
Geoscience Frontiers 15 (2024) 101822
Contents lists available at ScienceDirect

Geoscience Frontiers

journal homepage: www.elsevier .com/locate /gsf
Research Paper
Adopting the margin of stability for space–time landslide prediction – A
data-driven approach for generating spatial dynamic thresholds
https://doi.org/10.1016/j.gsf.2024.101822
1674-9871/� 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: GeoSphere Austria, Vienna, Austria.
E-mail address: stefan.steger@geosphere.at (S. Steger).
Stefan Steger a,b,⇑, Mateo Moreno b,c, Alice Crespi b, Stefano Luigi Gariano d, Maria Teresa Brunetti d,
Massimo Melillo d, Silvia Peruccacci d, Francesco Marra e,f, Lotte de Vugt g, Thomas Zieher h,
Martin Rutzinger g, Volkmar Mair i, Massimiliano Pittore b

aGeoSphere Austria, Vienna, Austria
bCenter for Climate Change and Transformation, Eurac Research, Bolzano, Italy
c Faculty of Geo-information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands
dResearch Institute for Geo-Hydrological Protection, National Research Council (CNR-IRPI), Perugia, Italy
eDepartment of Geosciences, University of Padua, Padua, Italy
f Institute of Atmospheric Sciences and Climate, National Research Council (CNR-ISAC), Bologna, Italy
gDepartment of Geography, University of Innsbruck, Innsbruck, Austria
hDepartment of Natural Hazards, Austrian Research Centre for Forests (BFW), Innsbruck, Austria
iOffice for Geology and Building Materials Testing, Autonomous Province of Bolzano-South Tyrol, Cardano, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 October 2023
Revised 24 January 2024
Accepted 7 March 2024
Available online 13 March 2024
Handling Editor: Wengang Zhang

Keywords:
Early warning
Space-time model
Rainfall thresholds
Landslide susceptibility, Generalized
Additive Mixed Model
Forecasting
Shallow landslide initiation typically results from an interplay of dynamic triggering and preparatory
conditions along with static predisposition factors. While data-driven methods for assessing landslide
susceptibility or for establishing rainfall-triggering thresholds are prevalent, integrating spatio-
temporal information for dynamic large-area landslide prediction remains a challenge. The main aim
of this research is to generate a dynamic spatial landslide initiation model that operates at a daily scale
and explicitly counteracts potential errors in the available landslide data. Unlike previous studies focus-
ing on space–time landslide modelling, it places a strong emphasis on reducing the propagation of land-
slide data errors into the modelling results, while ensuring interpretable outcomes. It introduces also
other noteworthy innovations, such as visualizing the final predictions as dynamic spatial thresholds
linked to true positive rates and false alarm rates and by using animations for highlighting its application
potential for hindcasting and scenario-building.
The initial step involves the creation of a spatio-temporally representative sample of landslide presence

and absence observations for the study area of South Tyrol, Italy (7400 km2) within well-investigated ter-
rain. Model setup entails integrating landslide controls that operate on various temporal scales through a
binomial Generalized Additive Mixed Model. Model relationships are then interpreted based on variable
importance and partial effect plots, while predictive performance is evaluated through various cross-
validation techniques. Optimal and user-defined probability cutpoints are used to establish quantitative
thresholds that reflect both, the true positive rate (correctly predicted landslides) and the false positive
rate (precipitation periods misclassified as landslide-inducing conditions). The resulting dynamic maps
directly visualize landslide threshold exceedance. The model demonstrates high predictive performance
while revealing geomorphologically plausible prediction patterns largely consistent with current process
knowledge. Notably, the model also shows that generally drier hillslopes exhibit a greater sensitivity to
certain precipitation events than regions adapted to wetter conditions. The practical applicability of the
approach is demonstrated in a hindcasting and scenario-building context. In the currently evolving field
of space–time landslide modelling, we recommend focusing on data error handling, model interpretabil-
ity, and geomorphic plausibility, rather than allocating excessive resources to algorithm and case study
comparisons.
� 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. This is
an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Landslides are geomorphic processes that serve as key sediment
sources in mountain areas (Broeckx et al., 2020) while simultane-
ously posing a risk to infrastructure and human well-being
(Glade et al., 2005; Froude and Petley, 2018). Reliable landslide
predictions build the foundation for regional early warning and
can help to reduce adverse landslide impacts (Piciullo et al.,
2018; Guzzetti et al., 2020; Lombardo et al., 2020). The quality of
such predictions, however, heavily depends on how well the
underlying causes of slope instability can be captured by available
data and the employed modelling techniques.

Whether an area is generally prone to shallow slope instability
depends on an interplay of predisposing factors, such as topogra-
phy, subsurface material, vegetation cover, hydro-climatic predis-
position and anthropogenic impacts (Crozier, 1989; Glade et al.,
2005; Petley, 2010; Schwarz et al., 2012; Bogaard and Greco,
2016; Schmaltz et al., 2017). The timing i.e. temporal occurrence
of slope instability is usually determined by highly dynamic
weather events, like heavy rainfall or snow melting (Keefer,
2002; Brunetti et al., 2010; Marra et al., 2016; Krøgli et al., 2018;
Luna and Korup, 2022). However, a moderate rainfall event may
not trigger slope instability in low-susceptibility terrain while cre-
ating critical conditions on landslide-prone hillslopes. Thus, to
evaluate where and when slope instability may occur requires a
joint consideration of various static and dynamic landslide controls
(Crozier, 1989).

The Margin of Stability (MoS) represents the conceptual back-
bone of this research. In contrast to the Factor of Safety (FoS), the
MoS relates to the difference between resisting (R) and driving
(D) forces acting on a slope (MoS = R�D), as opposed to their ratio
(FoS = R/D). The MoS is presumed to provide a more straightfor-
ward assessment of an area’s ability to endure dynamic stressors.
For instance, various combinations of R and D (e.g., A: 3 to 2 or
B: 6 to 4) can lead to the same FoS value (FoS 1.5), whereas their
difference (MoS A: 1; B: 2) may better elucidate the extent of exter-
nal stress a slope can endure before failing (Crozier, 1989; Glade
et al., 2005).

The MoS depends on an interplay of static predisposing factors
and the magnitude and intensity of dynamic destabilizing stressors
(Fig. 1). Stable terrain is capable to withstand dynamic stressors
(i.e., preparatory and triggering factors) to a large degree while
marginally stable terrain is more likely to become unstable due
to dynamic disturbances. Predisposing landslide controls, such as
the topography or geological settings, are assumed to be rather sta-
Fig. 1. The Margin of Stability (MoS) depicting factors that control landslide occurrence. L
and dynamic preparatory and triggering factors. The four conceptual cases (a–d) feature d
fail (a, c, d) or not (b). Adopted from concepts presented in Crozier (1989) and Zimmerm

2

tic in time and render a slope more or less prone to landsliding.
Dynamic preparatory controls, such as antecedent rainfall or sea-
sonal vegetation effects, modify the MoS in time, but frequently
do not initiate slope movement. Instead, triggering factors, such
as heavy rainfall, seismic shaking or intense snowmelt, act on com-
parably short periods and can shift a hillslope from a ‘‘marginally
stable” condition to an ‘‘unstable” status to initiate a landslide.
For instance, the prevailing predisposing factors determine to
which degree a slope can withstand dynamic stressors (Fig. 1a
vs. 1b). However, comparably ‘‘stable‘‘ terrain can also experience
slope instability in response to exceptional dynamic stressors, such
as extraordinary preparatory conditions (Fig. 1c) or due to an
extreme triggering event (Fig. 1d) (Crozier, 1989; Goudie, 2004;
Glade et al., 2005).

Data-driven models are widely used for assessing landslide
occurrence over large areas. Landslide susceptibility models put
the spotlight on the spatial domain (i.e., predisposing factors in
Fig. 1) to map the spatially-varying static propensity of an area
to experience slope instabilities (Steger et al., 2016a;
Reichenbach et al., 2018; Lima et al., 2022). The resulting maps
are often considered a valuable information source for land man-
agement and spatial planning (De Graff et al., 2012; Guillard and
Zêzere, 2012; Fressard et al., 2014; Petschko et al., 2014).
Approaches focusing on the temporal domain (i.e., dynamic factors
in Fig. 1) are often concerned with the elaboration of critical trig-
gering conditions. Empirical studies dealing with rainfall-induced
landslides primarily focus on the meteorological trigger while usu-
ally not explicitly considering confounding effects related to land-
slide predisposition. For instance, widely adopted empirical rainfall
thresholds statistically link landslide occurrence data with associ-
ated rainfall to elaborate critical cumulative rainfall amounts and
durations (Guzzetti et al., 2007; Brunetti et al., 2010). Comparably
few studies explicitly consider the additional effect of preparatory
factors related to long-term antecedent precipitation or seasonality
(Chleborad, 2000; Guzzetti et al., 2007; Monsieurs et al., 2019b;
Luna and Korup, 2022).

Literature shows that the integration of spatial and temporal
aspects in large-area landslide prediction is rarely conducted, but
selected examples underscore its considerable potential
(Lombardo et al., 2020; Collini et al., 2022; Lin et al., 2022;
Lombardo and Tanyas, 2022; Ozturk, 2022; Ahmed et al., 2023;
Bajni et al., 2023; Moreno et al., 2024). Advanced data-driven mod-
els have recently been employed to model landslide occurrence in
space and time by explicitly accounting for spatio-temporal
stochastic landslide dependencies. However, although these
andsliding is initiated (‘‘unstable”) due to an interplay of static predisposing factors
ifferent combinations of destabilizing stressors that determine whether a slope will
ann (1997).
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promising studies investigated precipitation-induced landslides,
they did not explicitly account for observed precipitation events
(Lombardo et al., 2020; Opitz et al., 2022). In the case of rainfall-
induced landslides, a joint consideration of landslide predisposi-
tion and dynamic landslide controls regularly involves the combi-
nation of dynamic components (e.g., meteorological variables)
with a pre-existing or separately evaluated landslide susceptibility
map through a heuristic combination matrix or a decision-tree
approach. However, determining the appropriate weighting of
individually evaluated layers during the combination process
introduces subjective evaluations (Yang and Adler, 2008; Segoni
et al., 2015, 2018; Kirschbaum and Stanley, 2018; Krøgli et al.,
2018). Bordoni et al. (2021) used multivariate adaptive regression
splines to create a landslide susceptibility model and an additional
non-spatial model focusing on hydrometeorological parameters.
The final landslide probability index was derived by multiplying
the two modelling outputs, which were considered independent.
However, assuming independence between temporal and spatial
components may impose limitations for landslide prediction
(Guzzetti et al., 2006), since landslides and their dynamic controls
are inherently spatio-temporal phenomena. A separate considera-
tion might result in biased weights for individual variables and dis-
torted predictions. For instance, a subregion with actual moderate
landslide predisposition may nevertheless be characterized by a
high number of landslides, because it regularly experiences excep-
tional precipitation events (cf. Fig. 1d). A conventional susceptibil-
ity model does not account for such precipitation dynamics and
may, therefore, overestimate the landslide-proneness of this area
by assigning too much emphasis (i.e., positive weight) to locally
prevailing spatial variables, such as local topographic of soil condi-
tions. In analogy, an empirical study that exclusively considers pre-
cipitation variables may overemphasize the significance of
relatively low precipitation levels for landslide initiation if a sub-
stantial number of landslides were documented in highly
landslide-prone terrain, where even moderate precipitation may
trigger slope instability (cf. Fig. 1a). Thus, integrating separately
evaluated spatial and dynamic components may favour distorted
prediction rules.

Recently, data-driven approaches that jointly consider spatial
predisposing and measured time-varying dynamic factors have
been constructed for two severe landslide events (years 2009 and
2014) that occurred in the Austrian Alpine foreland. The analyses
allowed the subsequent assessment of potential changes in land-
slide occurrence under environmental change (Knevels et al.,
2020; Maraun et al., 2022). Inspired by Steger et al. (2023),
Ahmed et al. (2023) exploited multi-temporal landslide data
related to six rainfall events to create a space–time landslide model
for north Vietnam. Nocentini et al. (2023) built a space–time land-
slide model using a Random Forest classifier and highlighted
advantages of high model interpretability. Dynamic landslide pre-
diction models have also been proposed at the global scale (Stanley
et al., 2021; Li et al., 2022). The first model created by the National
Aeronautics and Space Administration (NASA), which has previ-
ously combined separate static and dynamic components, has
recently been improved via a fully integrated machine learning
approach. This global nowcast model produces a probability-
based output that jointly considers spatial and dynamic factors
while also allowing the evaluation of trade-offs between wrongly
predicted landslides and non-landslides (Stanley et al., 2021).

However, despite these recent advances in dynamic data-driven
landslide modelling, comparatively little attention has yet been
paid to reduce effects of input data errors on the modelling results.
Data quality seems to be less of a concern in data-driven landslide
research, even though it is known that a supervised classifier is
only as good as its input data, and that available landslide data is
usually far from perfect (Guzzetti et al., 2012; Steger et al.,
3

2021). The propagation of data errors into a landslide model should
not be ignored, especially since widely-applied quantitative valida-
tion procedures have shown limited effectiveness in assessing
model quality under data bias conditions (Steger et al., 2016b,
2021). In landslide susceptibility modelling, several researchers
took steps to reduce the effects of imperfect input data on model
outcomes by mainly modifying the underlying sampling design
or by introducing bias-correction procedures during model con-
struction (Steger et al., 2017; Bornaetxea et al., 2018; Jacobs
et al., 2020; Lin et al., 2021; Lima et al., 2021). Furthermore,
numerous studies focusing on model comparison usually rely on
model performance estimates while ignoring aspects related to
model interpretability. High model interpretability, however, is
necessary for model inference and for conducting plausibility
checks (Petschko et al., 2014; Goetz et al., 2015; Steger et al.,
2016b, 2021; Lombardo et al., 2020; Collini et al., 2022;
Nocentini et al., 2023).

This study delves into space–time landslide modelling by build-
ing upon work that derived non-spatial critical precipitation condi-
tions for shallow landslide occurrence (Steger et al., 2023), and by
drawing on efforts in susceptibility modelling to address input data
errors (Steger et al., 2017, 2021; Bornaetxea et al., 2018). The focus
is limited to shallow precipitation-induced landslides, as it should
be recognized that other landslide types are controlled by different
environmental and triggering conditions. Consequently, modelling
other movement-types requires distinctive approaches and consid-
erations (Soeters and van Westen, 1996; Rotigliano et al., 2011;
Regmi et al., 2014).

The main aim is to translate the MoS (Fig. 1) into a dynamic spa-
tial landslide initiation model that accounts for errors in the avail-
able landslide data while providing interpretable results. Its
practical applicability is enhanced by linking the raw predictions
to quantitative thresholds, while its potential is demonstrated
within hindcasting and scenario construction contexts. The pre-
sented data-driven approach stands out as unique by leveraging
a 21-year dataset of shallow landslide occurrence in South Tyrol,
Italy (7400 km2), as it:

� puts particular emphasis on model interpretability to provide
insights into the interplay of static and dynamic landslide
controls.

� accounts for potential spatial and temporal errors in landslide
data.

� visualizes the predictions as dynamic spatial thresholds linked
to true positive rates and false alarm rates.

� showcases its application potential for hindcasting and fore-
casting purposes.

2. Study area

South Tyrol is the northernmost province of Italy with an area of
7400 km2 (Fig. 2). Its general high relief energy is reflected by its
altitudinal gradient, which ranges from about 200 m a.s.l. in the
southern valley bottoms to about 3900 m a.s.l. in the western lying
mountain ranges. The area can be roughly divided into two geolog-
ical zones separated by the Periadriatic fault. The Southern Lime-
stone Alps with predominant sedimentary rocks in the southeast
are opposed by the Central Eastern Alps with predominant meta-
morphic rocks in the remaining part of the area (Stingl and Mair,
2005). The rural character of South Tyrol is underlined by its land
cover: About 45% of the area is covered by forest, often located on
the lower lying hillsides, while about 35% is used for agriculture.
The climate strongly depends on the altitudinal gradient, with
mean annual precipitation ranging from about 600 mm in the
lower-lying west to more than 1500 mm in the higher-lying parts
in the north and northeast. In general, precipitation amounts are



Fig. 2. Overview of the study area. The shown points refer to time-stamped shallow landslide observations that have been registered between 2000 and 2020 in the national
inventory called Inventario dei fenomeni franosi in Italia (IFFI). The location of South Tyrol within Italy is shown on the small map.
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considerably higher in summer than in winter, when snowfall is
common (Crespi et al., 2021).

This research focuses on shallow landslides of the slide-type
movement of earth and debris material (Cruden and Varnes,
1996). Available landslide data and associated damage reports
indicate that each year a substantial number of events result in
damage or affect human activities (Steger et al., 2021). In South
Tyrol, most of these landslides are triggered by intense or pro-
longed precipitation. However, the prevailing topographic condi-
tions, subsurface material, snowmelt, vegetation cover and land
use also play a role in determining shallow slope instability
(Tasser et al., 2003; Stingl and Mair, 2005; Piacentini et al., 2012;
Schlögel et al., 2020; Steger et al., 2021, 2023).

3. Data

3.1. Landslide inventory

This study is based on a 21-year record of precipitation-induced
landslides in South Tyrol. The data stems from the South Tyrolean
version of the national landslide database IFFI (Inventario dei feno-
meni franosi in Italia) accessed from the IdroGeo platform (Iadanza
et al., 2021). The process to extract day-specific data on
precipitation-induced shallow landslides is described in detail in
Steger et al. (2023). In summary, the final landslide sample used
for modelling consists of 555 precipitation-induced landslide scarp
locations with known occurrence dates between 2000 and 2020.
Despite being a comprehensive information source for past slope
4

instabilities, this landslide data is known to be biased in space as
it systematically reflects damage-causing slope instabilities while
underrepresenting landslides in remote and high-altitude locations
(Steger et al., 2021).
3.2. Variables representing landslide predisposition

A parsimonious model was ensured by focusing on a limited
number of commonly used spatial variables (Reichenbach et al.,
2018). Slope morphology variables were derived by the respective
SAGA GIS tools (Conrad et al., 2015) from a 30 m Digital Terrain
Model (DTM). Slope angle and slope aspect are amongst the most
used variables in landslide susceptibility modelling and were
tested for their ability to represent the spatially varying effects of
downslope forcing and slope orientation, respectively. The relative
topographic position on the hillslope was computed using the
SAGA Module ‘‘Relative Heights” and its ‘‘Normalized Height” out-
put. The resulting variable is henceforth denoted as the normalized
relative height index. The particular shape/morphometry of local
hillslope terrain, which is commonly used as a proxy for surface
water and material accumulation, was described via the conver-
gence index (van Westen et al., 2008).

Spatial variations of vegetation-related effects are regularly rep-
resented by land cover maps (van Westen et al., 2008; Schmaltz
et al., 2017). A binary forest cover map (forest vs. no-forest) was
derived from available land cover information (‘‘Realnutzungskarte
Südtirol” version 2015). The general spatial distribution of lithology
was described via a geological overview map (‘‘Geologische Über-
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sichtskarte Südtirol”). Mean annual precipitation from 2000 to 2020
was calculated from daily precipitation grids (Crespi et al., 2021). It
should be noted that this climatic variable was not used to describe
landslide triggering, but to examine if generally ‘‘drier” areas react
differently to a certain amount of precipitation compared to areas
that frequently experience higher precipitation amounts. In this
context, it was also examined whether the results support the pos-
tulated landscape equilibrium effect, which suggests that land-
forms and processes tend to adapt to prevailing climatic
conditions (Renwick, 1992).

For modelling, all variables were resampled to the modelling
resolution of 30 m � 30 m to avoid an undesired too detailed
description of post-landslide morphology, to reduce noise in the
topographic information and to counterbalance positional uncer-
tainties in landslide mapping (Petschko et al., 2014; Steger et al.,
2016b). Finally, a categorical variable representing the sampling
location (LOC_ID) was used as a random effect to account for the
spatially nested data structure i.e., the fact that repeated measure-
ments were taken over time at the same location (Zuur et al.,
2009).
3.3. Variables representing dynamic landslide controls

Dynamic factors are represented by four types of variables act-
ing at different temporal scales. Gridded daily precipitation data
derived from meteorological stations with a cell size of 250 m
was used to describe the short-term and medium-term effects of
precipitation on landslide occurrence (Crespi et al., 2021). Two
types of spatially explicit precipitation variables were tested: trig-
gering precipitation (T), representing the cumulative amount of
precipitation that fell shortly before and on the observation day
and preparatory precipitation (P), depicting antecedent cumulative
precipitation for a specified time period before T (Chleborad et al.,
2008). Six candidates representing T (day 0 to day 5) and 30 candi-
dates representing P (day 1 to day 30) were used to find the best
performing T-P pair for modelling (cf. Section 4.3). Seasonal effects
that cannot be explained by the two precipitation variables were
assessed using a day-of-the-year variable (DOY). An additional
variable (YEAR) was used as a random effect to isolate data vari-
ability related to a potential bias across years in landslide record-
ing in analogy to Steger et al. (2023).
4. Methods

4.1. Research design

Fig. 3 delineates the methodological framework utilized in this
study, which can be categorized into four primary components: (i)
Data sampling (green), (ii) Creation of environmental variables (or-
ange), (iii) Variable selection and data-driven modelling (blue), and
(iv) Model evaluation and visualization (red). In summary, the first
step entailed generating a spatial mask termed the Effectively Sur-
veyed Area (ESA), which restricts data sampling to well-observed
and non-trivial terrain, as outlined in Section 4.2. In analogy to
the available landslide data, the sampling of landslide absences
focused on the 21-year period from 2000 to 2020. The resulting
spatio-temporal presence-absence sample was subsequently used
to extract associated environmental information, as described in
Section 4.3. Modelling built upon a binomial Generalized Additive
Mixed Model (GAMM) (Zuur et al., 2009; Pedersen et al., 2019).
Predictor variables were selected using a two-step variable selec-
tion approach as explained in Section 4.3. The results were
assessed in terms of modelled relationships, variable importance,
and through multiple cross-validation procedures, as detailed in
Sections 4.4 and 4.5. Analysis of the Receiver Operating Character-
5

istic (ROC) curve was conducted to derive three thresholds to cre-
ate classified maps with categories corresponding to the
underlying performance metrics. Dynamic spatial predictions were
then generated both in a hindcasting context and for precipitation
scenarios (Section 4.5).

4.2. Masking and data sampling

A data-driven spatial landslide model is prone to systematic
biases if the underlying study area includes a considerable por-
tion of unvisited terrain, for which landslide absence is typically
assumed (Bornaetxea et al., 2018). Subsequent overrepresentation
of absence observations within terrain excluded from landslide
mappings is likely to result in misleading correlations (Steger
et al., 2021). One strategy to address this issue is to narrow the
model training to well-observed terrain by limiting the data sam-
pling to the ESA (Bornaetxea et al., 2018). Previous studies
defined the ESA by identifying the area visible along a well-
investigated path network (Bornaetxea et al., 2018; Knevels
et al., 2020). In South Tyrol, the recording of landslides is directly
associated with the relevance and proximity to infrastructure
while also altitude plays a role. Slope instabilities close to impor-
tant infrastructure are usually mapped while landslides occurring
far from infrastructure or at high altitudes are likely to remain
unrecorded. Landslides threatening or damaging crucial infras-
tructure, such as buildings, highways, or railways, are more likely
to be recorded than landslides posing a threat to equally close,
but less relevant infrastructure, such as less frequented unpaved
roads or trails at high altitudes. Such ‘‘data collection effects”
were recently integrated into a landslide model for South Tyrol
to identify where damage-causing landslides, that are systemati-
cally reported, are likely to occur (Steger et al., 2021). In this
model, data collection effects were accounted for through various
proximity variables, which included distances to key linear infras-
tructure (roads and railways), and areal infrastructure (buildings)
and an interaction term between the distance to less relevant lin-
ear infrastructure (pathways) and altitude. Spatially predicting
these effects allowed for visualizing the likelihood of landslide
recordings, which tended to be highest near critical infrastruc-
ture, lower near less significant pathways, especially at higher
altitudes and close to zero far from infrastructure. In this study,
this raw model output was employed to delineate the ESA (or-
ange area in Fig. 4) by transforming the probability scores into
a binary map using the Youden index as explained in Section 4.5.
Fig. 4 also visualizes the areas excluded from sampling, namely
terrain outside the ESA (blue area) and easy-to-classify non-
susceptible terrain, i.e., flat areas below 3.9� for which no-
landslide was observed (green area), glacier areas, rocky faces,
and water bodies (grey area).

Landslide absence locations were drawn from the sampling
area by defining a minimal distance to known landslide locations
(red points in Fig. 4) of 150 m. Probability-Proportional-to-Size
(PPS) sampling (Singh and Mangat, 1996) was implemented to
establish the sampling probability for absence data based on
the actual surface area. This approach was used to prevent an
underrepresentation of absences in steep terrain, whose actual
area is larger than what is represented in a planar perspective
(Steger et al., 2021). Between 2000 and 2020, multiple days were
randomly selected for each absence location while ensuring a
balanced representation across different years and months. Addi-
tionally, a minimum temporal gap of 30 days between the obser-
vations of the same location was enforced. Finally, all remaining
presence and absence observations with precipitation levels
of � 1.1 mm on the observation day or the day before were
excluded from further analysis to focus the model on ‘‘wet
periods‘‘ (Steger et al., 2023).



Fig. 3. Overview of the methodical framework of this research.

Fig. 4. Visualization of the spatial data sampling design. The area for sampling landslide presence and absence observations is shown in orange along the sampled landslide
presence and absence locations. No samples were taken outside the well-observed terrain (blue) or inside trivial and flat terrain (green, grey). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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4.3. Generalized Additive Mixed model and variable selection

GAMMs can handle binary response variables, non-linear rela-
tionships, interaction effects as well as fixed and random effects,
making them well-suited to tackle complex binary classification
problems (Zuur et al., 2009; Pedersen et al., 2019). GAMMs have
already been used in data-driven landslide modelling to handle
spatially or temporally nested data structures and biased landslide
data while retaining a high interpretability (Lin et al., 2021; Steger
et al., 2023).

The variables included in the GAMM were selected through a
two-step iterative procedure. In the first step, all variables
described in Section 3.2 and 3.3 were considered when employing
a double penalty shrinkage approach, which involves applying a
penalty to the range space (i.e., wiggliness penalty restricting the
degree of fluctuations) and a second penalty that affects the null
space (i.e., shrinkage penalty). This method can be activated by
the select = TRUE argument in the mgcv R package (Marra and
Wood, 2011). The initial time-window for representing T and P
precipitation variables was taken from the best performing T-P pair
of our previous analysis, i.e. 2-day for T and 28-day for P (Steger
et al., 2023).

The second step aimed to assess whether this predefined T-P
time-window remained the most suitable choice in the current
space–time modelling setup. In this context, 25-repeated 5-fold
random cross-validation (Section 4.5) combined with a grid-
search across 165 T-P combinations (180 combination minus the
15 overlapping combinations; cf. grey areas in Fig. 7) was per-
formed. The resultant new best-performing T-P pair, which was
different from the one identified previously, was then introduced
into the first model selection step to determine any potential
change in variable selection. This iteration was repeated until a
stable variable combination was achieved.

4.4. Evaluation and visualization of modelled relationships

Modelled relationships were evaluated at two levels: at the
inter-variable level, through the assessment of variable impor-
tance, and at the intra-variable level, by examining partial effects.
The variable importance assessment provides insights into the rel-
ative contribution of each predictor variable to the response, while
the partial effects analysis shows how changing variable values
affects modelled landslide occurrence probability.

Variable importance was assessed based on the deviance
explained, a well-known measure of the goodness of model fit. In
analogy to Goetz et al. (2018), we systematically compared the
deviance explained between a full model (all variables) and a series
of reduced models, each excluding one predictor or predictor-
group. A larger decrease in deviance explained (full model vs.
reduced model) indicates a greater relative contribution of the
respective variable of interest. Variable importance assessment
was conducted for single variables or groups of variables, such as
topographic or precipitation variables.

Partial effect plots are graphical representations of the modelled
relationship between the response and continuously scaled predic-
tors (Nocentini et al., 2023). Partial effects were visualized as con-
tour plots to visualize the marginal (non-linear) effects of two
predictors (i.e., T or P vs. another predictor) on modelled landslide
occurrence in an intuitive way. The relationships shown within
these plots depict how the modelled response (i.e., probability of
landslide occurrence) changes as the value of the shown predictors
varies. Modelled relationships for the categorical variables forest
cover and lithology were interpreted based on odds ratios (ORs).
ORs depict the modelled effect size of a certain variable category
(e.g., forest) compared to a reference category (e.g., non-forest) to
illustrate the relative chance within the respective class to experi-
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ence landsliding. For instance, an OR of 1.5 would indicate that the
estimated likelihood of a landslide occurrence in this particular
class (e.g. non-forest) is 1.5 times higher compared to its reference
(e.g. forest), which has an OR of 1 (Hosmer and Lemeshow, 2000).

4.5. Calculation of model performance, threshold-building and
dynamic maps

The ROC curve was used to classify the prediction maps and to
evaluate model performance, also when identifying the best per-
forming T-P pair. The ROC is a graphical representation of the per-
formance of a binary classifier as the discrimination threshold is
varied. The ROC curve plots, for each possible probability thresh-
old, the associated true positive rate (sensitivity, y-axis) against
the false alarm rate (1-specificity, x-axis). The better a model dis-
criminates between landslide presences and absences, the further
its ROC curve moves away from the random classification diagonal
towards the top-left corner, increasing the area under the curve.
Thus, the Area Under the ROC (AUROC) can be used to summarize
the overall model performance of a model. AUROCs usually range
from 0.5 (random classification) to 1 (perfect classification) with
higher values indicating a better-performing model (Metz, 1978;
Hosmer and Lemeshow, 2000).

An AUROC calculated using training data provides insights into
the fitting performance of a model. Instead, the predictive perfor-
mance of a model is usually derived from test data, that was held
out during model training. K-fold cross-validation is a standard
approach for evaluating the predictive performance of a data-
driven model by repeatedly dividing the original data into training
data and test data (Schratz et al., 2019). Three cross-validation pro-
cedures were implemented based on random, temporal and spatial
data partitions.

Random cross-validation utilized 50 random data partitions
(i.e., 5 folds, 10 repetitions) to test the predictive performance of
the model. In temporal partitioning, data is split based on its tem-
poral component, for example, by using data from several years for
training and data from the remaining year for validation. In this
study, temporal cross-validation was conducted both, at the
month-level and at the year-level by systematically leaving single
time units out during model training and testing the model perfor-
mance for the left-out time periods. Spatial cross validation is
based on a spatial partitioning of training and test sets and was
conducted on the basis of k-means (k = 10) spatial clustering
(Brenning, 2012; Schratz et al., 2019) and by dividing the study
area into four major geographical zones (i.e. North, West, East,
South). Furthermore, final cross-checks with two IFFI-
independent landslide inventories were conducted. In this context,
we compared the model predictions with landslide information
obtained from online newspapers and reports (further called IRPI
records; Brunetti et al., 2015; Peruccacci et al., 2023) and from
remote-sensing based mappings related to a heavy precipitation
event that occurred on the 4th and 5th of August 2016 in the Pas-
seier valley (further called 2016 records; de Vugt et al., 2024).

The ROC was also used to categorize the continuously scaled
prediction pattern (i.e., probability scores between 0 and 1) into
four classes. Three ROC-derived thresholds, that reflect specific
combinations of true positive rate and false alarm rate, were spec-
ified for this purpose (Fig. 5). The threshold called TPR95 relates to
a very high true positive rate of 95%. Since almost all (i.e., 95%)
observed landslides exceed this threshold, a relatively high false
alarm rate can be expected. In contrast, the threshold TPR25 relates
to a low true positive rate of 25% indicating that 75% of all land-
slides were induced by conditions associated with a lower land-
slide probability. TPR25 relates to a comparably high predicted
probability score and to a low false alarm rate. The threshold called
OPT is based on the Youden index and lies between TPR95 (i.e.,



Fig. 5. The thresholds used to visualize the dynamic maps. Utilizing the three thresholds (TPR95, OPT, TPR25) to categorize the probability-based maps results in four distinct
classes associated with varying true positive rates (i.e., hit rates) and false alarm rates.
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comparably low probabilities) and TPR25 (i.e., high probabilities).
OPT balances misclassification rates by maximizing the sum of sen-
sitivity and specificity. It corresponds to the point on the ROC curve
with the highest distance from random classification (i.e., the diag-
onal in the ROC space) and therefore ‘‘optimally” separates the two
classes (Schisterman et al., 2005). Based on this classification
scheme, the final classified map displays four classes, with the
optimal threshold (OPT) lying in the middle (Fig. 5).

Finally, the application possibilities of the approach were
demonstrated in a hindcasting context and by defining hypotheti-
cal precipitation scenarios. Hindcasting aimed to visualize and ana-
lyze the spatio-temporal evolution of the landslide thresholds for a
severe landslide event that heavily affected the Passeier valley on
the 4th and 5th of August 2016 (de Vugt et al., 2024). Such predic-
tions and animations were also created by altering precipitation
levels according to spatially uniform hypothetical scenarios. For
this purpose, the underlying model predictions were created by a
stepwise increase in T (5 mm steps) for different fixed antecedent
precipitation conditions represented by the P-terciles (38 mm:
rather dry; 68 mm: average; 104 mm: rather wet).
5. Results

5.1. Sampling results and variable selection

Restricting data sampling to the ESA and non-trivial terrain led
to an initial sample consisting of 648 landslide presences (blue
bars in Fig. 6a) and 22,693 absences (grey bars in Fig. 6a). This ini-
tial sample does not yet consider if the respective observations are
related to ‘‘wet periods” or not. The exclusion of ‘‘dry periods”
resulted in the final modelling sample consisting of 555 landslide
presences and 9755 observations not associated with landslide
occurrence (Fig. 6b). Thus, around 57% of initially sampled absence
observations and 14% of the initially sampled landslide locations
were excluded because they were not primarily linked to precipi-
tation. The grey bars in the histogram (Fig. 6b) reflect the general
seasonal distribution of precipitation days in South Tyrol, showing
that they are more common during the summer. Yet, November
has the highest number of landslide observations (blue bars in
Fig. 6b).

The two-step variable selection procedure revealed a stable
variable combination after two iteration rounds. It led to a variable
set consisting of six environmental variables representing land-
slide predisposition (i.e., slope angle, normalized relative height, con-
vergence index, forest cover, lithology, mean annual precipitation),
three dynamic variables (i.e., triggering precipitation T, prepara-
tory precipitation P, seasonal DOY effect) and the two grouping
effects (i.e., LOC_ID, YEAR). The best-performing time window for
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representing T and P was associated with a mean AUROC of 0.91.
This performance was achieved by combining a 2-day cumulative
precipitation variable (Tdays 1 representing day 0 plus day 1) with
an antecedent 26-day time-window (Pdays 27) as highlighted in
Fig. 7.

5.2. Variable importance and modelled relationships

All selected variables increased the deviance explained by the
model (Fig. 8a). The portion of deviance explained was highest
for the variable describing short-term precipitation (T) followed
by slope angle, forest cover and the variable representing prepara-
tory precipitation (P). The remaining variables were associated
with a comparatively low relative importance. Since many envi-
ronmental variables tend to be correlated, a variable importance
assessment according to thematic groups was conducted
(Fig. 8b). In the current model setup, the dynamic variables were
generally assessed to be more important than the static variables
(orange bars in Fig. 8b). For instance, leaving out the dynamic pre-
cipitation variables T and P led to a stronger decrease in the
deviance explained (0.329) than leaving out all static variables
describing landslide predisposition (0.208). In terms of landslide
predisposition, topography (0.116) and forest cover (0.108) were
estimated to be most influential.

Partial effect plots were used to visualize modelled relation-
ships at the variable level (Fig. 9). Increasing landslide probabilities
were generally estimated for increasing amounts of triggering
(Fig. 9a–e) and preparatory precipitation (Fig. 9f–j). The trend of
this relationship was further modified by the other variables in
the model. For example, in case an area experiences 100 mm of T
or 300 mm of P, landslide probabilities were estimated to be high-
est at �40� steep terrain (Fig. 9a, f), at concave-shaped landforms
(Fig. 9b, g) and on relatively low slope positions (Fig. 9c, h). For a
fixed amount of T or P precipitation, higher landslide probabilities
were estimated for generally drier areas compared to their wetter
counterparts (Fig. 9d, i). In analogy to the existing non-spatial
model (Steger et al., 2023), also the new model setup expressed
that more precipitation is required to induce a landslide during
summer/autumn, in comparison to winter and spring when vege-
tation effects and evapotranspiration are less (Fig. 9e, j).

5.3. Model performance

The high fitting performance of the model was confirmed by an
AUROC score of 0.91 (Fig. 10). The three selected thresholds were
associated with different combinations of true positive rates and
false alarm rates. It is shown that the threshold with the highest
true positive rate (95.1%; TPR95) was associated with a comparably
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Fig. 6. The data sampling results. The histograms show the frequency of the sampled data before (a) and after (b) applying the precipitation filter. The data used for modelling
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Fig. 8. Variable importance. The relative importance is shown for single variables (a) and variable groups (b) and expressed as the portion of deviance explained within the
GAMM.
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Fig. 9. The modelled relationships. The partial effect plots depict the model predictions by fixing all but the variables in view. The predicted probabilities (contours and color
gradient) generally increase with increasing amounts of short-term precipitation (y-axis in a–e) and medium-term antecedent precipitation (y-axis in f–j). Estimated
probabilities also vary across the other continuous variables: slope angle (a, f), convergence (b, g), normalized relative height (c, h), mean annual precipitation (d, i), day of the
year (e, j). Odds ratios for the not-shown categorical variables are: Forest cover (Non-Forest 1, Forest 0.13,) and Lithology (Sedimentary 1, Crystalline 0.89, Porphyry 0.88,
Plutonite 0.5, Calcschist 0.5).

Fig. 10. Fitting performance of the model and metrics related to the three chosen
thresholds. The TPR95 (true positive rate: 95.1%; false alarm rate: 44%) threshold
can be linked to the 5% non-exceedance threshold commonly displayed for
empirical rainfall thresholds. The OPT threshold balances the true positive rate
(81%) and the false alarm rate (12%), while TPR25 (true positive rate: 25%) is only
surpassed by a very small number of non-landslide observations (false alarm rate:
0.4%).
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high false alarm rate (44%). In contrast, the TPR25 threshold was
associated with a very low false alarm rate (0.4%). The optimal
threshold OPT was associated with a true positive rate of 81%
and a false alarm rate of 12% (Fig. 10).

Random cross-validation revealed a mean AUROC score of 0.91.
Temporal cross-validation indicated a relatively high temporal
10
model transferability with a mean AUROC score of 0.89 for the
across-year validation and 0.90 for the across-month validation
(Fig. 11). While AUROCs were constantly above 0.8 when testing
the model against left-out single months (e.g., June as the only
month with an AUROC < 0.85), larger deviations were observed
for the validation across years. The years 2001 and 2006 stood
out with AUROCs below 0.75, while all remaining years were asso-
ciated with AUROCs above 0.8.

Spatial cross-validation generally confirmed a high spatial
transferability of the results with mean AUROCs of 0.9 (Fig. 12).
The results indicate that the predictive performance is generally
lower in the western region (AUROC of 0.84 in Fig. 12), especially
in its far western part (AUROC of 0.77).

The comparison of the spatial predictions with the IFFI-
independent landslide datasets showed that all observations sur-
passed the lowest threshold (TPR95). Among the seven IRPI
records, five exceeded the optimal threshold. Notably, the 2016
records, which include 55 landslides related to the event in the
Passeier valley, exhibited high probability scores. All these obser-
vations exceeded the OPT threshold, and 87% (n = 48) the highest
threshold (TPR25), ultimately confirming that this event was con-
siderably more intense than the average landslide-triggering event
in South Tyrol.
5.4. Spatial dynamic thresholds

Thresholding of the predictions led to spatially explicit dynamic
landslide thresholds (Figs. 13–15). The hindcasting example
(Fig. 13) depicts the evolution of the severe precipitation event that
triggered more than 50 shallow landslides in the Passeier valley on
the 4th and 5th of August 2016 (red circles in Fig. 13a). Associated
precipitation maps indicate that this landslide event was induced
by exceptionally high and locally restricted short-term precipita-
tion amounts (Fig. 13c) and a moderate quantity of antecedent pre-
cipitation (Fig. 13d). The Supplementary Data (Hindcast.gif)
visualizes the dynamic evolvement of this event at a daily scale,
from 5th of July 2016 to the 15th of August 2016.



Fig. 11. Temporal cross-validation results. The outcomes are based on leave-one-year-out CV (a) and leave-one-month-out CV (b). Mean AUROC scores were 0.89 (a) and 0.90
(b). Bar widths are proportional to the underlying sample size.

Fig. 12. Cross-validation results based on spatial partitioning of training and test sets. Test set AUROCs of the 10 spatial clusters and associated point locations are shown by
different colors (mean AUROC across all clusters: 0.9). Filled circles depict landslide locations, and empty circles depict absence locations, with larger symbols indicating
higher AUROCs. The black borders delineate four additional geographical test zones (i.e., North, East, South, West), and associated test set AUROCs (mean AUROC across the
four geographical zones: 0.9) are indicated in grey.

S. Steger, M. Moreno, A. Crespi et al. Geoscience Frontiers 15 (2024) 101822
Dynamic spatial thresholds were also produced for spatially
uniform hypothetical precipitation amounts by systematically
increasing short-term precipitation amounts for different fixed
antecedent precipitation conditions (Figs. 14 and 15; Scenarios.
gif in the Supplementary Data). These maps allowed investigating
how much precipitation is required to exceed a certain threshold
for a certain area. For instance, in case of higher antecedent precip-
itation P (lower columns in Figs. 14 and 15), less short-term precip-
itation T is required to exceed a specific threshold. The plot
depicting the entire region also indicates that the identical amount
of short- and medium-term precipitation required to reach a
threshold is co-determined by the general dryness/wetness of an
area. For example, the typically drier western regions, character-
ized by lower mean annual precipitation, were observed to surpass
a particular threshold earlier in response to a specific precipitation
level, in contrast to the generally wetter northern and eastern
areas.

A zoom-in to a landslide-prone area in the South (cf. black box
on the top-left of Fig. 14) spatially reflects the modelled relation-
ships. It shows the higher dependency of the predictions on chang-
ing amounts of short-term triggering precipitation (intra-row
comparisons in Fig. 15), compared to varying amounts of prepara-
tory precipitation (intra-column comparisons in Fig. 15). Variation
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within the same plot depicts the influence of local predisposition
on threshold exceedance. All thresholds are exceeded if high pre-
cipitation amounts (e.g., T = 100 mm) spatially fall within particu-
larly susceptible terrain.
6. Discussion

This study presents a novel data-driven approach to derive
dynamic spatial landslide thresholds by integrating a variety of
spatial and dynamic landslide controls. The following discussion
embarks on a comprehensive exploration of the key facets of this
research. It delves first into measures taken to handle data biases
(Section 6.1). Then, important aspects concerning model flexibility,
interpretability and visualization are highlighted (Section 6.2).
Finally, transferability and application possibilities of the novel
approach are discussed (Section 6.3).
6.1. Sampling design and bias handling

Data bias handling was a key consideration in our approach. In
the realm of supervised statistical learning, the phrase ‘‘garbage in,
garbage out” highlights the problem that arises when distorted



Fig. 13. Hindcasting example for a severe landslide event that occurred on the 4th and 5th of August 2016. The spatial thresholds for the 5th of August are shown for the
Passeier valley (a) and for the entire area (b). The 3D map (a) additionally depicts associated landslide observations (red circles) for the section that was most severely hit by
the event. The precipitation maps display the associated short-term (c) and antecedent precipitation amounts (d). The animation in the Supplementary Data (Hindcast.gif)
visualizes the evolvement of this event from July 5 to August 15. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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modelling outcomes result from flawed or erroneous training data.
In machine learning studies, the focus is often on post-data acqui-
sition analysis, and this pattern is also seen in data-driven land-
slide research, where algorithm comparisons take precedence
over evaluating input data quality (Reichenbach et al., 2018).

Landslide data errors that are common for large study sites
(Guzzetti et al., 2012) and can compromise the explanatory power
of a model, regardless of high model performance scores (Steger
et al., 2016b). Therefore, beyond evaluating quantitative perfor-
mance metrics, it is necessary to obtain insights into potential
flaws of the available data and adopt the research design accord-
ingly. For example, to address an underrepresentation of landslide
data in specific areas, some studies restrict the data sampling to
well-investigated terrain, while others employ mixed-effects mod-
elling to isolate bias-effects (Steger et al., 2017; Bornaetxea et al.,
2018; Felsberg et al., 2022). In space–time landslide modelling,
systematic data distortions can affect both the spatial and tempo-
ral dimension. This study tackled this issue by restricting the spa-
tial data sampling to the ESA while potential across-year
inconsistencies in landslide data registration have been isolated
using a dedicated year-specific random effect (YEAR). Fostering
capabilities of GAMM, an additional spatially explicit random
effect (LOC_ID) was used to account for temporal data dependen-
cies arising from taking repeated measures over time at the iden-
tical location (Zuur et al., 2009; Pedersen et al., 2019).
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Another frequently disregarded aspect involves limiting data
sampling to areas and time frames that directly relate to the phe-
nomenon of interest. For instance, sampling landslide absences
within easily classifiable terrain, such as flat areas, or irrelevant
time periods, like dry spells, can lead to a landslide prediction
model that primarily distinguishes between floodplains and hill-
slopes or rainy periods and dry spells, resulting in limited practical
usability (Steger and Glade, 2017). This study addressed this issue
by exclusively sampling data from non-flat terrain and during non-
dry time periods. Also, to effectively capture seasonal effects in
landslide occurrence (Luna and Korup, 2022), particular emphasis
was placed on creating an absence sample that mirrors the actual
distribution of ‘‘wet” days across the year, rather than simply sam-
pling an equal number of absences for each month. During the
analysis, it became evident that in space–time landslide modelling,
rigorous data sampling and bias handling are of great importance.

6.2. Model flexibility, interpretability and visualization

It was aimed to achieve a balance between model flexibility and
interpretability. On one hand, the flexibility provided by the
GAMM was essential for capturing non-linear relationships
(Fig. 9) and for handling hierarchical data structures (Pedersen
et al., 2019; Lin et al., 2021). However, it is important to stress that
highly flexible classification algorithms tend to sacrifice model



Fig. 14. Example of dynamic spatial thresholds based on spatially uniform hypothetical precipitation for South Tyrol. The predictions are shown for low (T: 20 mm; left
column) and high (T: 80 mm, right column) triggering precipitation amounts and for relatively ‘‘dry” (25th percentile of P: 38 mm; top row) and ‘‘wet” (75th percentile of P:
104 mm; bottom row) antecedent conditions. The black box in a indicates the position of the zoom-in in Fig. 15. The animation in the Supplementary Data (Scenarios.gif)
visualizes that in case of higher preparatory precipitation, less short-term precipitation is required to exceed a specific threshold.
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interpretability and limit control in shaping the model at a concep-
tual level, including determining allowed interactions among
terms and the complexity of non-linear effects (Goetz et al.,
2015). Especially in the presence of common landslide data biases,
questioning the reason behind certain modelled relationships is
crucial. The importance of having insights into modelled relation-
ships cannot be overstated as it allows exploring whether the mod-
elled relationships plausibly reflect the actual processes under
investigation or rather data artifacts (Steger et al., 2016b; Bajni
et al., 2023). Once data flaws are addressed to an acceptable level,
model interpretability also becomes useful in identifying factors
that potentially influence landslide occurrence. This becomes par-
ticularly relevant when conveying model outcomes to decision-
makers. Explaining what a model does and why it predicts a speci-
fic pattern can enhance the acceptance of results (Lombardo et al.,
2020; Dahal and Lombardo, 2023).

In the current model setup, dynamic variables emerged as gen-
erally more influential than static variables for predicting landslide
occurrence in space and time (Fig. 8). This underscored the impor-
tance of considering highly dynamic conditions in data-driven
landslide prediction whenever possible. The higher relative vari-
able importance of short-term precipitation compared to prepara-
13
tory precipitation (and mean annual precipitation) is plausible
considering the specific landslide type under examination, namely
shallow phenomena. However, the highest model performance
was obtained by jointly considering static and dynamic variables,
confirming that such models can be improved by simultaneously
accounting for both, spatially varying landslide predisposition
and variables associated to preparatory and triggering factors
(Steger et al., 2023).

In analogy to Collini et al. (2022), our model enabled to capture
and visualize environmental effects on landslide occurrence oper-
ating at various temporal scales. The partial effect plots in Fig. 9
yield valuable insights into the modelled interplay of various envi-
ronmental landslide controls. For example, an increasing amount
of short-term precipitation (T) strongly elevated the probability
of landslide initiation. However, in case of a substantial antecedent
precipitation amounts (P), the MoS is reduced, and a smaller quan-
tity of short-term precipitation is required to exceed a threshold, as
described by Crozier (1989) and Glade et al. (2005) among others.
The timing of precipitation throughout the year further influences
such effects. In the summer season, characterized by dense vegeta-
tion and high evapotranspiration rates, the likelihood of landslides
occurring with a particular precipitation level is lower compared to



Fig. 15. Scenario example for a landslide-prone subarea of South Tyrol. The shown points depict known landslides while the respective color refers to the respective class-
membership at the day of landslide occurrence, i.e., all 12 landslides were triggered above the OPT threshold (blue) while 4 of them also exceeded TPR25 (purple). See also the
animation in the Supplementary Data (Scenarios.gif) for further details. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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the colder and leafless periods (Steger et al., 2023). Static terrain
characteristics also played a role in the model setup. Despite the
circular DOY variable accounting for seasonal variations, it is antic-
ipated that the ability of the model to capture snow melting is lim-
ited. Thus, it is suggested that further model enhancements,
particularly in the context of winter and spring predictions, may
be achieved through the integration of dynamic snow-related vari-
ables (Chleborad et al., 2008; Krøgli et al., 2018).

Steep and unforested terrain, particularlywhen exhibiting a con-
cave shape that tends to accumulate surface water at lower slope
positions, necessitates a comparably low amount of precipitation
to reach a specific threshold. This confirmed the added value of con-
sidering landslide predisposition in the evaluation of landslide-
triggering conditions, especially in areas characterized by varying
ground conditions (Peruccacci et al., 2012; Monsieurs et al.,
2019a; Nocentini et al., 2023). Interestingly, the incorporation of a
spatial proxy accounting for continuous transitions between gener-
ally drier andwetter areas (i.e., mean annual precipitation) revealed
that, for an identical precipitation event, the model predicted ele-
vated landslide probabilities in regions generally characterized by
drier climatic conditions, in contrast to those accustomed to wetter
climates. In accordance with the MoS, the model therefore mimics
that a particular precipitation event in a dry region can exert an
14
exceptional stress, whereas in a typically wetter environment, the
slopes may exhibit higher resilience as they have adjusted to such
conditions (Crozier, 1989). Thus, this study presents quantitative
evidence supporting the concept of landscape equilibrium, under-
scoring the tendency of landforms to establish and sustain balance
with prevalent climatic conditions (Guidicini and Iwasa, 1977;
Renwick, 1992; Aleotti, 2004; Giannecchini, 2006; Giannecchini
et al., 2016; Postance et al., 2018).

The preceding section emphasizes that model interpretability
plays a pivotal role not only in providing insights into potential fac-
tors influencing landslide occurrence, but also for ensuring the
plausibility of results. Disregarding the physical meaningfulness
of modelled relationships may favor severe errors in subsequent
decision-making (Bajni et al., 2023). However, it is also essential
to bear in mind that, despite rigorous efforts to minimize errors
stemming from input data, a data-driven model does only provide
evidence, but cannot prove causation (Steger et al., 2021). Thus,
modelled relationships must be interpreted with this caveat in
mind.

The visualization of final maps is another important aspect that
shapes the usability of the modelling outcomes. Probability-based
landslide prediction maps can be visualized in various ways,
including displaying raw probability scores or using categorization
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methods, like equal intervals, natural breaks or quantiles (Hussin
et al., 2016; Conoscenti et al., 2016). In decision-making, catego-
rized maps are often preferred because they pretend to clearly dif-
ferentiate between various ‘‘danger levels”. Nevertheless, assigning
practical meaning to a class based on e.g., natural breaks can be
challenging. Thus, in the context of spatial planning, classification
schemes relying on the portion of observed landslides falling
within each class have already demonstrated greater practicality
and transparency for end-users (Bell et al., 2013; Petschko et al.,
2014). This research showcases the utility of ROC analysis in link-
ing spatial probabilities with true positive rates and false alarm
rates, metrics that hold particular relevance in landslide early
warning (Leonarduzzi and Molnar, 2020; Stanley et al., 2021). It
was shown how the ROC curve can be used to find a quantitative
threshold (OPT) that balances misclassification rates and optimally
separates rather ‘‘untypical” landslide conditions from rather ‘‘typ-
ical” landslide conditions. For example, if the OPT threshold were
to be employed in a binary decision scenario (e.g., issuing a warn-
ing or not), it can be stated that 81% of recorded landslides were
observed to exceed this cut-point, whereas only 12% of representa-
tive wet periods without landslides surpassed it. Given that the
predictive performance of the model, with a mean AUROC fre-
quently close to 0.9, closely aligns with its fitting performance
(AUROC 0.91), it can reasonably be inferred that these statistics
are likely to hold true for future landslide events. The other cut-
points, TPR95 and TPR25, illustrated how users can define such
thresholds based on their own criteria, such as the portion of land-
slides exceeding a given threshold. This example also exemplified a
well-known limitation when establishing a landslide threshold by
ignoring non-landslide information. Namely, it demonstrated that
aiming for a very high true positive rate (95%) coincides with a
notably high false alarm rate (44%), whereas striving for an excep-
tionally low false alarm rate (0.4%) is associated with a reduced
true positive rate (25%). Consequently, this study advocates for
considering non-landslide events when constructing early warning
levels (Postance et al., 2018; Leonarduzzi and Molnar, 2020).

6.3. Transferability of the approach and application possibilities

Transferability of research is closely linked to the concepts of
generalizability and refers to the degree to which a result can be
utilized in different contexts (Coghlan and Brydon-Miller, 2014).
In data-driven landslide modelling, random cross-validation is
commonly used to test whether a prediction holds true for ran-
domly excluded independent test data. In space–time landslide
modelling, dedicated spatial or temporal cross-validation proce-
dures can be considered as means to identify regions or time units
in which the model deviates most from the average condition. This
in turn can provide further insights into the transferability of the
model and systematic model deviations (Steger et al., 2017). Ran-
dom cross-validation (mean AUROC 0.91) generally confirmed
the high capacity of the model to separate landslide conditions
from non-landslide conditions at hillslope terrain. Month-related
AUROCs were constantly above 0.8, showing a high transferability
of the model across seasons. The performance drop observed for
the years 2001 and 2006 gave rise to further investigations. A clo-
ser look at the associated precipitation amounts showed that those
years were associated with a comparably low number of landslide
observations (2001: 6; 2006: 14) and precipitation amounts (aver-
age T: 15 mm for 2001 and 17 mm for 2006; average P: 77 mm for
2001 and 44 mm for 2006) similar to those observed for an average
non-landslide precipitation event (average T: 12 mm; average P:
75 mm). Thus, the low AUROCs may reflect the limited effective-
ness of precipitation variables to separate presences from absences
during those years, leaving the primary discriminatory power to
the predisposing conditions.
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The methodical approach presented in this research may be
exploited within various landslide applications. One prominent
example is its utilization in territorial early warning (Piciullo
et al., 2018). The versatile approach can also be employed for
‘‘what-if” scenario exploration, which involves making predictions
based on hypothesized precipitation amounts (Fig. 15) or modifica-
tions in other variables, such as investigating the effects of defor-
estation by altering the corresponding forest map. Exploiting
meteorological radar estimates may pave the way for landslide
nowcasting (Guzzetti et al., 2020) while weather forecasts might
be used for landslide forecasting and early warning. In such efforts,
however, it has to be taken care that the precipitation data used for
prediction does not substantially deviate from the precipitation
data used to train the model. Re-calibrating the model or applying
bias-correction procedures to align precipitation data (Fustos-
Toribio et al., 2022) may be necessary in such cases. Using our
approach, the most straightforward way to predict landslide occur-
rence is to evaluate landslide threshold exceedance using hypoth-
esized spatially uniform precipitation amounts. For example, to
determine the exceedance of a landslide threshold two days in
advance, the prediction can be made based on the respective
DOY, observed or estimated cumulative antecedent precipitation
amount over the previous 26 days (e.g., P 100 mm) along with
the precipitation quantity expected for the next two days (e.g., T
80 mm), as exemplified within Figs. 14 and 15.

Beyond early warning, the model can also be employed to ana-
lyze temporal changes in critical landslide conditions over an
extended period. For instance, ongoing research exploits gridded
precipitation data (Crespi et al., 2021) to generate more than
14,000 daily prediction maps from 1980 to the present day to pro-
vide insights into spatio-temporal trends in critical landslide con-
ditions. By exploring summary statistics for each raster cell, it is
also envisaged to create spatially explicit maps that visualize the
recurrence interval of raster cells exceeding certain thresholds. In
this context, a primary advantage of this approach is that the
derived trends are heavily reliant on available historical precipita-
tion data, that might be less influenced by temporal biases com-
pared to long-term records of landslide occurrence. As the model
utilizes daily data, another potential application lies in analyzing
landslide occurrence under climate change by exploiting emission
scenario data (Crozier, 2010). Furthermore, the general methodical
framework may be extended to earthquake-induced slope instabil-
ities by replacing the precipitation variables with those describing
ground motion patterns. The approach may also be utilized to
investigate cascading effects by combining antecedent preparatory
events with subsequent landslide triggers. For instance, an option
would be to investigate landslide occurrence as a cascading effect
of earthquakes followed by rainfall, or vice versa.

While being flexible in terms of the choice of predictor vari-
ables, a key requirement for effectively adopting our approach lies
in the availability of a sufficiently large dataset that reasonably
mimics the real distribution of landsliding over time. To analyze
seasonal effects, for instance, a dataset systematically covering
the entire year is necessary. Thus, seasonal effects may not be cap-
tured adequately when available landslide data pertains only to
single or few triggering events. In summary, the minimum sample
heavily depends on the complexity of the envisaged model, while
different cross-validation procedures (e.g. Steger et al., 2023)
may help identify constellations for which the model systemati-
cally drops in performance.
7. Conclusion

This research introduces a novel data-driven approach for
deriving dynamic, spatially explicit landslide thresholds. It trans-
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lates the Margin of Stability (Fig. 1) into space–time landslide mod-
elling by integrating landslide controls operating at different tem-
poral scales, including static predisposing factors, seasonal effects,
as well as medium-term antecedent and short-term precipitation
conditions. In contrast to the limited number of recently published
space–time landslide models, the approach not only explores the
interplay between static and dynamic landslide controls, but also
counteracts the potential propagation of landslide data bias into
the results. This was accomplished through a meticulous data sam-
pling and mixed-effects modelling. Emphasis was also placed on
generating interpretable outputs through visualizing modelled
relationships and by classifying the dynamic spatial predictions
according to true positive rates and false alarm rates. Application
possibilities are highlighted in a hindcasting context and by gener-
ating predictions for hypothetical scenarios involving increased
precipitation levels. Outside the field of landslide research, this
research may also offer a methodical framework for modelling var-
ious types of natural hazards whose occurrence is determined by
an interplay of predisposing, preparatory, and triggering factors,
such a snow avalanche occurrence or natural wildfire ignition.
Within the currently trending domain of data-driven space–time
landslide modelling, we promote the prioritization of input data
error management, model interpretability, geomorphic plausibil-
ity, and result applicability, while avoiding an excessive focus on
algorithm comparisons.
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