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Abstract
This study explores how data from a handheld mobile laser scanning (MLS) system and quantitative structural models (QSM)

can be used to estimate tree structural attributes. Four MLS acquisition scenarios were investigated in a 1 ha temperate hard-
wood stand, including 15 and 35 m parallel lines, nine circular plots, and a 20 m × 20 m grid. Results were compared against
terrestrial laser scanning and destructive field measurements. All acquisition scenarios yielded comparable results, except for
the 35 m scenario, which showed greater variability. The 20 m × 20 m grid scenario showed the highest accuracy, with an
RMSE of 0.41 m (2.07%) for tree height, 3.98 cm (14.93%) for diameter at breast height, 0.21 m3 (19.28%) for merchantable wood
volume, and 0.07 m3 (10.11%) for merchantable stem volume. A bias < 5% was observed for these key attributes, except for
an 11.68% bias in merchantable wood volume. Overestimation of branch volume was identified as the primary source of bias
related to merchantable wood volume. This study highlights MLS’s potential for accurate, non-destructive estimation of tree
structural attributes, while pointing out the need to refine noise removal and to assess the most suitable acquisition scenarios
for various forest types.
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Résumé
Cette étude explore l’utilisation de données issues d’un lidar mobile (MLS) portatif et de modèles quantitatifs de structure

(QSM) pour l’estimation des attributs structuraux des arbres. Quatre scénarios d’acquisition MLS ont été investigués dans une
parcelle de forêt feuillue tempérée de 1-ha, incluant des trajectoires parallèles de 15 m et 35 m, neuf parcelles circulaires
et une grille de 20 m × 20 m. Les résultats ont été comparés à ceux d’un lidar terrestre et de mesures destructives. Tous les
scénarios d’acquisition ont produit des résultats comparables, à l’exception du scénario de 35 m, qui a montré une plus grande
variabilité. Le scénario de la grille de 20 m × 20 m a montré la plus haute précision, avec un RMSE de 0.41 m (2.07%) pour la
hauteur des arbres, 3.98 cm (14.93%) pour le diamètre à hauteur de poitrine, 0.21 m3 (19.28%) pour le volume de bois marchand
et 0,07 m3 (10.11%) pour le volume de tige marchande. Un biais < 5% a été estimé pour ces attributs clés, à l’exception d’un
biais de 11.68% pour le volume de bois marchand. La surestimation du volume des branches a été identifié comme la principale
source de biais liée au volume de bois marchand. Cette étude met en évidence le potentiel du MLS pour l’estimation précise
et non destructive des attributs structuraux des arbres. Elle souligne toutefois la nécessité d’affiner la réduction du bruit dans
les données MLS et d’identifier les scénarios d’acquisition les plus appropriés pour différents types de forêts. [Ceci est une
traduction fournie par l’auteur du résumé en anglais.]

Mots-clés : lidar mobile, SLAM, attributs forestiers, Modèles Quantitatifs de Structure (QSM), volume

1. Introduction
Accurate estimation of tree volume or aboveground

biomass (AGB) is crucial for calibrating and validating
biomass mapping products using Earth observation data
(Duncanson et al. 2019). To determine AGB using satellite
data, field measurements are required and traditionally ob-

tained by measuring tree attributes, including stem diame-
ter at breast height (DBH), height, wood density, and species.
These measurements are then converted to AGB values using
allometric models (Demol et al. 2022a). Applying allometric
models presents several challenges, primarily due to uncer-
tainties in model selection (Duncanson et al. 2017). The cur-

774 Can. J. For. Res. 54: 774–792 (2024) | dx.doi.org/10.1139/cjfr-2023-0202

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

B
un

de
sf

or
sc

hu
ng

s-
u.

 A
us

bi
ld

un
gs

ze
nt

ru
m

 o
n 

07
/1

0/
24

https://orcid.org/0000-0002-6142-9009
https://orcid.org/0000-0003-3795-1611
mailto:bastien.vandendaele@hardwoodsnb.ca
http://dx.doi.org/10.1139/cjfr-2023-0202


Canadian Science Publishing

Can. J. For. Res. 54: 774–792 (2024) | dx.doi.org/10.1139/cjfr-2023-0202 775

rent approach to calibrating these models also involves de-
structive harvesting of trees, which is costly, invasive, and not
always ethically or legally feasible. Consequently, allometric
models often rely upon limited calibration data, thereby rais-
ing concerns about their spatial representation and applica-
bility to different tree sizes (Chave et al. 2014; Aguilar et al.
2019). Thus, there is a pressing need to develop novel meth-
ods that are faster and more accurate, and which enable non-
destructive calibration of allometric models (Duncanson et
al. 2021).

Terrestrial laser scanning (TLS) is increasingly being rec-
ognized as a valuable alternative to field measurements for
biomass estimates and is commonly employed as a ground
truth validation method (Momo Takoudjou et al. 2018; Brede
et al. 2019). Reconstruction techniques such as voxel-based
methods (Bienert et al. 2014) or quantitative structural mod-
els (QSMs) (Raumonen et al. 2013; Hackenberg et al. 2015)
are used to estimate the volume of each tree, which can be
converted into an estimate of AGB using basic wood density
(Demol et al. 2022a). Validation studies have extensively com-
pared TLS-based tree volume or AGB estimates that are de-
rived from QSMs with destructively measured values (e.g.,
Kunz et al. 2017; Brede et al. 2019; Burt et al. 2021; Fan et
al. 2022). Calders et al. (2015) employed the TreeQSM algo-
rithm (Raumonen et al. 2013) to estimate AGB of 65 euca-
lyptus trees (Eucalyptus leucoxylon, E. microcarpa, E. tricarpa) us-
ing TLS, resulting in 9.68% overestimation when compared to
destructive measurements. Momo Takoudjou et al. (2018) as-
sessed the accuracy of TLS for estimating volumes and AGB
of large tropical trees in eastern Cameroon. They found that
TLS-derived volumes using QSMs were highly reliable, with
overall root-mean square error (RMSE) < 2.81%; coefficients
were statistically comparable to destructive data for calibrat-
ing biomass allometric models. In a recent study by Demol et
al. (2022a), a comprehensive global dataset of 391 trees from
diverse forest conditions was analyzed using TLS scans and
destructive measurements. The results demonstrated close
agreement between TLS-derived AGB and destructive values,
with bias <1% and a concordance correlation coefficient of
98% (CCC, Lin 1989). Most notably, TLS estimates of AGB were
less biased and more accurate compared to allometric mod-
els, thereby highlighting the effectiveness of the TLS-derived
QSM approach. Yet, it is important to consider that the level
of accuracy achieved can be substantially influenced by the
complexity of the forest structure and the degree of manual
fine-tuning in data processing. For instance, in undisturbed
tropical forests, Martin-Ducup et al. (2021) reported that fully
automated methods could result in relative volume errors
ranging from 39% to 115% at the individual tree level. Yet,
the incorporation of manual assistance, particularly in tasks
such as tree segmentation, reduced the error on volume es-
timates by a factor of 10. This underscores the variability in
TLS accuracy, depending upon forest type and the balance be-
tween automation and manual correction.

Despite the proven benefits of TLS-based QSM approaches
for forest inventory, TLS itself has certain limitations, such
as the need for multiple scanning stations, together with
labour-intensive and time-consuming data acquisition pro-
cesses. Occlusion that is caused by trees and understory vege-

tation also can pose challenges during data collection. These
limitations have prompted researchers to seek a scalable
technology that is capable of providing efficient and readily
usable 3 D point clouds, with a benefit–cost ratio compara-
ble to that of conventional manual measurements. Mobile
laser scanning (MLS) has emerged as a promising alternative
to TLS for forest inventories (Balenović et al. 2020; Gollob et
al. 2020). MLS systems consist of a laser scanner that is ei-
ther mounted on a vehicle or just carried by hand, which
can rapidly scan the forest environment while moving along
a designated path. MLS technology offers substantial advan-
tages over traditional forest inventory methods or TLS, en-
abling efficient and cost-effective data collection while mini-
mizing occlusion. Numerous studies have showcased the ef-
ficacy of MLS data in estimating various tree structural at-
tributes, such as DBH (Gollob et al. 2020), height (Jurjević et
al. 2020), stem taper (Hyyppä et al. 2020; Stovall et al. 2023)
and merchantable volume (Vandendaele et al. 2022).

Despite these significant advancements, the application of
MLS technology in forest inventory encounters three notable
challenges. First, MLS data often contain substantial amounts
of noise (Bauwens et al. 2016) and exhibit lower spatial ac-
curacy due to propagation of positioning errors (Chen et al.
2019). Consequently, accurately extracting individual tree at-
tributes becomes a challenging task. Second, the selection
of appropriate sampling designs and data analysis methods
has yet to be tested in forest inventory. Indeed, only a lim-
ited number of studies have investigated the influence of ac-
quisition scenarios on tree attribute accuracy (Perugia et al.
2019; Mokroš et al. 2021; Kuželka et al. 2022; Tupinambá-
Simões et al. 2023). Last, the lack of automated approaches
for efficient processing of 3 D point clouds and production of
useful outputs for foresters remains a substantial challenge
(Martin-Ducup et al. 2021). Reliance upon manual steps and
extensive expertise that is required in 3 D processing ham-
pers the widespread adoption of this new technology in the
field of forestry. Addressing these challenges through further
research and technological advancements would unlock the
full potential of MLS in compiling precision forest invento-
ries.

In a previous study, we explored the potential of MLS data
for extracting stem and merchantable wood volume in a
northern hardwood stand, and comparing these estimates
with TLS and destructive field samples (Vandendaele et al.
2022). Yet, this study was limited in scope, given that it in-
volved only a small number of trees (n = 26). The method-
ology that was employed required heavy manual procedures
for segmenting individual trees, with little emphasis on the
influence posed by acquisition scenarios on the accuracy of
tree attribute estimation. Building upon this foundation, the
present paper takes a more comprehensive approach to deal-
ing with the three aforementioned challenges. Therefore, we
investigated four MLS acquisition scenarios over a 1-ha hard-
wood stand and employed a fully automated approach uti-
lizing automatic tree segmentation and filtering, together
with QSM for extracting key inventory attributes and mer-
chantable wood volume. This study aims to achieve two ob-
jectives: (i) to assess the accuracy of MLS-based automated ap-
proaches in estimating individual tree volume through 3 D re-
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Fig. 1. (A) Location of the study area. (B) Study site with the 9 terrestrial laser scanning (TLS) sample plots (11.28 m radius)
and the 163 sample trees. (C) Panoramic view from one of the sample plots (photograph by Bastien Vandendaele ©). Figures
were created using QGIS version 3.34.3 and assembled from publicly available data: state boundaries from GeoNB (https:
//geonb.snb.ca/geonb/), the 2016 Census Boundary Files (www.statcan.gc.ca), and the U.S. Census Bureau (https://www.census.g
ov/geographies/mapping-files.html).

construction, with comparisons to TLS and destructive mea-
surements; and (ii) to compare different acquisition scenarios
for tree attribute estimation using MLS data collection. This
study offers valuable insights into the accuracy and efficiency
of MLS-based forest inventory estimation. It also introduces
an efficient and non-destructive method for automated pro-
cessing of ground-based lidar point clouds, further enhancing
the overall workflow of forest inventory analysis.

2. Materials and methods

2.1. Study site
The study site is located in Jardine Brook, southwest of

Saint-Quentin (NB, Canada), on a 1 ha mature hardwood site
at 280 m a.s.l. (47◦25′′21.70′′N, 67◦31′′5.84′′W) (Fig. 1). This site
is part of the Central Uplands Ecoregion of Madawaska in the
temperate hardwood zone (Zelazny et al. 2007). The study site
is on flat terrain (slope < 1%), with a crown closure of 56%,
little understory or shrub presence. Trees in the 1 ha hard-
wood stand have a mean height of 18 m (SD ± 5.6 m) and
mean crown base height of 7.6 m (SD ± 2.9 m). The stand
has not been subjected to high-intensity treatments since
the early 1940s, except for very light removals (<10% basal

area) to salvage balsam fir mortality. There are about 500
merchantable stems per hectare in the stand, with a basal
area of 16 m2·ha−1. The stand is multi-age, having more than
two distinct cohorts or age classes (from 75- to 160-years old)
and is composed mainly of sugar maple (Acer saccharum Mar-
shall, 88% basal area), yellow birch (Betula alleghaniensis Brit-
ton, 10%), and balsam fir (Abies balsamea [L.] Miller, 2%).

2.2. Terrestrial laser scanning (TLS) and field
inventory data

The TLS data were acquired during leaf-off conditions in
October 2021 using a FARO Focus3D S 120 scanner (Faro
Technologies Inc., Lake Mary, FL, USA). Nine sample plots of
11.28 m radius (400 m2 with a 10 m buffer) were scanned
within the 1 ha study site (Fig. 1). The scans were performed
from five locations, including the plot centre and the four
cardinal points of the plot, to minimize laser signal occlu-
sion. The TopCon FC-500 Hiper SR Kit Rover (Tokyo, Japan)
was used to measure the centre-point of each TLS plot. The
location of three trees per sample plot and these centre-point
locations were utilized as references for geo-referencing the
TLS point cloud and co-registering the scans with the MLS
data. TLS has a beam divergence of 0.27 mradians (0.015◦),
resulting in a laser beam footprint of 2.62 mm in diameter
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Table 1. Descriptive statistics of tree structural attributes for terrestrial laser scanning (TLS)
reference trees within the 1 ha study site.

Attribute Name Range Mean Standard deviation

Number of TLS reference trees n 163 na na

Tree height (m) H 7.48–24.8 19.8 4.71

Diameter at breast height (cm) DBH 5.69–64.66 26.71 12.45

Crown projected area (m2) CPA 0.37–86.48 22.63 18.8

Alpha volume (m3) AV 0.58–589.15 119.53 120.46

Total volume (m3) Vtot 0.05–4.68 1.26 1.02

Merchantable volume (m3) Vmerch 0.02–3.67 0.98 0.83

Operational merchantable volume (m3) Vop 0.02–3.55 0.95 0.80

Merchantable stem volume (m3) Vstem 0.02–2.59 0.77 0.56

Note: A detailed description of each tree structural attribute is provided in Table 2 (Section 2.4.3). na, not applicable.

at a distance of 10 m from the sensor. It was parameterized
to achieve a point spacing of 6.3 mm at this distance. Eight
spherical targets were positioned within each sample plot to
enable co-registration of multiple scans using FARO SCENE
5.1.6.3 software. The scan co-registration process had a mean
absolute error of 6.0 mm.

A total of 163 trees from the nine TLS sample plots (Fig.
1 and Table 1) were identified through semi-automatic TLS
segmentation (Section 2.4.1). They composed the benchmark
dataset against which MLS-derived attributes were compared.
The validation dataset excluded broken trees, dead trees, or
severely occluded trees in the point cloud. From the 163 TLS
reference trees, 26 (∼3 trees per plot) were harvested and
processed in March 2022 following the procedure detailed
in Vandendaele et al. (2022). Each felled tree was cut into
bucked segments for all stem or branches of significant size.
All branches with the smallest piece being ≥244 cm long and
with a small end diameter outside bark (DOB) ≥ 8 cm were
measured. Manual measurements included stump height,
segment lengths, and widest and narrowest DOBs at both
ends of the segments. These were then applied to the Smalian
formula (Bruce and Schumacher 1950) to estimate the oper-
ational merchantable volume of a tree (see Section 2.4.3 for
wood volume nomenclature). In addition, the merchantable
stem volume was calculated using the Li and Weiskittel (2012)
taper model (Li et al. 2012; Weiskittel and Li 2012), which uses
tree height and DBH as predictors and is specifically tailored
for hardwood species in the Acadian region. These calculated
volumes provided benchmarks for validating MLS data esti-
mates, reflecting traditional volume assessment methods in
New Brunswick forestry.

2.3. Mobile laser scanning (MLS) data
The MLS data were collected during leaf-off condition in

October 2021 using the Hovermap (Emesent Pty Ltd, Milton,
QLD, Australia), which is a handheld device that includes a
Velodyne (Velodyne Lidar Inc., Morgan Hill, CA, USA) VLP-
16 Lite lidar, a data logger, and an inertial measurement
unit (IMU). The lidar has 16 channels and can capture up
to 600 000 points s−1, with a maximum range of 100 m and
beam divergence of 3 mradians (0.17◦). This results in a laser
beam footprint of 29.67 mm in diameter at a distance of 10 m.

The system records distances with a continuous wavelength
of 903 nm and a lidar accuracy of ± 3 cm. The Hovermap
uses simultaneous localization and mapping (SLAM) technol-
ogy to generate a 3 D point cloud without requiring artifi-
cial reference targets or tripods. It uses lidar and IMU data
for real-time mapping and generates a coherent map of its
surroundings. Loop closure, or using the same point for start
and finish, is recommended to update real-time mapping and
reduce potential drifts that are associated with the SLAM
algorithm.

Four MLS acquisition scenarios were investigated to scan
the 1 ha study site (Fig. 2). The first scenario, which is re-
ferred to as MLS15m, followed a parallel line trajectory at 15 m
intervals in a ∼30 min walk, achieving an average point den-
sity of 15.6 k points·m−2. The second scenario, MLS35m, also
followed a parallel line pattern but at wider 35 m intervals
during a shorter ∼15 min walk, resulting in an average point
density of 7.3 k points·m−2. The third scenario, referred to as
MLS9plots, consisted of scanning nine circular plots following
a flower petal pattern in a ∼35 min walk, each plot encir-
cled by a concentric circle, achieving an average point den-
sity of 17.1 k points·m−2. The fourth scenario, MLSgrid20m, in-
volved walking along a 20 m × 20 m grid pattern for ∼40
min, periodically returning to the centre at each corner of
the site, with an average point density of 16.8 k points·m−2.
Hovermap data underwent automated pre-processing using
Emesent 1.5.0 proprietary software (Milton, QLD).

2.4. Methods
The overall data processing workflow for MLS data (Fig. 3)

shows the main steps that were performed to estimate tree at-
tributes. These steps include (i) lidar data acquisition and pre-
processing, (ii) automatic segmentation of individual trees,
(iii) tree cleaning and filtering, (iv) tree structural attributes
estimation and wood volume estimation through QSM, and
(v) validation of the estimated attributes.

2.4.1. Segmentation of individual trees

The geo-referenced TLS sample plots and the four
MLS acquisitions were first co-registered in CloudCompare
(CloudCompare Version 2.11.3) using the fine registration It-
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Fig. 2. Representative point density from mobile laser scanning (MLS) across different acquisition scenarios over the 1 ha
hardwood site with a 20 m buffered area: (A) MLS15m: 15 m parallel lines (∼30 min), (B) MLS35m: 35 m parallel lines (∼15 min),
(C) MLS9plots: 9 circular plots (∼35 min), and (D) MLSgrid20m: 20 m × 20 m grid (∼40 min). Voxelization was performed with
a resolution of 1 cm. The colour gradient indicates the point density (Pts·m−2) at a 5 m pixel resolution, ranging from low
(purple) to high (yellow). The black outlines delimit the study site boundary, while the red outlines indicate the location of the
nine terrestrial laser scanning (TLS) sample plots. Turquoise lines represent the trajectory of the MLS data acquisition scenario.

erative Closest Point (ICP) algorithm. Each TLS and MLS sam-
ple plot was extracted based on its geo-location, with a 10 m
buffer extending the plot area and downscaled at 1 cm us-
ing a voxel grid filter. This process ensured a uniform point
distribution, facilitating the effective application of cluster-
ing algorithms (Raumonen et al. 2013). The SimpleTree al-
gorithm (Hackenberg et al. 2015) from the Computree plat-
form (Othmani et al. 2011) was used to segment individual
trees with a height ≥ 6 m from the sample plots. This algo-
rithm takes a bottom-up approach, first identifying the stem
and then using it as a seed to delineate the tree from its
neighbours. The “filter cluster by the distance of the bound-
ing box to a given point" function from the SimpleTree tool-
box (Hackenberg et al. 2015) was used to extract trees located
within a 12 m radius from the centre of each plot. While both
the TLS and MLS data were segmented automatically, the re-
sults of the TLS individual tree segmentation were refined
manually in CloudCompare to eliminate any anomalies in the
reference dataset.

An algorithm was developed in R (R Core Team 2017) to
match pairs of TLS and MLS trees by considering their geo-
location and the percentage of non-empty voxels overlap-
ping. It comprises three sequential steps: (i) voxelization of
the point cloud at 0.5 m; (ii) calculation of the percentage
of non-empty voxels overlapping between the point clouds;
and (iii) selection of the point cloud(s) with a voxel over-
lap > 50% as a potential match. Multiple matches are pos-
sible, but they are highly unlikely. In such cases, the tree
with the greatest voxel overlap is selected as the match. From
the 163 TLS reference trees, the automated matching pro-
cess yielded a total match of 156 trees for the MLS15m sce-
nario (95.7%), 154 for MLS35m (95.5%), 155 for MLS9plots(95.1%),
and 157 for the MLSgrid20m (96.3%). Minor variations in tree
counts between MLS and TLS datasets are attributed to the
border effect of the circular plot design and the automated
spatial filtering method used. These discrepancies arise from
shifts in tree bounding box centers caused by slight seg-
mentation differences, leading to the occasional exclusion of
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Fig. 3. Summary of the workflow performed in this research using mobile laser scanning (MLS) to estimate tree attributes and
validate them against terrestrial laser scanning (TLS) and a sample of field data.

trees at the plot’s edge during the automated spatial filtering
step.

2.4.2. Tree filtering

The estimation of tree structural attributes and the applica-
tion of QSMs requires well-segmented trees. However, some
MLS trees that were segmented by SimpleTree algorithm may
have low vegetation around the trunk base (Fig. 3). To ad-
dress this issue, an R algorithm was developed to automat-
ically clean the base of the trunk (below 1.5 m) by removing
noise and low vegetation points. The algorithm applies the
four following steps to the point cloud: (i) removal of points
that are too far from the vertical using the geometrical point
cloud feature that was proposed by Hackel et al. (2016), with a
verticality threshold of 0.8; (ii) grouping the remaining points
to distinguish trunk points and to remove surrounding noise;

(iii) removal of small groups of points to exclude outliers; and
(iv) identifying the largest cluster of points as the trunk base.
By using this algorithm, the base of the trunk was cleaned
(Fig. 3) and the resulting QSM analysis was deemed to be more
accurate. Each tree also was filtered using a statistical out-
lier removal (SOR) filter that is available in the VoxR package
(Lecigne et al. 2018; Lecigne 2022; default parameters were
used).

2.4.3. Estimation of tree structural attributes

Tree height (H), DBH, crown projected area (CPA) and alpha
volume (AV) were estimated from the TLS and MLS segmented
trees using ITSMe R package (Terryn et al. 2023), as described
in Table 2.

QSMs were computed for each TLS and MLS trees using
TreeQSM algorithm (described by Raumonen et al. 2013;
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Table 2. List of tree structural attributes, description, and algorithm used (see Fig. 3 for illustration).

Attribute Name Origin Description Algorithm

Height (m) H Point Cloud Difference between the z-value of the highest
and lowest point of the tree in the point
cloud

R package: ITSMe (Terryn et al.
2023)

Diameter at breast
height (cm)

DBH Point Cloud Diameter of a circle fitted through a 6 cm
thick horizontal slice around 1.3 m using a
least-squares circle-fitting algorithm

Crown projected area
(m2)

CPA Point Cloud Area of the concave hull (concavity = 2)
computed from the point cloud

Alpha volume (m3) AV Point Cloud Volume of the 3 D alpha-shape computed from
the point cloud using the alphashape3d R
package (alpha = 1) (Lafarge & Pateiro-Lopez
2023)

Total volume (m3) Vtot QSM Volume encompassing the stem (i.e.,
branching order 0) plus the volume of
branches up to the third branching order
(1–3)

TreeQSM (Raumonen and
Åkerblom 2019) & R package:
aRchi (Martin-Ducup and
Lecigne 2022)

Merchantable volume
(m3)

Vmerch QSM Vtot truncated to include only parts with a
minimum diameter outside bark (DOB) at
the wood segment small end of ≥ 8 cm

Operational
merchantable
volume (m3)

Vop QSM Vtot truncated to include only parts with a
minimum DOB at the wood segment small
end of ≥ 8 cm with the smallest branch
pieces being ≥ 244 cm long. This volume is
compatible with the way operational
merchantable wood volume is measured in
the field

Merchantable stem
volume (m3)

Vstem QSM Volume of the stem (i.e., branching order 0)
with a minimum DOB at the wood segment
small end of ≥ 8 cm

Note: Tree structural attributes derived from MLS data are denoted with the subscript “MLS”, and those derived from TLS data with “TLS”. MLS, mobile laser scanning;
TLS, terrestrial laser scanning; QSM, quantitative structural models.

Åkerblom et al. 2015; Calders et al. 2015; Lecigne et al. 2018)
version 2.3.3 in MATLAB (MATLAB 2023). The algorithm’s
workflow, which is described in the TreeQSM 2.3.3 man-
ual (Raumonen and Åkerblom 2019), was followed, includ-
ing the use of its parallel computing capabilities. The ap-
proach that is described in Martin-Ducup et al. (2021) and
in Vandendaele et al. (2022) was used to optimize model pa-
rameters and to select the best reconstruction. The optimiza-
tion process enabled the generation of 32 QSM reconstruc-
tions per tree, utilizing varying parameter sets, as specified
in the supplementary material of Martin-Ducup et al. (2021).
The “select_optimum” function within TreeQSM, which pri-
oritizes the minimal point-to-surface distance for stem and
branches, was employed to select the most accurate recon-
struction from the point cloud data. Given the stochastic na-
ture of point clustering within the TreeQSM workflow, identi-
cal parameter inputs can result in slight variations in the gen-
erated QSMs (Calders et al. 2015). To account for this variabil-
ity and ensure robust volume estimations, three QSMs were
generated for every tree using the determined set of optimal
parameters. The QSM that yielded the optimal fit based upon
the “select_optimum” function was selected for wood volume
estimation.

Total volume (Vtot), merchantable volume (Vmerch), opera-
tional merchantable volume (Vop), and merchantable stem
volume (Vstem), were derived from the QSMs using the aRchi
R package (Martin-Ducup and Lecigne 2022), following the

methodology and nomenclature system that were detailed
in Vandendaele et al. (2022). These four types of volume, de-
scribed in Table 2 and illustrated in Fig. 3, were generated
from all matched merchantable tree pairs (i.e., DBH ≥ 8 cm)
that were identified in the nine sample plots from both MLS
and TLS datasets (i.e., ∼130 trees per scenario among the 163
trees). Furthermore, for a subset of 26 trees, field destructive
volume measurements (Vandendaele et al. 2022, Section 2.2)
were compared with Vop _ MLS, with the MLS trees truncated
at the stump height measured in the field for each tree.

2.4.4. Accuracy assessment

Accuracy of the estimated tree attributes was assessed by
calculating the coefficient of determination (R2) (eq. 1), RMSE
(eq. 2), the relative RMSE (%) (eq. 3), the bias (eq. 4), and the
relative bias (%) (eq. 5):

R2 = 1 −
∑n

i=1
(̂yi − yi )

2

∑n

i=1
(ȳi − yi )

2
(1)

RMSE =
√√√√1

n

n∑
i=1

(̂yi − yi )
2(2)

RMSE (%) = RMSE
mean (̂y)

× 100(3)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

B
un

de
sf

or
sc

hu
ng

s-
u.

 A
us

bi
ld

un
gs

ze
nt

ru
m

 o
n 

07
/1

0/
24

http://dx.doi.org/10.1139/cjfr-2023-0202


Canadian Science Publishing

Can. J. For. Res. 54: 774–792 (2024) | dx.doi.org/10.1139/cjfr-2023-0202 781

Fig. 4. Regression analysis between tree attributes estimated from terrestrial laser scanning (TLS) (reference) and mobile laser
scanning (MLS): (A) height (H), (B) diameter at breast height (DBH), (C) crown projected area (CPA) and (D) alpha volume (AV).
Results are presented for four MLS acquisition scenarios: MLS15m (purple), MLS35m (blue), MLS9plots (green), and MLSgrid20m

(yellow). “n” denotes the number of trees that were identified through automated segmentation and matching against the 163
TLS reference trees, as detailed in Section 2.4.1. The dashed line represents the 1:1 line. The grey band is the 95% confidence
band for predictions.

bias = 1
n

n∑
i=1

(̂yi − yi )(4)

bias (%) = bias
mean (̂y)

× 100(5)

where n represents the number of trees, yi is the reference
TLS/field inventory attribute that was measured for the i-th
tree, ŷi is the estimated attribute for the i-th tree that was
derived from MLS data, and ȳi is the mean of the TLS/field
inventory reference attribute.
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Table 3. Estimation accuracy (root-mean square error (RMSE) and bias) of tree attributes for the four mobile laser scanning
(MLS) acquisition scenarios: height (H), diameter at breast height (DBH), crown projected area (CPA) and alpha volume (AV).

H (m) DBH (cm) CPA (m2) AV (m3)

Scenario RMSE bias RMSE bias RMSE bias RMSE bias

MLS15m 0.50 (2.51%) 0.11 (0.55%) 5.35 (19.85%) − 1.25 (−4.64%) 4.43 (19.32%) 2.89 (12.60%) 25.96 (21.39%) 17.22 (14.19%)

MLS35m 0.49 (2.44%) − 0.11 (−0.55%) 2.76 (10.18%) − 1.91 (−7.05%) 3.77 (16.39%) 1.84 (8.00%) 19.19 (15.75%) 8.28 (6.80%)

MLS9plots 0.55 (2.77%) 0.20 (1.01%) 0.94 (3.54%) 0.50 (1.88%) 4.38 (19.51%) 3.08 (13.72%) 27.13 (22.86%) 18.39 (15.49%)

MLSgrid20m 0.41 (2.07%) 0.00 (0.00%) 3.98 (14.93%) − 1.25 (−4.69%) 3.51 (15.59%) 2.07 (9.19%) 20.91 (17.59%) 11.46 (9.64%)

3. Results

3.1. MLS versus TLS: H, DBH, CPA, and AV
Tree attributes that were estimated from TLS and MLS

data exhibit strong similarities across all scenarios (Fig. 4).
HMLS, CPAMLS, and AVMLS demonstrated good agreement with
TLS data, with RMSE values ranging from 2.07% to 2.77%
(0.41 to 0.55 m), 15.59% to 19.51% (3.51 to 4.38 m2), and
15.75% to 22.86% (19.19 to 27.13 m3), respectively, across
all scenarios (Table 3). DBHMLS exhibits RMSE values rang-
ing from 3.54% (MLS9plots) to 19.85% (MLS15m) (i.e., from 0.94
to 5.35 cm) (Fig. 4B). The bias remains below 5% in all sce-
narios (∼1 cm), except for MLS35m, which exhibits a bias of
−7.05% (−1.91 cm) compared to TLS. Among the scenarios,
the MLSgrid20 m yielded the most favourable results, display-
ing low bias for all attributes (less than 10%). Overall, these re-
sults demonstrate the method’s reliability in extracting tree
attributes, showing high consistency across different scenar-
ios.

3.2. MLS versus TLS: Vtot, Vmerch, Vop, and Vstem
Vtot _ MLS was overestimated across the four MLS acquisi-

tion scenarios (Figs. 5A–5D), with RMSE values ranging from
22.9% (MLS35m) to 46.77% (MLS9plots) and bias ranging from
16.22% (MLS35m) to 37.89% (MLS9plots). A comparable tendency
towards overestimation was observed in Vmerch _ MLS (Figs. 5E–
5H), especially for larger volumes (≥1.5 m3). The RMSE varied
from 15.15% (MLS35m) to 31.16% (MLS9plots), with bias ranging
from −5.87% (MLS35m) to 20.83% (MLS9plots). Vop _ MLS across
the four MLS scenarios demonstrated high accuracy, exhibit-
ing minor variations and a strong correlation with TLS data,
as shown in Figs. 5I–5L. Yet, we observed a slight overesti-
mation of Vop _ MLS across all scenarios, except for MLS35m,
which showed underestimation. The RMSE ranged from
14.6% (MLSgrid20m) to 22.32% (MLS9plots), while bias ranged
from 5.64% (MLS15m) to 12.51% (MLS9plots). Vstem _ MLS demon-
strated the highest accuracy among the volume types as-
sessed, with RMSE around 10% and negative biases <5% for
both MLS9plots and MLSgrid20 m (Figs. 5O–5P). This slight under-
estimation was consistent across all scenarios but was more
pronounced for MLS35 m (bias = −21.29%) and MLS15 m (bias
= −9.93%). MLS35 m acquisition scenario was closely aligned
with TLS data for Vmerch _ MLS (Fig. 5F) and Vop _ MLS (Fig. 5J).
Yet, a compensatory effect was observed for these results,
marked by an underestimation of Vstem _ MLS (Fig. 5N) and an
overestimation of Vtot _ MLS (Fig. 5B). Overall, the MLSgrid20 m

scenario excelled for accurately estimating both Vop _ MLS and
Vstem _ MLS.

Figure 6 presents a breakdown of Vmerch _ MLS by branch-
ing order, ranging from the first-level branches (order 1) to
the third-level branches (order 3), comparing these estimates
against the QSM-derived values from TLS data. The analysis
reveals a consistent overestimation of each branching order
from Vmerch _ MLS across all scenarios, with the degree of over-
estimation intensifying for higher orders. While there is a
strong correlation for branching order 1 between TLS and
MLS estimations, substantial overestimations by MLS are evi-
dent for branching orders 2 and 3.

Among the different acquisition scenarios, the MLS35 m sce-
nario exhibits the best results for branching order 1, with an
RMSE of 50.81% and a bias of 12.28%. Similarly, the MLSgrid20 m

scenario performs well, with an RMSE of 51.93% and a bias
of 34.04% for branching order 1. Nevertheless, it should be
noted that similar trends were observed between the differ-
ent acquisition scenarios.

3.3. MLS versus destructive sampling versus
Taper model: Vop and Vstem

Vop _ MLS exhibits a trend towards overestimation across
all scenarios when compared to destructive field measure-
ments. This overestimation becomes more pronounced with
increasing tree dimensions (Figs. 7A–7D). Conversely, smaller-
sized trees (Vop < 1.5 m3) tend to be slightly underestimated.
Among the different scenarios, the MLS35 m scenario demon-
strated the smallest bias (1.46%) and RMSE (22.04%). Yet, it is
worth noting that this scenario had the poorest model fit, as
indicated by an R2 value of 0.809. The MLS15 m and MLSgrid20 m

scenarios produced similar results for Vop _ MLS, with biases of
13.26% and 14.01%, and RMSE values of 22.42% and 24.14%,
respectively. In contrast, the MLS9plots scenario showed the
most significant overestimation, with a bias of 21.32% and
an RMSE of 29.63%. Overall, results compared to destructive
sampling display the same trends noted in the comparison
with TLS data (Figs. 5I–5L).

Vstem _ MLS aligns closely with the outputs from the Li and
Weiskittel regional taper model (Figs. 7E–7H). Consistency
was maintained across scenarios, except for MLS35m, which
showed a slight underestimation of Vstem _ MLS. This trend was
also observed against TLS data (Fig. 5N). The MLS9plots and
MLSgrid20 m scenarios showed low biases of 0.05% (Fig. 7G)
and −1.44% (Fig. 7H), respectively, affirming the accuracy of
MLS in estimating merchantable stem volumes.
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Fig. 5. Regression analysis for merchantable trees (DBH ≥ 8 cm) comparing TLS and MLS across four MLS acquisition scenarios
(MLS15m, MLS35m, MLS9plots, and MLSgrid20m): (A–D) total volume (Vtot), (E–H) merchantable volume (Vmerch), (I–L) operational
merchantable volume (Vop), and (M–P) merchantable stem volume (Vstem). “n” indicates the number of merchantable trees that
were analyzed. The dashed line represents the 1:1 line. The grey area identifies the 95% confidence band. Visual representations
of each volume type from the QSM analysis are shown to the left of their corresponding result row. The detailed description
of each volume type is provided in Table 2. DBH, diameter at breast height; TLS, terrestrial laser scanning; MLS, mobile laser
scanning.

4. Discussion

4.1. Suitability of MLS for estimating tree
attributes

The automated method to process MLS data for estimat-
ing tree structural attributes in a leaf-off temperate hard-
wood stand was accurate. HMLS, CPAMLS, and AVMLS were in
strong agreement with attributes from semi-automatically
segmented TLS trees (Fig. 4 and Table 3). These results demon-
strated the potential of automated segmentation and filter-

ing of MLS data in simple forest structures like mature hard-
wood stands (Fig. 1C). However, we noted a minor but system-
atic underestimation of DBHMLS for most scenarios (Table 3).
This slight underestimation is mainly due to the wider beam
divergence of MLS compared to TLS, resulting in fuzzier rep-
resentations of stem boundaries in the point clouds, which
impacts the circle fitting algorithm. This effect, visible in
Fig. 3, was also observed in studies by Bauwens et al. (2016),
Kuželka et al. (2022), and Stovall et al. (2023). Improving DBH
accuracy might involve creating filtering algorithms specif-
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Fig. 6. Regression analysis of merchantable volume (Vmerch) derived from TLS and MLS data decomposed by branching order:
(A–D) order 1 = first-level branches; (E–H) order 2 = second-level branches; (I–L) order 3 = third-level branches. The results are
presented for the four MLS acquisition scenarios (MLS15m, MLS35m, MLS9plots, and MLSgrid20m). The dashed line represents the
1:1 line. The area in grey identifies the 95% confidence interval. The detailed description of Vmerch is provided in Table 2. TLS,
terrestrial laser scanning; MLS, mobile laser scanning.

ically designed for MLS data, which would more effectively
identify the stem’s surface and preserve adequate point den-
sity for the fitting process.

Vstem _ MLS was highly reliable, yet, similar to DBH, it showed
a slight underestimation (negative bias < 10%) compared to
TLS and Li and Weiskittel’s taper model in all scenarios ex-
cept MLS35m. This underestimation, similar to that noted
by Chiappini et al. (2022) in a black pine plantation (bias
= −4.1%; RMSE = 12.4%), likely arises from the QSM algo-
rithm’s cylinder fitting process, which minimizes point-to-
surface distance from noisier MLS point cloud, as evidenced
in Fig. 8C. Stovall et al. (2023) attributed 60% of the MLS-based
stem assessments uncertainty to laser beam divergence and
point density, which showed positive and negative correla-
tions, respectively. Their comparison of stem taper estimates
from TLS and MLS against field measurements in the Har-
vard Forest revealed both lidar systems as nearly unbiased,
yet stem taper error increased with height, with TLS offer-

ing more reliable diameter assessments (RMSE = 1.93 cm,
9.57%) than MLS (RMSE = 2.59 cm, 12.84%). López Serrano
et al. (2022) also achieved nearly unbiased stem volume esti-
mates in Spanish forests with a slight overestimation of 1.37%
(RMSE = 14.3%) using handheld MLS, verified against 71 de-
structively sampled trees. To alleviate bias in the estimate,
Hyyppä et al. (2020) introduced a post-SLAM algorithm filter
using arc detection, which led to bias levels below 3% and
RMSE under 10% for stem volume estimation in Finnish conif-
erous forests. Using a similar approach, Winberg et al. (2023)
explored the use of MLS data for estimating log volume of
457 Norway spruce against X-ray data and observed a slight
overestimation of the MLS-based estimate (bias of 0.024 m3

or 10.2%), which was mainly attributed to bark removal asso-
ciated with the X-ray-based estimate. Overall, our results and
those from other studies highlight the potential of MLS to
accurately estimate stem volumes under diverse forest con-
ditions, while emphasizing the need to adapt algorithms and
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Fig. 7. (A–D) Regression analysis of operational merchantable volume (Vop) derived from destructive field measurements and
MLS trees. (E–H) Regression analysis of merchantable stem volume (Vstem) that was derived from Li and Weiskittel”s taper model
and MLS trees. The results are presented for the four MLS acquisition scenarios (MLS15m, MLS35m, MLS9plots, and MLSgrid20m).
n = 26 trees. The dashed line represents the 1:1 line. The area in grey identifies the 95% confidence interval. The detailed
description of Vop and Vstem are provided in Table 2. MLS, mobile laser scanning.

methodologies to improve accuracy, particularly in handling
noisier MLS point cloud data.

Our results also demonstrated that MLS overestimates
branch volume with increasing bias with branching order
(Fig. 6), indicating limitations of the MLS point cloud to
depict fine-scale tree branch thickness. This resulted in an
overestimation of Vtot _ MLS, Vmerch _ MLS, and Vop _ MLS in hard-
wood trees for all scenarios, except for MLS35 m (Fig. 5). Such
overestimations in smaller tree parts along the stem have
been previously reported (Winberg et al. 2023, Bornand et al.
2023). Notably, Abegg et al. (2023) observed amplified noise
effects when scanning smaller objects, largely due to preva-
lent edge effects where a laser pulse intersects multiple ob-
jects, creating points off the object’s surface. We therefore
attribute much of the branch overestimation in our study to
the larger beam divergence of the MLS sensor (0.17◦, yielding
a 29.67 mm diameter laser beam at 10 m) compared to TLS
(0.015◦, yielding a 2.62 mm laser beam at 10 m), which ampli-
fies these edge effects. This response is visually supported by
Fig. 8D that shows MLS enlargement of branches leading to
overestimated canopy branch volume in QSM calculations,
which was also a trend that was identified by Demol et al.
(2022b) and Vandendaele et al. (2022). Future research that is
aimed at improving MLS-based branch volume assessments
may benefit from the use of MLS sensors with lower beam
divergences or from incorporating specialized noise-filtering
techniques, such as heuristic denoising that was proposed by

Winberg et al. (2023), intensity return filters (Kuželka et al.
2022), or filters for altered shape pulses (Wilkes et al. 2017).

4.2. Influence of the acquisition scenario on
tree attribute accuracy

Among the scenarios, MLSgrid20 m yielded the best overall
results, consistently showing low errors and bias for all at-
tributes, thereby confirming its suitability for large-scale data
collection and inventory. In contrast, the MLS35 m scenario,
while being time-efficient (Fig. 2) and reliable for captur-
ing crown attributes, significantly underestimated DBHMLS

and Vstem _ MLS, thereby limiting its suitability for inventory
purposes. For branch volume estimation, the MLS9plots sce-
nario showed the largest overestimation compared to TLS
and destructive sampling, making it suboptimal for Vtot _ MLS,
Vmerch _ MLS, and Vop _ MLS assessments. This trend was largely
attributed to increased noise and oversampling due to the
dense acquisition pattern, as discussed further below. The
MLS15 m scenario was closely aligned with MLSgrid20m, but it
showed slightly reduced accuracy, particularly in estimating
DBHMLS and Vstem _ MLS, emphasizing the advantage of grid
patterns for assessing tree attributes in MLS point clouds.

Previous studies on the effects of data acquisition on tree
volume estimation have mainly used TLS, with limited or no
interest to MLS acquisition patterns, particularly at the 1 ha
scale. For instance, Wilkes et al. (2017) provided a compre-
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Fig. 8. Illustration of the total volume (Vtot) of MLS (A–D) and TLS (E–H) tree extracted using TreeQSM: (A; E): 3 D point clouds
and QSMs; (B; F) QSMs of the tree; (C; G) QSMs of the stem; (D; H) QSMs of the crown. The detailed description of Vtot is provided
in Table 2. TLS, terrestrial laser scanning; MLS, mobile laser scanning; QSM, quantitative structural models.

hensive review on multi-scan TLS sampling strategies for tree
volume assessment on large forest plots (≥1 ha) and recom-
mended a 10 m × 10 m sampling grid pattern resulting in
a 3–8 days of acquisition. Our study extends Wilkes et al.’s
(2017) recommendations to MLS data, advocating for a similar
grid pattern in large-scale data collections. A spacing of 20 m
proved optimal in our simple forest structure, resulting in ap-
proximately 1 h of acquisition and 4 h of data preprocessing
for a 1 ha site. The strength of the SLAM-based process lies
in the simplicity of georeferencing, which facilitates large-
scale data acquisition. While the MLS point cloud’s noisier
nature may reduce attribute estimation accuracy compared
to TLS (Figs. 5 and 8), its flexibility and rapid data acquisi-
tion are an asset. Interestingly, the Vop _ MLS values from the
MLSgrid20 m scenario (Fig. 7D; RMSE = 24.14%, bias = 14.01%)
closely matched those from Bornand et al. (2023) using a cost-
effective Leica BLK360 TLS (Leica Geosystems, Heerbrugg,

Switzerland) (RMSE = 25.68%; bias = 14.16%), both bench-
marked against destructive hardwood measurements. These
results highlight the needs of further investigating the poten-
tial of MLS for wood volume assessment under a wide range
of forest conditions.

Our study reveals that the MLS15 m pattern, augmented
with diagonal paths for better data coverage, also yields
promising results for extracting tree structural attributes. In
line with our results, Tupinambá-Simões et al. (2023) found
that a parallel line acquisition pattern in a 1 ha mixed and
irregular Mediterranean forest site increased tree detection
compared to a cloverleaf trajectory, but did not significantly
affect height and DBH accuracy. Similarly, Kuželka et al.
(2022) in a Czech mixed wood forest noted that different MLS
acquisition scenarios had minor impact on DBH estimate ac-
curacy. They highlighted the advantage of rotary scan sen-
sors like the GeoSLAM Zeb Horizon (GeoSLAM Ltd., Notting-
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Fig. 9. Comparative visualization of an individual tree scanned from different MLS acquisition scenarios over the 1 ha study
site against TLS data: (A) individual tree captured at the centre of the study site’s leftmost plot (refer to Fig. 2) and automatically
processed (Fig. 3), (B) cross-sectional view of 10 cm width from the lower part of the crown indicating merchantable branches,
and (C) cross-section view of 10 cm width at DBH (1.3 m height), demonstrating point distribution and density. MLS, mobile
laser scanning; TLS, terrestrial laser scanning; DBH, diameter at breast height.

ham, UK) or the Hovermap used in our study, which can cap-
ture a comprehensive scene every second, greatly reducing
the influence of acquisition trajectory on point cloud qual-
ity unlike photogrammetry. These findings, along with ours,
demonstrate the efficacy of MLS in estimating structural tree
attributes across various forest types. They suggest that while
the specific MLS data acquisition pattern may be less critical,
factors such as scanner proximity to trees, time efficiency,
and trajectory looping to minimize distortions and signal oc-
clusion are paramount in planning a data acquisition sce-
nario.

The findings from the MLS9plots scenario, corroborated by
Mokroš et al. (2021), indicate that overly dense or repeti-
tive MLS acquisition patterns are likely to introduce addi-
tional noise into the data. Mokroš et al. (2021) used an in-
tensive 5 m × 5 m grid pattern with GeoSLAM Zeb Hori-
zon in forest of European beech (Fagus sylvatica) and Nor-

way spruce (Picea abies), where they observed significant noise
and misalignment problems in MLS point clouds, result-
ing in notable DBH estimation errors (RMSE = 6.26 cm,
bias = 4.34 cm). They attributed this effect to the dense acqui-
sition pattern amplifying geometric discrepancies and SLAM
alignment issues. While our study did not face misalignment
problems or stem duplication, unlike Mokroš et al. (2021),
the MLS9plots scenario exhibited the highest occurrence of
noise around stem bases, resulting in an integration of low
vegetation and ground points following the tree segmenta-
tion step. Yet, this issue was effectively addressed by our tree-
base cleaning filter (section 2.4.2) (Fig. 3). Furthermore, while
the MLS9plots scenario accurately characterized stems, it ex-
hibited the most pronounced overestimation of branch vol-
ume, which could be mainly attributed to increased noise
around branches (Fig. 9). In conformity with these observa-
tions, Abegg et al. (2023) observed that increasing the num-

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

B
un

de
sf

or
sc

hu
ng

s-
u.

 A
us

bi
ld

un
gs

ze
nt

ru
m

 o
n 

07
/1

0/
24

http://dx.doi.org/10.1139/cjfr-2023-0202


Canadian Science Publishing

788 Can. J. For. Res. 54: 774–792 (2024) | dx.doi.org/10.1139/cjfr-2023-0202

Table 4. Time requirement for each step of the developed workflow apply on the nine sample plots (+10 m radius buffer)
within the 1 ha study site.

Time consumption

Acquisition Data Data Tree Tree Tree QSM QSM

scenario acquisition preprocessing segmentation filtering attributes creation truncation

MLS15m 30 min 3.5 h 30 min 8 min 2 h 2 days 30 min

MLS35m 15 min 2 h 20 min 8 min 2 h 1.5 days 30 min

MLS9plots 35 min 4 h 35 min 8 min 2 h 2 days 30 min

MLSgrid20m 40 min 4 h 45 min 8 min 2 h 2 days 30 min

TLS 6.5 h 6 h 50 min 8 min 2 h 2 days 30 min

Note: The processing was performed on a computer with a 12th Gen Intel(R) Core (TM) i9-12900——2.40 GHz processor, 128 GB RAM. MLS, mobile laser scanning; TLS,
terrestrial laser scanning; QSM, quantitative structural models.

ber of TLS scanner positions not only improved the accu-
racy of merchantable wood volume estimates, but also intro-
duced greater variability and slight overestimation in smaller
branches, compared to single scans. This trend can be further
intensified by wind conditions (Vaaja et al. 2016), highlight-
ing the drawbacks of excessively dense or repetitive scan-
ning acquisitions that can amplify such discrepancies. Over-
all, these results indicate that optimizing MLS data acquisi-
tion requires choosing patterns that favour uniform coverage
from multiple viewpoints while minimizing oversampling
and noise.

4.3. Limitations
The current method, although automated, requires multi-

ple software tools (Computree, Matlab, and R), prompting the
need for research to consolidate algorithms into one open-
source environment like R or Python for efficiency and acces-
sibility. As MLS technology becomes more user-friendly, it of-
fers vast 3 D data potential for foresters. The main constraints
are QSM computations (Table 4) that are time-consuming,
and which limits their operational potential. Therefore, we
strongly encourage researchers to prioritize the development
of QSM algorithms that can offer faster processing capabili-
ties and effectively handle a large number of trees.

Another study limitation is that TLS validation data (163
trees) are not entirely error-free, given that TLS is prone to
occlusion, particularly at the crown level. This can lead to
QSM underestimation (Fig. 8). Regarding the results, it can
be hypothesized that overestimation of MLS branch volume
is mainly influenced by three factors: (i) the wider MLS beam
divergence; (ii) SLAM propagation errors; and (iii) a potential
underestimation of TLS branch volume due to occlusion phe-
nomena. Currently, TLS remains the most accurate technol-
ogy and is widely recognized as the preferred validation tool
(Calders et al. 2020; Duncanson et al. 2021). The strong corre-
lation that was observed in our previous study between man-
ual measurements of wood volume on felled trees with TLS-
derived estimates further validates the use of TLS as a refer-
ence tool (Vandendaele et al. 2022). Yet, it is important for fur-
ther studies, such as those conducted by Lau et al. (2018) and
Demol et al. (2022b), to include manual measurements of the
size of commercial branches to accurately quantify the bias
that is observed with both TLS and MLS in relation to field re-
ality. The panels within Fig. 6 indicate that it may be possible

to develop a correction factor for the MLS-derived values, by
branch order, to compensate for the overestimation of wood
volume. This correction is likely to be derived from physical
considerations of the size of the wood segment in relation to
beam divergence and the operation distance to the target.

Importantly, while automation offers significant opera-
tional efficiency gains, it is not without potential errors,
as depicted in Fig. 10. Our study was conducted in a ma-
ture hardwood forest with minimal undergrowth, flat ter-
rain, and well-spaced trees. We found that segmentation er-
rors were not prevalent; rather, there were isolated incidents
(Figs. 4C–4D), confirming the overall effectiveness and robust-
ness of the automated method across different acquisition
scenarios. Yet, the application of automated processes and
the impact of acquisition scenarios in more complex forest
structures should be carefully evaluated, given that segmen-
tation inaccuracies may result in large erroneous QSM out-
puts. For instance, in complex forests such as tropical ecosys-
tems, Martin-Ducup et al. (2021) have shown that manual as-
sistance in segmentation was essential to mitigate potential
errors in volume estimates. Considering this, our next objec-
tive is to expand the scope of this study and assess the appli-
cability of the developed method to a broader range of forest
conditions, including structurally complex environments. By
doing so, we aim to test the limits of MLS technology and en-
hance its understanding and usage.

4.4. Practical application for operational
forestry

The study’s findings on MLS systems in forest inventory
have significant operational implications. MLS’s efficiency in
capturing detailed 3 D tree structural information has the
potential to improve productivity and cost-effectiveness of
inventory operations. Incorporating individual tree volumes
from QSMs as reliable references could enhance or even sub-
stitute destructive measurements (Duncanson et al. 2021). Be-
fore MLS can be reliably used for tree volume and biomass
estimation, significant challenges must be addressed. These
include the detailed modeling of higher branching order ar-
chitecture, the effective use of MLS in leaf-on forest condi-
tions, and the integration of tree species and health condi-
tions into the models. Recent advancements in deep learning
hold promise for species prediction from 3 D point clouds
(Seidel et al. 2021; Allen et al. 2022), although the process is
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Fig. 10. (A) Segmented mobile laser scanning (MLS) point clouds of trees with insets (orange boxes) illustrating examples of
segmentation errors. (B) Corresponding quantitative structural models (QSMs) derived from these point clouds with insets
(orange boxes) indicating areas where segmentation inaccuracies have led to erroneous QSM structures.

still in early research stages. Increasing MLS data availability
would likely drive further research on species identification,
thereby enhancing allometric and biomass model develop-
ment.

The significance of MLS technology becomes particularly
pronounced when considering hardwood species, given that
traditional destructive measurements can be laborious and
allometric models often suffer from uncertainties, primarily
due to the high variability in crown structure and proportion
across species and along ontogeny. Building upon the poten-
tial of QSMs, it is important to evaluate how the accuracy
of MLS-derived volumes reaches the acceptability thresholds
that are used in forestry companies’ yield tables. For hard-
wood species, the error margins that are identified for mer-
chantable wood volume might exceed the acceptable thresh-
old for forestry operations, which typically tolerate an error
of 10%–20% from the actual tree volumes and aim for a bias-
free estimate that does not exceed 5% (Fortin et al. 2007). Con-
sequently, the error rates and bias that were observed in this

study for Vmerch _ MLS may result in significant discrepancies
in yield tables if they are used without correction.

Yet, the accuracy achieved for HMLS, DBHMLS, and Vstem _ MLS

falls well within the operational acceptability range for
operational use (Hyyppä et al. 2020), particularly for the
MLSgrid20 m scenario. Our results suggest that with continuing
refinement, MLS technology holds a significant potential for
enhancing inventory applications. A substantial challenge in
advancing MLS technology is the need to gather destructive
ground truth data across diverse forest environments. This
would help clarify the scope of observed errors and ensure
they remain within the acceptable range of accuracy in esti-
mating key inventory attributes.

5. Conclusion
This study demonstrates the significant potential of inte-

grating QSM with MLS data as a non-destructive alternative
to traditional sampling, promising advancements in the de-
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velopment of allometric relationships for tree volume and
biomass. Through the evaluation of various MLS data acqui-
sition scenarios in a 1 ha mature leaf-off hardwood stand, we
found that the MLSgrid20 m scenario achieved optimal results,
indicating a low bias in key tree structural attributes when
compared to TLS (i.e., bias < 5% for H, DBH, and Vstem and
bias ∼10% for CPA, AV, Vop, and Vmerch). Yet, results from the
MLS15 m scenario were very close, suggesting that optimizing
MLS data acquisition requires choosing acquisition patterns
with uniform coverage, with paths close enough to minimize
signal occlusion, while maintaining a distance between paths
sufficiently large to minimize oversampling and noise.

Our method, employing automated segmentation and fil-
tering of MLS point cloud, coupled with a QSM approach,
resulted in accurate 3 D reconstruction of trees. The accu-
racy of stem volume estimations met the standards neces-
sary for operational inventory purposes. However, branch
volume estimations derived from MLS point clouds were
prone to systematic overestimations, particularly noticeable
in higher branching orders (2 and 3). Such overestimations
compromise the accuracy needed for operational inventories,
specifically in estimating merchantable and operational mer-
chantable volumes. Addressing this issue may involve imple-
menting a correction factor that accounts for the beam diver-
gence of the MLS sensor and the specific scene configuration.

We can also assume that the MLS technology will improve
rapidly. Future advances are most likely to occur in the refine-
ment, adaptability, and automation of data processing meth-
ods at the plot or stand level. These advancements necessitate
further testing of MLS-based methods across diverse forest
ecosystems and the development of improved tree segmenta-
tion and filtering algorithms to accommodate complex forest
structures. Additionally, optimizing QSM parameters for var-
ied structural complexities remains a critical area for future
research. Overall, this study highlights how MLS systems can
contribute to enhancing forest inventory. The accuracy and
efficiency of MLS data collection, combined with the ability
to estimate tree attributes and merchantable wood volume,
offer practical benefits for forest management.
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