properly considered in ear-
lier studies and was, therefore, demonstrated here by repeat-
ing the analyses with representative (proportion of aspen is
similar in the population) and unrepresentative (proportion
of aspen is noticeably greater than in the population in the
large area) datasets. Performance was clearly poorer in the
representative dataset, which means that overly optimistic
results may occur in studies where the validation data con-
tain more large aspen trees than are in the population. Our
results showed improved performance with SMOTE, which
indicates that data augmentation may be beneficial for the
mapping of rare phenomena, such as large aspen trees. With
regard to the classification accuracy related to the size of
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aspen trees, we observed that an increased DBH limit for
“large aspen” improved the classification accuracy. The spec-
tral metrics were found to be more important predictors than
the ALS metrics when separating identified individual trees.
However, ALS metrics may further improve the accuracy, and
in our approach, ALS data are also required for the detection
of trees.

We underline the fact that large aspen trees have such a
crown structure that the assumption of one local maximum
at the treetop is not relevant. This provides space for the de-
velopment of a dedicated approach that is tailored to the
detection of the crown of large aspen trees. Future studies
should use field data that provides the most realistic picture
of the surrounding forest landscape.
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