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A B S T R A C T

Fungal phytopathogens are the primary causative agents of plant diseases and can significantly limit crop pro-
duction. As an alternative to synthetic fungicides, often associated with detrimental environmental effects, the 
use of botanicals is a promising tool for managing fungal infections. This study analysed the phytochemical 
profiles, as well as the antioxidant and antifungal effect of Arctotis arctotoides (L.F.) Hoffm. The phytochemical 
profiles were determined using spectrophotometry and Liquid Chromatography-Mass Spectrometry (LC-MS), 
while two chemical test models were used to assess the antioxidant effect of the plant extract. The antifungal 
activity was evaluated against Pythium ultimum using the agar well diffusion method. Varying concentrations of 
total phenolics (131.70 mg gallic acid equivalents per gram (GAE/g) of dry weight (DW) for acetone and 
231.56 mg GAE/g DW for methanol extracts) and flavonoids (11.36 mg quercetin equivalents per gram (QE/g) of 
dry weight (DW) for acetone and 9.86 mg QE/g DW for methanol extracts) were recorded. The LC-MS analysis of 
the plant extract revealed 14 tentatively identified compounds and 7 unknown bioactive compounds. Two of the 
compounds, dehydrocostus lactone and methyl pheophorbide A, have been associated with antioxidant effects. 
Acetone extract (16.67 mm) and methanol extract (18.33 mm) of Arctotis arctotoides exhibited considerable 
inhibitory effects against P. ultimum. Further antifungal assessment of the identified bioactive compounds re-
mains essential to establish their activity against phytopathogens relevant in the agricultural sector, especially 
under field conditions.

1. Introduction

Food security is crucial for achieving the United Nations Sustainable 
Development Goal (UN SDGs) #2, geared at zero hunger across all na-
tions. However, it is negatively impacted by climate variability and 
extremes, which limits the agricultural production of food. Climate 
variability and extremes can lead to plant diseases caused predomi-
nantly by fungal phytopathogens, which infect crops and intensify yield 
loss (Agrios, 2009; De Lucca, 2007; FAO et al., 2018; Lahlali et al., 
2024). Fungicides are used widely to manage plant diseases (Panth 

et al., 2020); however, some are detrimental to humans (Harris et al., 
2001) and the environment (Aktar et al., 2009). Furthermore, fungicides 
have been linked to the development of fungicide resistance (Daferera 
et al., 2003; Ramaiah & Garampalli, 2015; Yin et al., 2023). These 
challenges have prompted the use of plant extracts, which are readily 
available, biodegradable, and eco-friendly (Cherry et al., 2005; Sukanya 
et al., 2011; Ugwu & Nwaokolo, 2020) in managing diseases in crops 
(Mwinga et al., 2022). Plants can play a significant role in managing 
these diseases due to their antimicrobial properties against phytopath-
ogens (Mahlo et al., 2010; Mdee et al., 2009).
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The Asteraceae family is well known for its medicinal applications in 
African pharmacopoeia (Van Wyk, 2020). Some members of the Aster-
aceae, for instance, Acmella oleracea and Sphagneticola trilobata, are 
characteristic for protecting plants against phytopathogens due to their 
allelopathic properties (Araújo et al., 2021). As a member of Asteraceae, 
Arctotis arctotoides (L.F.) Hoffm. is a perennial weed found in all prov-
inces of South Africa except Limpopo (Saleh-e-In & Van Staden, 2018). 
The local names for Arctotis arctotoides include “putswa-pududu” (South 
Sotho), “ubushwa” (isiXhosa), and “botterblom” (Afrikaans) (https 
://pza.sanbi.org/arctotis-arctotoides). Traditionally, the plant is used 
for medicinal purposes. For instance, Otang et al. (2012) reported that 
its leaves and roots are used to manage fungal infections in patients with 
HIV/AIDS. Among the Xhosa of South Africa, the leaves are used to treat 
skin-related disorders and diseases such as boils, pimples, and ring-
worms (Afolayan et al., 2014) Additionally, the plant is used to treat 
indigestion and epilepsy (Van der Walt, 2002). Arctotis arctotoides has 
demonstrated antifungal activity against various plant pathogenic fungi 
such as Aspergillus flavus, A. niger, A. tamarii, Cladosporium herbarum, C. 
sphaerospermum, Fusarium oxysporium, Mucor canis, M. heamalis, Peni-
cillium digitatum, P. italicum and P. notatum (Afolayan, 2003; Afolayan 
et al., 2007). For instance, aqueous extracts of the shoots demonstrated 
strong antifungal effects against Aspergillus tamarii and Penicillium dig-
itatum at 0.1 mg/mL, with inhibition effects ranging from 50.7 % to 
95.2 % (Afolayan, 2003). The study by Otang et al. (2011) revealed the 
methanol extracts of the leaves exhibit strong antifungal activity against 
A. fumigatus, Candida albicans, C. glabrata, and Microsporum canis. The 
plant has also demonstrated antibacterial potential. For instance, hexane 
extract of the shoot was able to inhibit Bacillus subtilis (Sultana et al., 
2003). Plants contain therapeutic phytochemicals which are relevance 
in managing crop diseases (Gurjar et al., 2012). The roots of A. arcto-
toides contain flavonoids, polyphenols, and proanthocyanidins 
(Afolayan et al., 2007). Furthermore, terpenes have been quantified in 
the leaves and stem (Oyedeji et al., 2005), and as sterols and flavones in 
the shoot (Sultana & Afolayan, 2007).

This evidence partially points to the relevance of A. arctotoides in 
managing fungal diseases. Pythium spp. is responsible for soil-borne 
diseases that can cause considerable crop losses (Hausbeck, 1985; 
Mihajlović et al., 2017). Less severe and early stages of root rot may 
delay flowering and cause plant stunting (Hausbeck, 1985). Pythium spp. 
is associated with damping-off and root rot, which can cause up to 70 % 
crop losses (Baysal-Gurel & Kabir, 2018; Drizou et al., 2017; Mihajlović 
et al., 2017). Plant diseases associated with Pythium spp. are economi-
cally significant, causing substantial crop losses, during wet and rainy 
seasons (Matthiesen et al., 2016). Thus, this study evaluated the bio-
logical activities of A. arctotoides relevant for managing Pythium root rot. 
Specifically, we characterised the phytochemical profiles, antioxidant 
and antifungal activities of Arctotis arctotoides against P. ultimum.

2. Material and methods

2.1. Collection of Arctotis arctotoides

Whole plants of Arctotis arctotoides were collected in April 2023 
during autumn from their natural habitat (32◦47́6.0003́́ S, 
26◦50́34.42632́́ E) at Alice district in Eastern Cape Province, South Af-
rica. The plant was identified by Xhosa traditional healers, locally 
known as amaxhwele. We followed the procedure as outlined by Fish 
(1999), and recorded the date and location of the collection. The plant 
was dried by pressing in a plant presser and a voucher specimen, 
designated as W28, was prepared and deposited at the Griffin Herbarium 
at the Department of Botany of the University of Fort Hare, South Africa.

2.2. Plant extracts preparation

The whole plants were shade-dried at room temperature (25 ± 2 ◦C) 
and ground into fine powder, which was non-sequential extracted with 

acetone and methanol at a ratio of 1:10 for plant material and solvent. 
Following extraction in an ultrasonic bath for 30 min, we filtered the 
mixture using Whatman No. 1 filter paper. The resultant solution was 
concentrated under reduced pressure using a rotary evaporator and air- 
drying in a fume hood.

2.3. Phytochemical analysis

2.3.1. Quantification of total phenolic and flavonoid contents
The Folin-Ciocalteu colourimetric method was used to quantify the 

total phenolic content in the acetone and methanol extracts (Makkar, 
2003), with few modifications. An aliquot (1 mL of 100 µg/mL) of plant 
extracts was used for the assay, and the absorbance of the resultant 
mixture was measured at 760 nm using a UV-Vis spectrophotometer. 
Total phenolic content of the acetone and methanol extracts was 
expressed as milligrams of gallic acid equivalents (GAE) per gram of dry 
extract (mg GAE/g DW).

Flavonoid content in the plant extracts was quantified using the 
aluminium chloride colorimetric method (Yang et al., 2004), with 
modifications. An aliquot (1 mL of 2 mg/mL) of plant extracts was used 
to prepare the resultant mixture, and its absorbance was measured at 
510 nm using a UV-Vis spectrophotometer. The flavonoid content in the 
extracts was expressed as milligrams of quercetin equivalents per gram 
of dry extract (mg QE/g DW).

2.3.2. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis
A previously established extraction protocol as described by Khoza 

et al. (2016) was applied. Based on the procedure outlined by Mag-
angana et al. (2021), the compounds in the methanol extract were 
identified using high-resolution ultra-performance liquid 
chromatography-mass spectrometry. Leucine enkephalin was used as 
reference mass for accurate mass determination, and sodium formate 
was used to calibrate the instrument. Data were acquired by scanning 
from 150 to 1500 m/z in MSE and resolution modes. Additional details 
on the acquisition of data and separation followed the previous study 
(Magangana et al. 2021).

2.4. Antioxidant tests

As outlined by Arnao et al. (2001), we applied 2,2́-Azino-bis(3-eth-
ylbenzthiazoline-6-sulfonic acid, ABTS) to evaluate the antioxidant ef-
fect of the acetone and methanol extracts. In addition, 2, 
2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging activity of 
the acetone and methanol extracts was determined following the pro-
cedure of Karioti et al. (2004). For both tests, 10 µL of the different 
concentrations (0.009766–1.25 mg/mL) of each plant extract were used 
for the assay. The absorbances were read spectrophotometrically at 
700 nm (ABTS) and 520 nm (DPPH). The antioxidant activities of A. 
arctotoides were expressed as IC50 values in mg/mL.

2.5. Antifungal activity assay

Pythium ultimum was obtained from the fungal culture collection at 
the Discipline of Plant Pathology, University of KwaZulu-Natal, Pie-
termaritzburg, South Africa. The pathogen was isolated from carrots 
(Daucus carota subsp. sativus) using the baiting method described by 
Ferguson and Jeffers (1999) and later characterised as P. ultimum. 
Pythium ultimum pathogen was maintained on potato dextrose agar 
(PDA). Afterward, the fungal suspension was withdrawn and suspended 
aseptically into potato dextrose broth (PDB), which was further incu-
bated for 3 days. A microscope and haemocytometer were used to 
determine the number of fungal spores and adjusted to a final concen-
tration of 1.0 × 106 spores/mL (Aberkane et al., 2002; Mahlo et al., 
2010).

The agar well diffusion method was used to assess the antifungal 
effect of A. arctotoides extracts, as described by Mishra and Arora (2012). 
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The acetone and methanol extracts were diluted up to 100 mg/mL. A 
sterile spreader was used to spread the fungal suspension on the PDA 
evenly. Afterwards, four wells of 9 mm diameter were punched into the 
PDA using a sterile cork borer. Approximately 50 μL of each plant extract 
was added to the wells. Blank plates containing 2 % acetone or PDA only 
served as controls. After 48 h of incubation at 30 ◦C, the zone of inhi-
bition (mm) was measured.

2.6. Data analysis

A non-linear regression model facilitated with the use of GraphPad 
Prism 10.1.2 generated the IC50 values, which implied the concentration 
whereby 50 % antioxidant effect by A. arctotoides extract was achieved. 
Significance differences within the means of the treatments were 
calculated using student’s t-test.

3. Results and discussion

3.1. Concentrations of total phenolic and flavonoid

The current study revealed varying concentrations of total phenolics 
and flavonoids in the two extracts (Table 1). Total phenolic content was 
higher in methanol than in acetone extracts, while the flavonoid content 
was higher in acetone than in methanol extracts. Phenols have been 
attributed to antifungal activity. For instance, salicylic acid (a phenolic 
compound) exhibited antifungal properties against fungal pathogens 
such as Botrytis cinerea, Penicillium expansum and Rhizopus stolonifera. 
Flavonoids are known for their antifungal activity against phytopatho-
gens, and they are also considered signalling molecules in defence 
against plant pathogens (Cesco et al., 2012). For instance, hesperidin, a 
major flavonoid found in citrus species, displayed a good antifungal 
effect against Penicillium digitatum (Ortuño et al., 2006).

3.2. Identified compounds in Arctotis arctotoides

Based on the LC-MS analysis, A. arctotoides methanol extracts yielded 
21 compounds, of which 14 were tentatively identified and 7 were un-
known bioactive compounds (Table 2, Supplementary Fig. S1). The 
categories of the compounds were alkaloids (2), benzene and substituted 
derivatives (3), fatty acyl (2), flavonoids (1), indoles and derivatives (1), 
prenol lipids (2), and 10 unclassified polyphenols. Previous studies have 
profiled the bioactive compounds of A. arctotoides using Gas 
Chromatography-Mass Spectrometry (Oyedeji et al., 2005), gel filtration 
chromatography and silica gel column chromatography (Sultana et al., 
2008), silica gel column chromatography (Sultana & Afolayan, 2007), 
High-Field NMR (Dahmy et al., 1986; Tsichritzis et al., 1990). Various 
phytochemicals have been identified from these studies, including ter-
penes such as α-Phellandrene, 1,8-Cineole, terpinen-4-ol, and rans-Pi-
pertiol (Oyedeji et al., 2005), and flavones such as nepetin, and pedalitin 
(Sultana & Afolayan, 2007). Some of the phytochemicals exhibit anti-
microbial activity; for instance, dehydrobrachylaenolide and 4β, 
15-dihydro-3-dehydro-zaluzanin C have demonstrated antibacterial 

activity against Bacillus subtilis (Sultana et al., 2003). However, the use 
of LC-MS revealed one common compound (dehydrocostus lactone), 
which was also reported by other authors (Oyedeji et al., 2005; Sultana 
& Afolayan, 2007; Sultana et al., 2008). The observation could also be 
influenced by the extract preparation methods and the exposure time 
between extract preparation and analysis (Clemente et al., 2011).

The identified compounds in this study (individually or in synergetic 
interactions) may have played a role in the antifungal and antioxidant 
effects of A. arctotoides. As reported by Zheng and Wang (2001), poly-
phenols have a characteristic antioxidant activity as a result of their 
redox properties. For example, methyl pheophorbide A has been 
demonstrated to exert antioxidant effects (Yoon et al., 2011). Dehy-
drocostus lactone has also been reported to produce an antioxidant ef-
fect, demonstrating anticancer activities by producing reactive oxygen 
species that eliminate cancer cells (O’Neill & Posner, 2004).

3.3. Antioxidant activity of Arctotis arctotoides

A higher antioxidant response was observed in DPPH relative to the 
ABTS assay, which suggests the extracts were more sensitive in DPPH 
than in the ABTS assay (Table 3). The acetone and methanol extracts 
revealed no significant difference in both antioxidant models, indicating 
that acetone and methanol extracts of A. arctotoides exerted a similar 
potency in the ABTS and DPPH assays.

The resultant antioxidant effect of A. arctotoides could be due to the 
presence of phenolics in varying concentrations in the different solvent 
extracts (Kähkönen et al., 1999). The antioxidant effect of A. arctotoides 
can be significant in protecting against the toxicity of fungal phyto-
pathogens. Antioxidants can protect cell membranes from fungal 
phytopathogen-induced damage by acting as superoxide anion scaven-
gers (Atroshi et al., 1997; Atroshi et al., 1998; Wu et al., 2017). Proton 
radical scavenging (Matthew & Abraham, 2006) and hydrogen-donating 
ability are important attributes of antioxidants in neutralizing free 
radicals (Contreras-Guzman & Strong, 1982). The antioxidant activity of 
A. arctotoides was compared to the standard (Trolox). In ABTS, the order 
of scavenging activity was found as Trolox > A. arctotoides extract; in 
DPPH, the extracts demonstrated a higher antioxidant activity than the 
standard.

3.4. Antifungal activity of A. arctotoides against P. ultimum

The current findings revealed the potential of A. arctotoides extract in 
managing diseases associated with P. ultimum, indicated by varying 
degrees of zones of inhibition. The methanol extracts had slightly 
stronger antifungal activity (18.33 ± 1.33 mm) than acetone extracts 
(16.67 ± 0.67 mm) against the tested fungal strain. The presence of 
flavonoids in various concentrations could have played a role in the 
antifungal activity of A. arctotoides extract against P. ultimum (Cesco 
et al., 2012). The moderate antifungal activity of the acetone extracts 
could be as a results of lower concentrations of relevant phytochemicals 
in the extract. Eloff et al. (2017) tested the antifungal effect of Melianthus 
comosus extract against P. ultimum. However, acetone displayed mod-
erate antifungal activity (minimum inhibitory concentration (MIC) =
0.16 mg/mL), while methanol extracts did not exhibit significant anti-
fungal activity (MIC = 1.25 mg/mL). Following the evaluation of seven 
South African plants against P. ultimum, Mdee et al. (2009) reported MIC 
ranging from 0.63 to 2.5 mg/mL, indicating a limited antifungal effect.

Different studies have revealed promising antifungal effects of A. 
arctotoides against various phytopathogens. The studies by Afolayan 
et al. (2002) reported 100 % growth inhibition of A. alternaria and A. 
niger using A. arctotoides acetone shoot extracts. The shoot water extracts 
of this plant also demonstrated promising antifungal activity against A. 
flavus, A. tamarii, Cladosporium herbarum, C. sphaerospermum, Penicillium 
digitatum and P. italicum with growth inhibitions ranging from 70.3 % to 
95.2 % at 5 mg/mL (Afolayan, 2003). The methanol and acetone root 
extracts also displayed strong antifungal effects against A. flavus, A. 

Table 1 
Total phenolic and flavonoid contents from different extract solvents of Arctotis 
arctotoides.

Solvent Total phenolic content (mg GAE/g 
DW)

Total flavonoid content (mg QE/g 
DW)

Acetone 131.7 ± 0.01b 11.36 ± 0.373a

Methanol 231.56 ± 0.001a 9.86 ± 0.306b

mg GAE/g DW = milligrams of gallic acid equivalents per gram of dry weight; 
mg QE/g DW = milligram quercetin equivalents per gram of dry weight. Values 
are means of total phenolics and flavonoids of three replicates; values within a 
column followed by the same superscript are not significantly different at p <
0.05 according to student’s t-test

J.L. Mwinga et al.                                                                                                                                                                                                                              Journal of Natural Pesticide Research 11 (2025) 100105 

3 



niger, Fusarium oxysporium, Mucor heamalis, and P. notatum. The highest 
antifungal activities were observed against M. heamalis and P. notatum 
with 100 % growth inhibitions at 5 mg/mL (Afolayan et al., 2007).

4. Conclusion

The current study partially provides evidence on the efficacy of A. 
arctotoides in the management of plant diseases related to P. ultimum. 
Various concentrations of phenolics and flavonoids revealed in the ex-
tracts, as well as the identified bioactive phytochemicals in the meth-
anolic extracts (especially dehydrocostus lactone and methyl 
pheophorbide A), could partially be responsible for the antioxidant and 
antifungal activities of A. arctotoides. Overall, A. arctotoides extracts 
displayed moderate antioxidant and antifungal effects against P. 

ultimum. Antioxidant effect was more potent in methanol extracts (IC50 
= 0.12 mg/mL) with DPPH. Antifungal activity against P. ultimum was 
more potent with methanol extracts (inhibition zone of 18.33 mm). 
Future research should focus on the isolation, characterization, and 
detailed antifungal activities of the tentatively identified polyphenols. 
Additionally, studies on the mode of action of these phytochemicals are 
crucial to understanding how they exert their antifungal effects. Further 
studies are also recommended to evaluate the field efficacy of Arctotis 
arctotoides extracts under various environmental conditions and to 
explore the potential for large-scale production and commercialization. 
This will help understand the practical viability and economic benefits 
of using these extracts in real-world agricultural settings.
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Table 2 
Compounds tentatively identified in Arctotis arctotoides methanol extract showing retention times, detected [M-H]- and M+H]+ ion, elemental composition, MSE 

fragments and class.

No. Rt Experimental m/z 
[M-H]-/[MþH]þ

MSE Fragmentation Ions Elemental 
Formula

Class Tentative identity

1 0.87 274.8738 [M+H]+ 275.1215, 259.2366, 479.3282, 495.2822, 
463.1211, 411.2222, 395.2332

C8H4O15 - Unknown 1

2 1.18 341.1087 [M-H]- 341.2322, 191.2234, 377.2332, 533.5933, 
683.2322

C7H5O4 - Unknown 2

3 2.65 243.0622 [M-H]- 499.2322, 827.2355, 989.3444 C5H7O11 - Unknown 3
4 3.49 487.1814 [M-H]- 487.2355, 477.2622, 390.3733, 361.2323, 

353.2323
C22H31O12 - Unknown 4

5 4.18 471.18 [M-H]- 471.2733, 461.2844, 515.1115  - Unknown 5
6 4.24 362.1970 [M+H]+ 362.1211, 316.1211, 384.1010, 745.2322 C20H27NO5 Alkaloids Phalaenopsine T
7 4.72 362.1970 [M+H]+ 362.3222, 316.2322, 384.2220, 745.2333 C20H27NO5 Alkaloids Epihernandolinol
8 5.34 412.2129 [M+H]+ 412.1010, 366.2333, 301.3222, 477.2322 C24H29NO5 Benzene and 

substituted 
derivatives

2-({2-[4-(2-methoxyphenyl)− 2,2- 
dimethyloxan− 4-yl]ethyl}carbamoyl) 
benzoic acid

9 5.72 404.2078 [M+H]+ 317.3322, 354.2333, 302.3222, 685.2322, 
231.2112, 157.2322

C22H29NO6 - 6-{2-[(8-methyl− 2-oxo− 4-propyl-2H- 
chromen− 7-yl)oxy]propanamido} 
hexanoic acid

10 5.88 426.2288 [M+H]+ 433.2222, 231.1211, 843.2322, 157.2322 C25H31NO5 Fatty acyls 7-(2-hydroxyethyl)-monascorubramine
11 6.20 315.0508 [M-H]- 315.3254, 300.2333, 285.1111 C16H12O7 Flavonoids Isorhamnetin
12 6.68 338.1239 [M+H]+ 787.2322, 641.3232, 809,3222, 189.3222, 

320.1111
C16H19NO7 Indoles and 

derivatives
1H-Indol− 3-ylacetyl-myo-inositol

13 6.92 229.1228 [M+H]+ 229.1211, 269.4733, 331.3322, 183.4433, 
459.2322,475.3232

C15H16O2 Benzene and 
substituted 
derivatives

Bisphenol A

14 7.03 231.1382 [M+H]+ 271.2232, 353.2322, 157.2322 C15H18O2 Prenol lipids Dehydrocostus lactone
15 8.60 229.1227 [M+H]+ 229.1224, 269.2333, 331.3222, 191.2111, 

183.1233, 459.3222, 475.2333
C15H16O2 Benzene and 

substituted 
derivatives

Bisphenol A

16 9.60 291.1962 [M-H]- 291.2522, 480.1722, 540.1222, 597.1555 C18H28O3 Fatty acyls (2′E,4′Z,7′Z,8E)-Colnelenic acid
17 9.84 353.2693 [M+H]+ 376.5443, 565.3344, 398.3444, 229.1255 C21H36O4 - (-)-Ebelactone B; Ebelactone B
18 11.83 555.2844 [M-H]- 555.1521, 325.1633, 719.1333, 397.1532 C23H45O16 - Unknown 6
19 12.65 457.3483 [M+H]+ 457.2322, 746.2333, 501.3223, 762.2322, 

818.1222, 413.4433, 369.2321,313.2444, 
607.3433, 547.4555

C33H44O Prenol lipids Citranaxanthin

20 13.33 607.2925 [M+H]+ 227.5655, 858.3433, 431.3222, 247.3444, 
365.3444, 467.3433, 552.4333,746.2322, 
159.3433

C36H38N4O5 - Methyl pheophorbide a

21 14.33 238.8921 [M-H]- 390.1633, 293.1444, 310.2672, 361.4103 C9H4NO7 - Unknown 7

MSE fragments in bold refers to the base peak (the highest peak) (Alberts et al., 2012).

Table 3 
Antioxidant activity of Arctotis arctotoides extracts based on IC50 values (mg/mL) 
using 2,2́-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,2- 
diphenyl-1-picryhydrazyl (DPPH) models.

ABTS DPPH

Acetone extract 0.28 ± 0.077a 0.23 ± 0.105b

Methanol extract 0.37 ± 0.013a 0.12 ± 0.024b

Standard positive control; Trolox = 0.04 ± 0.027 (ABTS assay), 0.35 ± 0.006 
(DPPH assay). Values are means of ABTS and DPPH IC50 values of three repli-
cates; values within a column followed by the same superscript are not signifi-
cantly different at p < 0.05 according to student’s t-test.
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