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torial Acoustic Species Estimation using Acoustic Sensor Networks
onhard Brüggemann, Daniel Otten, Frederik Sachser, Nils Aschenbruck

Development of TASE: We formalize an automated Territorial Acoustic Species Estim
algorithm called TASE.

Application of TASE on birds: We apply TASE on birds using a state-of-the-art acoustic sp
classifier.

Proof-of-Concept-Evaluation in bird acoustics: We apply TASE in a 12 hectare real-
deployment and prove that it works on par with expert’s field monitoring methods.

Publication of TASE-ASNet: We publish and share the first cohesive acoustic dataset from
deployment, including field monitoring results, as Open Data.
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Territorial Acoustic Species Estimation using Acoustic Sensor Networks
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act

ate biodiversity assessment is fundamental for effective conservation management and env
l policy-making. However, monitoring local species populations is time-consuming, as ex
ver only one limited area at a time and are also prone to errors due to their varying know
perience. Advances in low-cost autonomous recording units and AI-based classifiers offer
or species monitoring. However, while helpful in identifying species, current tools for aco
s monitoring fall short in providing data on local populations. This limitation emphasize
d for more sophisticated methods, as uncertainties in estimating species populations can
sleading conclusions and misclassification of conservation statuses. In this work, we t
cant step towards more sophisticated monitoring by presenting a Territorial Acoustic Sp
ation approach, called TASE, to extract spatial, territorial patterns of species using aco
networks, allowing the estimation of territorial individuals of a species. It requires a

ed sensor network and exploits the characteristic spatial distribution of territorial species
lize TASE, apply it to bird acoustics, and share a proof-of-concept evaluation in a real-
ment in a nature reserve, deploying 29 devices over 12 hectares. We show that it wor
ith the time-consuming practice applied by bird experts and can provide novel insights int
l use of sound-producing territorial species.

rds: acoustic monitoring, species abundance, birds, BirdNET, AudioMoth, TASE

troduction

curate information about local species populations is crucial for assessing species’ local sur
lso serves as an early warning system for environmental and ecosystem health in a
. This knowledge can lead us to take proactive measures for species survival and environm
vation, while uncertainties can lead to deceptive conclusions or improperly classifying sp
vation statuses. Acquiring data about species populations is time-consuming as each site
visited multiple times by experts and is linked to various issues, ranging from disturbanc
ecies to methodological bias due to varying knowledge and experience (e.g., [43, pp. 6
p. 26-68]).
ssive acoustic monitoring (PAM) offers new insights into ecological questions by depl
omous acoustic recorders (ARUs) in natural environments [42]. Tools can effectively s
-producing species and transform monitoring practices. Unlike human observers, PAM
sly collects field data without any disturbance of the environment [1]. While manual
is is impractical due to the vast amounts of data, recent advances in classification models
pen-Source classifier BirdNET[27] for acoustic bird species identification, provide autom
sing capabilities. Today, we are reaching more and more a state where acoustic monit
s into a suitable complement or alternative to traditional field surveys [38].
isting classifiers are effective at detecting species and inferring occupancy status and are e
used in nature conservation, ecological sciences, and monitoring programs worldwide. How
ists urgently search for species abundances, i.e., to count the individuals of each species
ing location or multiple recording locations. To this date, no automated approaches

their application in practice. Existing studies focus on identifying individuals in recordings
on unique acoustic features, a process known as Individual Acoustic Monitoring (IAM). This

t submitted to Ecological Informatics June 12, 2025
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entifying clusters to estimate the number of individuals. For various species, manual or
atic methods can extract individual traits from vocalizations [28]. However, research
s a single species, as in [17, 35] using manual methods, apply techniques like Gaussian mi
s, hidden Markov models [2, 40], support vector machines [12], or neural networks [18]. W
ng on specific species can improve accuracy, it limits broader adoption and requires metho
ent or adaptation for each new species or environment. Some multi-species approaches,

], rely on expert-driven steps, like separating foreground and background sounds, whic
nging in noisy environments with overlapping vocalizations. According to [28], IAM perf
under complex conditions and mainly focuses on species with simple vocalizations.

ntal factors, including wind, water, and overlapping sounds, mask individual vocaliza
ng transferability and generalizability [28]. Key challenges include determining which aco
es best identify individuals and developing methods without expert input. Finally, wi
dual identification, automated localization of individuals remains infeasible [41]. Above’s
s on IAM does not apply to methods that rely on species classification. A promising app
, 34] uses counts of species vocalizations to infer animal density. However, its application
on laborious expert validation of sound files.
other approach to measure individuals is presented by [22, 47]. They assume a species clas
ng it can identify merely species in a recording, but not individuals, so they always assu
one organism. If multiple ARUs are deployed whose detection ranges overlap, they an
atial coverage from which they derive the maximum number of simultaneously voca
duals. Their approach has a critical challenge for real-world deployments: it is base
riori known detection range of the devices, which is, in practice, highly dynamic. Va
s affect it, such as the recording equipment, specifics, placement, interfering acoustics
species, and environmental noise such as wind [50]. Furthermore, the algorithm pres
ll sources are consistently active within a given time window. However, birds avoid si
aneously, leading to undercounting as not all individuals are vocally active simultaneo
is proven, e.g., for birds [14]. While their algorithm is not applicable in natural environm
rs an intriguing approach by connecting to advancements in automated species classific
ffordable ARUs, which can form an acoustic sensor network (ASN).
is paper presents TASE (Territorial Acoustic Species Extraction), an algorithm design
te species populations in acoustic monitoring. Given an ASN that gathers data from a siz
ve area, we focus on animal species that produce sound to exclude conspecifics from
ry, creating peculiar spatial patterns. By applying a state-of-the-art species classifier on
n our ASN, we derive the same peculiar spatial pattern per species, the territories. Given
ossible to quantify positive or negative trends in animal populations. That is especially tru
irds because the number of territories equals the number of males and can be used as a p
imal abundance. Such an ASN gathers huge amounts of data, making automated proce
atory. Our main contributions are as follows:

Development of TASE: We formalize an automated Territorial Acoustic Species Estim
algorithm called TASE.

Application of TASE on birds: We use a state-of-the-art acoustic bird species classifier.

Proof-of-Concept-Evaluation in bird acoustics: We apply TASE in a 12-hectare real-
deployment and prove that it works on par with expert field monitoring methods.

Publication of TASE-ASNet: We publish and share our deployment’s first cohesive aco
dataset, including field monitoring results, as Open Data.

lated Work
the best of our knowledge, no approaches in computer science follow our approach of capturing
s’ territorial spatial patterns based on their acoustic sounds as a proxy for measuring species

3



Journal Pre-proof

abundance. Our algorithm leverages species territoriality. Thus, we provide an overview of the
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riality of sound-producing species to understand the biological aspect of our approach b

orial Behavior of Species

r approach incorporates species’ territorial behavior, so we first provide some backgro
broader scale, many factors, including the quality and availability of habitat, connect
tition, and behavioral characteristics of the target species, form the distribution and occup
ns of organisms. An individual’s home range describes the whole area that is regularly
ll all its requirements, whereas a territory is a defended area within the home range.
rritorial behavior in birds is well-studied [36], ranging from small nesting territories in co
s (e.g., Barn Swallow Hirundo rustica) to feeding territories maintained by European R
cus rubecula in winter. Many songbirds defend territories during the breeding seaso
g, nesting, and feeding, using species-specific songs to repel conspecifics. Territoriality
esearched for over a century [25], aiding abundance estimates through expert field monito
ugh ARUs now facilitate studies on phenology, species composition, and large-scale distribu
, 44], their focus remains on species identification rather than estimating species abunda
territorial species, individuals spatially segregate and defend areas against conspecifics to s
or exclusive resources [39]. Their vocal interactions often reflect the spatial arrangeme
ries and potential breeding pairs, making them valuable for bioacoustic analysis. Territor
een examined in nearly all vertebrates [31], though its definitions vary [32]. Here, we
nd-producing organisms that acoustically assert exclusive space use. For our approach
ing territorial characteristics are key:

Distribution of territories is dynamic: In detail, the territoriality of a species is not a s
but a complex dynamical phenomenon. The territory’s boundaries are not necessarily
and can overlap, resulting in interactions on an individual level [26, pp. 716-718]. Additio
individuals might die or lose their territory as conspecifics take over.

Territories differ in sizes: Individuals of the same species occupy territories of different
as these vary, for example, with habitat quality and conspecific density [16]. Consequ
population densities of species differ, and their transferability to other areas is limited.
to a cap on expenses, traditional monitoring programs rely on data from only a few site v
The density or abundance of a species needs to be calculated without precise informatio
territorial extends, thus indirectly assuming a uniform distribution of equal-sized territor

Territories are not constantly proclaimed: Not all species show territorial behavior const
e.g., many birds only during mating season [6, pp.274-275]. Many species show species-sp
vocalization activity patterns, leading to individuals proclaiming their territory only seaso
or at different daytimes, e.g., in the morning and evening [46].

rmalization

fore defining the problem our approach solves, we outline the real-world deployment o
We then briefly examine the dataset and eventually formalize the challenge.

eployment

large-scale deployment of 29 ARU (AudioMoth v1.2) devices was conducted on June 3,
4:00 to 10:00, resulting in six continuous soundscapes (174 hours total). The deploy
ed in a 12-hectare nature reserve in North Rhine-Westphalia, Germany, home to approxim
d species, alongside human-made sounds from a nearby street and farm. The area fea
e habitats, including forests, hedges, ponds, heather fields, and meadows, creating a com

ic environment with potential interference from mammals and insects.

4
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(a) Deployment area, the icons refer to the ARUs

(b) Exemplary Scene within the forest

(c) ARU in its waterproof case

Figure 1: Deployment site and recording devices

sed on preliminary tests and insights from bird experts, ARUs were strategically posit
ensely - typically just 25 to 50 meters apart within forested areas and no more than 100 m
in open spaces. The intentional closure and atypical spacing of recording units, e.g.,
ng on detecting species presence, were deliberately implemented to ensure substantial ov
en adjacent units, thereby providing continuous acoustic coverage essential to our appr
nchronized all recorders with the AudioMoth app. Although the clocks still experience m
12-hour bench tests show a maximum deviation of about 400 ms, which is negligible fo
ses. Because we do not attempt fine-scale localization, but instead make a crude estim
on every node whose 3-second classification windows overlap, this drift remains comfor
that 3-second window.
e devices were configured with firmware version 1.7.1, a 48kHz sampling frequency, 1
, microphone gain of 4, and a recording duration of 3595s with a 5s sleep interval. Micro
ollected at the end of the deployment.

roblem Definition

fore formalizing the problem, our approach will solve some background. When deploying
es, we acquire a set of soundscapes that capture species’ territorial vocalizations. Apply
s classifier to these recordings yields unitless classification scores (ranging from 0 to 1) for
fiable species, e.g. [51], in the following referred to as confidence scores. A score of 0 indi
ecies is not detected, while a score of 1 indicates a strong species detection. Across distrib
in an ASN, this generates spatially distributed confidence scores for each species. A
s vocalizes, its signal propagates to neighboring nodes, causing peculiar spatial patterns i
ence scores. These confidence scores comprise the territoriality of sound-producing sp
o territoriality, species remain within a specific area. Over time, these areas consist
igher confidence scores, indicating species territories that serve as effective approximation
s abundance.
g. 2 illustrates confidence score sets over time using bird data from a real deployment, r
g a small subset of our dataset (see Sec. 3.1 for details). Each circle represents a reco
colored by the classifier’s confidence score of identifying the Common Redstart Phoeni
icurus. The recordings were analyzed with BirdNET v2.4 [27], providing confidence scor

hree-second window over ten seconds. During this time, confidence scores fluctuate with bird

5
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(c) Time: 4:15:02 - 4:15:05
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(f) Time: 4:15:05 - 4:15:08
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(g) Time: 4:15:06 - 4:15:09
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(h) Time: 4:15:07 - 4:15

2: Schematic of a real ASN for birds. BirdNET identifies Common Redstart Phoenicurus phoenicurus on
, using a sensitivity of 1.5, 2-second overlap, and a minimum threshold of 0.0.

y. One bird is active in Figs. 2a and 2b in the top right corner, resulting in high confid
. Then, it is silent in Figs. 2c to 2f, and active again in Figs. 2g and 2h. Similarly, an
n the bottom right is initially inactive, vocalizes, and then becomes silent. A third Com
art in the west causes high confidence scores at neighboring nodes. Some nodes, such a
node at the top in Fig. 2b, show high confidence scores while their neighbors do not, p
indicating false positives. This is due to the inherent difficulty of acoustic species classifica
models may mistakenly detect patterns that resemble a species even when it’s not pre
ssue arises from classification errors inherent in the AI model. Therefore, it is crucial to e
ubsequent processing steps of finding territories mitigate these errors to prevent inacc
s. Our evaluation (see Sec. 6) demonstrates that our algorithm effectively copes with
cation errors.

l Definitions

ter the informal introduction of the problem we will solve in this paper, we now prov
l definition of the problem. The classifier comprises several parameters denoted as c. Ov
assifier is a function that takes in a sound sample beginning at tstart and ending at tend
ts a vector of confidence scores. The vector consists of s entries, each referring to the pre
articular species. In short, the classifier can be written as

Fc : [tstart, tend] → [0, 1]s.

taining the confidence scores that a certain species is present at a given time point m i
necessitates a shifting window. Let w ∈ N be the size of that time window, with the
w being Wm := [m,m+w] where m ∈ {0, 1, . . . , d} and d being the length of the audio. M
me window m in the audio gives a set of sliding windows W := {W0, . . . ,Wd−w}. Note
ws with a starting point m > d− w exceed the audio duration d. By sliding the time int
he full audio duration, we can identify the presence of a species at a given point in the a
ven an acoustic sensor deployment, we have a set of recorders (nodes) V = {v0, v1, . .
ell-defined locations and well-synchronized timing, ensuring time-synchronized recordings

city, we assume continuous acoustic recordings and equal recording duration d for all nodes.

6
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t applies the classifier Fc to all nodes in V over this time interval:

Gc : V ×Wm → {Fc(Wm)}n = [0, 1]s×n

ing this function on every time window yields the following data:

Gc(V,W ) =
⋃

[ti,tj ]∈W

⋃

v∈V
{Gc(v, [ti, tj])}

w that we have formulated the input data, we still need to define the target of our problem
s processed by the classifier originate from different territorial individuals. Let b := {b1, . .
e that set of individuals. Given the input data Gc(V,W ), the target is to obtain the numb
ries k.

rritorial Acoustic Species Estimation (TASE)

r Territorial Acoustic Species Estimator, called TASE, aims to solve this challenge. We
ate our requirements, formalize the workflow, and discuss its complexity.

equirements
e algorithm is based on the assumptions stated below. These simplifications are nece
developing this cross-domain algorithm incorporating knowledge from species-related res
ec. 2) in which territorial individuals might show complex behavior that is difficult to m
me-synchronized Recordings: As defined, we require a deployment in which all n
their acoustic surroundings simultaneously, assuring that any post-processing refers t

moment. That can be fulfilled through a base station connecting and acquiring data fro
. The node’s precise synchronization can be assured, e.g., by GPS1.
assifier’s confidence score relates to exactly one source: As already stated, autom
dual identification is not possible yet (see Sec. 1), and acoustic species classifiers are only ca
ecting a species. Thus, we assume that one individual causes a classifier’s confidence sco
ies.
stant-dependent decline of Classifier’s confidence scores: When a sound source
al, the node nearest to the source has higher classifier confidence scores than more di
. This was shown by [15, 37]. For simplicity, we assume that Gc, the input set containin
s confidence scores for all nodes is monotonically decreasing with increasing Euclidean dis
en the sound source bi and the node v ∈ V . With increasing distance, the species confid
declines, and it becomes more likely to produce false positives, increasing the risk of ind
in further processing.
de placement: At least two devices record each possible source location in the deploy
so-called 2-coverage). Thus, the node placement is denser than the territories’ distribu
ing in nodes between two territories.

oncept
l requirements ensure that there is always an intermediate node between two territories.
distance-dependent decrease in classifier confidence scores, nodes closest to a vocalizing s
higher confidence scores than intermediate nodes. Consequently, if neighboring nodes
confidence scores than an intermediate node, we can spatially separate these nodes into dis
s corresponding to individual vocal sources. This pattern enables effective identification
tion of simultaneous vocalizations. By intersecting classification data from multiple reco
s over long periods, we identify nodes consistently recording the same individual stayi
c areas. Thus, we acquire a spatio-temporal point cloud that effectively captures terri
l patterns.
ps://s.gwdg.de/wjuNOL, last access: 17th May. ’25
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(b) Triangulated, weighted, directed graph
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TS 1
TS 2
TS 3

Part of multiple TS
Centroid of TS
Not assigned to TS

(c) TS including their weighted centroids

4: Illustration of TASE’s steps step 1 to 4 from the real-world deployment (see Sec. 5.2). Weights are w
ng zero.

lgorithm

SE comprises five steps. First, we transform the sensor network into a graph. Secon
weights to the nodes. In the third step, the graph is divided into subgraphs referri

duals. The first three steps are depicted in Fig. 4. The steps 2 and 3 are repeated for
cation period, and lastly, in steps four and five, merged to deduce frequently occupied
rritories (exemplarily visualized in Fig. 5).

Transfer the Deployment into a Graph

first, the deployment area is split into regions closest to each node. This is done by cre
noi diagram, also known as Dirichlet tessellation or Thiessen polygons [30]. As the clas
otonously decreasing with respect to the distance, we can assign a sound source directly
s the source’s signal propagates into neighboring Voronoi cells, other nodes will record

fy it. To model this relation, we connect two nodes via an edge if the corresponding Vo
re neighboring. If the Voronoi cell of two nodes share a common border but the node
sonably far away, we remove this edge. This comes to hand if the distance is bigger th
s’ maximum known territory size.

re formally, we build the directed Delaunay-triangulated graph G(V,E) where V = {v1, ..., vn}
set of nodes. The nodes are projected into a 2D plane, e.g., an UTM projected coordinate
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ean plane, called sites, the Voronoi cell V or(pi) corresponding to a site pi is the set
x in the plane such that the distance from x to pi is less than or equal to the dis

x to any other site pj (for all j ̸= i). Let d(x, pi) denote the Euclidean distance bet
int x and the site pi. The set of edges E contains all edges between adjacent Voronoi
u, v) ∈ E, if u, v ∈ V and V or(u) is adjacent to V or(v) and d(u, v) ≤ dmax with dmax be
um reasonable distance.

Apply Weights to V and add Direction to Edges in E

r clarity, we focus on one species s and one-time window Wm throughout steps two to t
generating the Delaunay-triangulated graph, we add the classifier’s confidence score of
w Wm to each node. Furthermore, we indicate the direction in which confidence scores bet
decline by assigning a direction to each edge. An edge between two nodes always p
he node with a higher confidence score to the node with a lower confidence score. Form
vi, vj) ∈ E, the edge points from vi to vj if and only if w(vi) ≥ w(vj).
e core idea behind this can be summarized as follows: Given that two sources emit a s
aneously at some distance, the recording nodes between them should have only incoming
o outgoing edges, thus separating both sources. We denote this characteristic as terri
ation feature (see Fig. 3): Given the weighted, directed Delaunay-triangulated graph
, sources s0 and s1 of the same species, and a confidence score function Fc that is monoton
sing with distance, a node v̄ ∈ V where d(v̄, s0) ≈ d(v̄, s1) will have no or a low number out
Outgoing edges might occur, e.g., if neighboring nodes have identical confidence scores.

Detecting Territory Subgraphs

design, the underlying directed graph with its nodes’ weights can exploit the territoria
n feature. Connected areas in the graph belonging to the same individual are referred
ory Subgraphs (TS). Formally, they are constructed as follows:
rst, the node with the highest detection confidence score is marked as the root node o
ry. Using a breadth-first search (BFS), we add neighboring nodes whose confidence sc
nd likely caused by the same sound source. The BFS ends if and only if a node with
ing edges is reached. These border nodes mark the boundary between two TS. Once the
ates, all nodes and edges added to the TS are removed, except for the border nodes.
ure is then repeated for the nodes not included in the previous TS, starting with the
he remaining highest confidence score, followed by the next highest, and so on. Event
aph is split into multiple TS, each representing a different individual. Some nodes, how
n unassigned because they do not meet the root-node criteria or the criteria to be part
etecting all TS can be efficiently implemented by first sorting the root nodes R accordi
eights. Then, we perform BFS and remove all nodes from G and R that are part of th
e with things like misclassifications, we added some extra rules.
reshold for a subgraphs root nodes R: The higher the classifier’s confidence score
the distance to the sources, and the less likely false positives are. Thus, we define a thre
oldR for all nodes v ∈ R such that w(v) ≥ thresholdR. In other words, if the confidence
ed by a certain node is below that threshold, it is not selected as a root node.
reshold for a cluster’s border-node: As with increasing distance the likelihood of

ves increase, also a threshold for the border-nodes is set. We define thresholdB for
(v) ≈ 0 : w(v) ≥ thresholdB.
t maximum distance from root to border-nodes: We define a maximum distance
e r ∈ R to a border-node, depending on the territory size of the species. This criterion c
lized as ∀v ∈ V \ {r}, d(r, v) ≤ thresholdT .

Derive Representatives for Subgraphs belonging to territorial Individuals
e to the local movement of the territorial individuals, the TS differs for each time window Wm.
fore, we need to merge the information from all TS to obtain an overview of the territories. To
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(a) Step 4: Calculate spatio-temporal point cloud
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(b) Step 5: Analyze density pattern for territoriality

5: Exemplary visualization of TASE step 4 and 5 referring to species Blackcap Sylvia atricapilla in the d
see Sec. 3.1)

e this, a representative location for each subgraph is calculated by the centroid of the n
ns weighted by their classifier’s confidence score. Eventually, we acquire a spatio-tem
cloud, with high point densities in the territories’ areas. It can be visualized, e.g., by a k
y estimation.

omplexity

e complexity of the algorithm is made up by the complexity of every single step. The
onsists of the Delaunay Triangulation for a set of nodes V = {v0, . . . , vn} to get the edg
en adjacent Voronoi cells. The complexity of this step is O(V log(V )) [30]. Second, the we
plied, and the graph is directed. This can be done in O (E). Finding the subgraphs root n
O (V log(V )), the BFS needs O (V + E) steps, and removing nodes from a territorial subg
the root nodes requires O (V ). At most the whole graph belongs to one territory subg
finding the center is done in O (V ). Applying above to all time windows W , step o
ave a complexity of O (V log(V )) +O(W · (E + V log(V ))). As our algorithm uses a Dela
ulated graph, which is a specific kind of planar graph, we know that E = O(V ). By substit
cond term, we can simplify to O (V log(V )) +O(W · V log(V ))) ≈ O(W · V · log(V )).

plying TASE on Birds

e presented the general approach, which is now applied to birds due to their territorial beh
und-producing capabilities. Furthermore, they are well-researched species, acoustically
e by today’s AI-based species classifiers, and serve as good indicators of environmental h
cosystem changes, existing almost everywhere on Earth (e.g., [19]). However, when app
to birds, additional challenges arise from the increased presence of overlapping sounds, su
rom multiple individuals or background noise from other species. These interferences are
unced in avian soundscapes, particularly during events like the dawn chorus, where voc
overlap frequently. Consequently, we will adapt our algorithm to address these complex
g it well-suited for avian soundscapes.
e to its consistent and reliable performance [21, 29], as well as its Open-Source availabilit
hosen to focus on the BirdNET classifier [27]. BirdNET is applied on the recordings from

ment described in Sec. 3.1. Note that ARUs were not acoustically calibrated, for two reasons.
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modate rather than eliminate. Second, calibrating dozens of recorders in remote, heterogen
ts is logistically unrealistic and site-specific. To mitigate the resulting variation in Bird
ence scores, we introduce the thresholdδ in the next section. However, our approach doe
lely on this threshold. The ARUs are densely spaced and record continuously, so an erron
cation on one unit is usually countered by the thresholdR for the root-nodes and the hi
ence detections from neighbouring units when a bird vocalizes. This redundancy keeps o
ion reliability high, as confirmed by our results.
SE requires, as stated in Sec. 4.1, the species classifier requires its confidence scores to
d to the distance between a recording device and a sound source in a monotone relatio
llowing section, we examine whether this is true for BirdNET and assign values to the T
eter defined above.

Table 1: Correlation between distance and confidence

sensitivity1

species referencedbA 0.50 0.75 1.00 1.25 1.50

T. philomelos 100 -0.47 -0.48 -0.48 -0.49 -0.50
F. coelebs 92 -0.52 -0.53 -0.54 -0.55 -0.55
L. megarhynchos 86 -0.51 -0.52 -0.53 -0.53 -0.53
L. megarhynchos 75 -0.50 -0.51 -0.52 -0.53 -0.53
R. regulus 74 -0.70 -0.71 -0.73 -0.74 -0.75

1 sensitivity refers to BirdNET’s configuration parameter, not the machine-learning evaluation metric
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Figure 6: Standard deviation of BirdNET’s confidences per species

istant-dependent Decline of BirdNET’s Confidences

correlation has already been documented for bird classifiers in literature, e.g., [15], and
ssifier BirdNET we use [37]. However, the latter does not focus on European species but
can species, and it does not mention the BirdNET model v2.4 or consider different con
s. We wanted to verify this for typical European species and gain more insights into how
ence scores change depending on different values for configuration parameter sensitivity.
eter is crucial, affecting the gradient of sigmoid-scaled activity function [27] and is mean
to have a great impact on the classifier’s performance according to [20]. It has not

ned regarding the distance yet.
a deployment from 16th to 19th December 2019, we acquired real acoustic data with an
moth v.1.2 [23]. We placed the ARU in a straight line from the speaker device at 1m
10m up to 100m. At each distance, we replayed four common European species in rea
tudes, referring to the measurements of [7, 9]. The audio chunks have manually been extr

assified separately. As the recordings per distance have been made one after the other, the noise
terference vary due to human-made sounds in the far distance. Audio chunks with extremely
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ing in a different number of samples per distance.
ble 1 lists the correlation coefficients between BirdNET confidence and distance for all sp
orrelations are moderate to strong, so confidence does not decline in a perfectly smooth fa
ance grows. The negative values refer to that decline. Raising the sensitivity level increase
ients to 0.05, making the distance effect slightly clearer. This is likely caused by variatio
ence score values at different distances. To compensate for the classifier’s variation, we m
as follows:
After building the Delaunay-triangualted graph, we add bidirectional edges between n
weights have a difference in confidence score of less than Eδ to each other. For G = (
ges E become: ∀e = (vi, vj) ∈ E e points from vi to vj if and only if |w(vi)− w(vj)| ≤ E
Given such a modified Delaunay-triangulated graph as above and an adverse distributi
ts, separating two simultaneous vocalizations becomes more erroneous. In order to pr
we have added new criteria. For a territorial subgraph TS = (GTS, ETS), the weights
e or remain within a range from the root node to the border nodes. Every node (u, v) ∈
TSδ ≥ w(v) with TSδ being a threshold for the confidence score difference.

order to derive reasonable values for Eδ and TSδ, we examined for our deployment the stan
ions of the species’ confidences more closely. A significant, species-independent correl
en the distance and the confidence variations is not observed. Instead, we found a correl
en sensitivity and standard deviation, which is visualized in Fig. 6. With increasing sensit
andard deviation declines notably. Given that observation, for different classifier sensitiv
oice for Eδ and TSδ differs, reaching about 0.2 for a sensitivity of 1.5.

Table 2: Summary of TASE’ parameters in the evaluation

Classifier
sensitivity 1.5
overlap 2
confidence threshold 0.0
Step 1: Building graph
dmax [m] 100
Step 2: Add Weights and direction to graph
Eδ 0.2

Step 3: Detecting territorial subgraphs
thresholdR 0.5, 0.6, 0.7, 0.8
thresholdB 0.1
thresholdT species-dependent
TSδ 0.2

Step 4: Derive territorial subgraphs’ representatives
Method weighted centroid

arametrization

SE uses a set of parameters across four steps to estimate territorial individuals, with two
parameters for bird applications. Table 2 summarizes these parameters used in our evalu
. 6. However, we emphasize the urgent need for clear guidelines in acoustic monitoring, as
current knowledge is still based on practical experience rather than standardized proto
arametrization should, therefore, be seen as a starting point.
ep 1: When building the Delaunay-triangulated graph, we set the maximum euclidean dis
en two nodes dmax to 100 meters, because it is two times the recommended distance that
s cover [49, pp. 49].
ep 2: As shown in the previous section, we use a classifier’s configuration with a sensitiv
it shows the highest correlation. Furthermore, we set Eδ and TSδ to 0.2 based on our pre
rements.
ep 3: When identifying territorial subgraphs, we evaluate thresholdR values of 0.5, 0.6, 0.7
odes exceeding thresholdR are designated as roots of TS. For boundary nodes (thresholdB
rdNet’s default confidence threshold of 0.1. The maximum distance from a root to a boun

thresholdT ) varies by species based on territory size and environment, requiring input from a
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species expert. We set thresholdT , the maximal distance between TS root to a border node, using
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erage bird density (breeding pairs per 10 hectares) from [4], assuming circular territorie
g thresholdT equal to that radius.

Table 3: Comparison of the expert’s ground truth and expert’s interpretation of TASE’ KDEs

pecies Ground Truth thresholdR Reference

0.5 0.6 0.7 0.8

nthus trivialis 1 1 1 1 1 Fig. 12

erthia brachydactyla 4 4 4 4 4 Fig. A.1

ringilla coelebs 4 4 4 4 4 Fig. A.2

uscicapa striata 2 - 3 2-3 2-3 2-3 2-3 Fig. A.3

hoenicurus phoenicurus 4 - 5 4-5 4-5 4-5 4-5 Fig. A.4

hylloscopus collybita 3 - 4 3 3 3 3 Fig. A.5

ylvia borin 1 - 2 1 - 2 1 - 2 1-2 1-2 Fig. A.6

ylvia atricapilla 4 4-5 4-5 4-5 4-5 Fig. 7

roglodytes troglodytes 2 2 2 2 2 Fig. 8

rithacus rubecula 4 - 5 3 - 4a 3 - 4a 3- 4a 3- 4a Fig. 10

urdus philomelos 1 1b 1b 1b 1b Fig. 11

a Overlapping territories, b Extraordinary large territory

aluation

e apply TASE to a real-world dataset (cf. Sec. 3.1). The ground truth was provided
xpert who systematically traversed the field on the same day where the recording was t
ing all observed birds on a map, following a methodology similar to the monitoring me
as territorial mapping [49, pp.47-59]. The main difference is that we carried out mu

urveys within the same day over six hours rather than over a longer period. By repea
cting the area — and given that the target species are territorial and highly vocal d
eeding season — this time-intensive approach allows us to identify stable spatial pat
orrespond to territory locations, even within a short timeframe. Similar methods have
d, e.g., in [3]. In addition to the surveys conducted on the recording day, field surveys
erformed on prior days, which helped in the interpretation of the same-day observations
standing the spatial distribution of territorial individuals, the expert assesses the numb
ries for that day, providing a ground truth. First, we qualitatively assess the similaritie
nces between the spatial distributions identified by TASE and the expert’s assessment. I
step, we analyze cases where TASE performs poorly, highlighting its current limitation

omparing TASE to Expert’s assessment

hen applied to a species, TASE generates a spatio-temporal point cloud that implicitly cap
rds’ sound-producing and territorial behavior. We anticipate the highest point density w
rial areas, representing the spatial extent and intensity of species activity. Kernel De
ation (KDE) is particularly well-suited for analyzing these patterns. It smooths the dis
into a continuous density surface, highlighting areas of high intensity while preservin
l structure of territories. We applied KDE (with a bandwidth parameter of 0.15) to e
s, using this as a baseline within our parameter space (cf. Sec. 5.2), and incorporated e
ments represented as circles. These circles approximate the actual territorial areas, whic

ntly dynamic and lack fixed boundaries (cf. Sec. 2).
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(b) thresholdR: 0.6
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7: Kernel density estimate (green) of spatio-temporal detections for the Blackcap Sylvia atricapilla gen
E, with the expert’s territorial assessment shown by the colored circles.
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8: Kernel density estimate (green) of spatio-temporal detections for Eurasian Wren Troglodytes troglodyte
with the expert’s territorial assessment shown by the colored circles.

e compare the expert assessment of territories based on field monitoring data and KDE an
. 3. Assessing the number of territories from the KDEs involved a visual interpretation o
t-density areas and their distance from each other. The expert analysis of KDE data fo
ntifying high-density areas and evaluating their spatial distance. If the expert’s assessme
fits exactly with the ground truth, we color the table’s cell green. If it fits partly, we
ge, and if not, we color it red. The initial analysis demonstrates that the proposed app
vely aligns KDE assessments with ground-truth territory counts in most cases, undersc
ethod’s effectiveness. Although lowering thresholdR predictably reduces the number of p
erall pattern remains largely intact, yielding identical estimates across all species. Th
source of error appears to be overlapping territories, particularly for the species Euro
Erithacus rubecula, as the density maps reveal broad areas of activity rather than dis
ted spots. However, this discrepancy was limited to one or two territories, confirming tha
l approach remains highly effective across most species and scenarios. From an ornitholo
ctive, missing a single territory is usually minor, especially in large populations. For ra
gered species, however, it can significantly affect conservation decisions. Such miscount
ique to our method and are also common in traditional surveys. Fortunately, this issue
ply to the species considered in our study.

nfluence of thresholdR in KDE Interpretation

e following sections examine the relationship between KDE interpretation and the impa
reshold thresholdR. Starting with the Eurasian Sylvia atricapilla in Fig. 7, we initially ob
istinct high-density clusters, separated by areas of lower density. These four clusters
with expert assessments. However, when we vary the threshold for TS roots threshold
from Figs. 7a to 7d, the high-density area changes in form slightly. Note that with incre
oldR, the number of points declines from 6835 to only 1287. This reduction results from
ction between the classifier’s detection ability and TASE’s assumption that any classific
threshold is correct.
R

is important to note that TASE detects individuals only when vocalizing. Since singing typically
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rm a cohesive area. Temporal or spatial gaps between vocalizations and a lack of obs
ent can cause what would otherwise appear as a contiguous territory to break into se
d ”hotspots” of high-density activity. Examples of these separated hotspots are highli
range arrows in Fig. 7. In Sec. 7.1, we further discuss how our methodology may also contr
ing such fragmented areas.
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(b) 5:30:00 to 6:00:00
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(f) 6:30:00 to 7:00:00
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(g) 6:45:00 to 7:15:00
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9: Kernel density estimate (green) of spatio-temporal detections for the Eurasian Wren Troglodytes trogl
ASE processing, with the expert’s territorial assessment shown by the colored circles.

ependent of the thresholdR, when territories overlap in space or time, high-density area
e large, as shown for the Eurasian Wren Troglodytes troglodytes in Fig. 8. Experts ide
istinct territories based on their knowledge of the species, but at first glance, the density
suggests a single, larger territory. These distortions become visible by analyzing shorter

als, as illustrated in Fig. 9. For the Eurasian Wren, 30-minute segments with 15-minute
veal multiple high-density clusters, confirming that singing points are spaced apart rather
g a single extensive area. Over time, the distance between these clusters decreases, reflect
teristic behavior known as counter-singing, where individuals advertise their territory bo
oward neighboring birds. As a result, the gaps between territories gradually close, mak
singly difficult to visually distinguish individual territories over long periods and highlig
ucial role of expert knowledge.
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(b) thresholdR: 0.6
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(c) thresholdR: 0.7
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10: Kernel density estimate (green) of spatio-temporal detections for European Robin Erithacus rubecula
with the expert’s territorial assessment shown by the colored circles.
ducing the time spans when visually interpreting high-density areas also has limitations, par-
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Erithacus rubecula in Fig. 10. The three western territories merge into a single region wi
ow-density borders, aligning with the expert-identified territories (red circles) but highlig
ASE-based density estimation struggles to separate neighboring clusters. Dense territorie
hallenging to assess in traditional field monitoring and are a known source of error [5],
able only through IAM. Our analysis indicates that using intervals shorter than 15 minute
lly alleviate the issue. However, it also reveals that the challenges in assessing spatially
ries remain, underscoring the need for continued research in this area.
e identified two additional behavioral factors affecting the interpretation of our results.
volves species with large territories. 1) Although expert field mapping confirmed the pre
ingle territorial Song Thrush Turdus philomelos, its powerful, far-carrying song was reco
ltiple devices across the deployment site. As shown in Fig. 11, this resulted in mu
ensity clusters centered within the deployment area, making it difficult to distinguish
rial boundaries. 2) The second factor, which we have identified involves individuals wh
non-territorial or temporarily leave their established territories, thereby influencing the
retation. In Fig. 12, two verified high-density cluster (highlighted in red) appears simul
with vocalizations from another individual of the same species to the south, suggestin
ement of multiple territories. Expert ground-truth data confirms only one territory w
ployment area, with two additional territories located approximately 300 meters beyon
aries. This suggests that territorial birds outside the study area may occasionally ent
eter or that non-territorial individuals may pass through. Such behavior is well-docum
ithological studies and represents a recognized source of methodological error in field mon
.g., [5]). These observations show that TASE can capture real behavioral dynamics, su
rary territorial incursions and broader movements. It is clear that a more focused approa
l data analysis, particularly in terms of timing, could significantly enhance the interpret
itories.
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(b) thresholdR: 0.6

0 353 707 1061 1415
UTM 32N Easting [+434,421m]

1678

1259

839

420

0

U
T

M
32

N
N

or
th

in
g

[+
5,

76
1,

73
2m

]

# Points: 596

Recorder

Field-monitored territory (safe)

# Points: 596

Recorder

Field-monitored territory (safe)

0.0

0.5

1.0

1.5

2.0

T
A

S
E

P
oi

nt
D

en
si

ty

×10−5

(c) thresholdR: 0.7

0 353 707 1061
UTM 32N Easting [+434,421m]

1678

1259

839

420

0

U
T

M
32

N
N

or
th

in
g

[+
5,

76
1,

73
2m

]

# Points: 177

Recorder

Field-monitored territory (safe)

# Points: 177

Recorder

Field-monitored territory (safe)

(d) thresholdR: 0.8

11: Kernel density estimate (green) of spatio-temporal detections for Song Thrush Turdus philomelos
with the expert’s territorial assessment shown by the colored circles.
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(b) thresholdR: 0.6
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(c) thresholdR: 0.7
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12: Kernel density estimate (green) of spatio-temporal detections for Tree Pipit Anthus trivialis after T
e expert’s territorial assessment shown by the colored circles.
e preceding evaluation demonstrates that TASE’s results closely align with expert assessments
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of territorial boundaries. Similar findings for other species are presented in the appendix. Summa-
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, territorial recognizability is affected by the interaction between the classifier performanc
oldR, and species behavior. (1) Lowering thresholdR increases the inclusion of classifier e
SE, which could obscure territorial boundaries. Still, our evaluation shows that the o
n remains consistent. Selecting an appropriate thresholdR depends on how well the clas
for the species, the region, and the acoustic environment and should make territorial pat
able. (2) Territorial patterns can be observed, but separating them is challenging, espe
conspecifics are nearby. Shorter time-scale analyses can help by revealing local dynamics
d over more extended periods. As already mentioned, this difficulty is not unique to T
d surveys encounter similar challenges ([49, pp. 52-53] [5]). Undoubtedly, expert know
target species’ territorial behavior is important and essential to accurately interpret the
inimize erroneous estimates of their number.
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Figure 13: Impact of overlapping vocalizations during dawn chorus, exemplary for two species

scussion and Future Research

r evaluation demonstrates that TASE, when applied to bird data collected by an ASN
fy territorial patterns for multiple species coexisting in the same area. By visualizing
ns, TASE enables experts to analyze the spatial distribution of high-density areas and
estimate the number of territories. This capability also unlocks new possibilities for monit
s abundance, serving as a novel, powerful tool for advancing ecological research and cons
fforts.

imitations of TASE

Impact of Species Classifier

r work presents a novel approach that leverages spatially distributed confidence values
I classifier BirdNet for species identification. Although BirdNet is widely used and rela
le, it struggles in complex environments like the dawn chorus [27]. Confidence values dec
overlapping sounds from multiple species sharing similar acoustic frequencies, which ob
ther’s features.
gure 13 shows the confidence scores per node for Common Redstart and Song Thrush detec
minute bins. Values above 0.5 — seeds for territorial subgraphs — drop sharply between
4:30, when the dawn chorus intensifies. Before 04:30, high-confidence detections are far
on. Overlapping songs reduce confidence scores once additional species join in. This pa
s to other species active during low-interference periods such as early morning and late eve
ASE, due to its fixed thresholdR, this variation in confidences affects both the numb

ion points and biases towards specific times — high thresholds favor low-interference periods.
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ions, considering the confidence values of both target and other species to provide a
e threshold mechanism. Another option would be to ground-truth the acoustic data dir
ng the calculation of precision and recall metrics that could support fine-tuned, species-sp
olds tailored to the local acoustic environment. It is important to note that these metrics
ary over time due to changing outdoor acoustic conditions and acoustic behavior.
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Figure 14: Impact of variation in classifier’s confidence over time.

Impact of TASE Parameters

riations in the classifier’s confidence scores can influence how well TASE generates sp
ral point clouds. To explore this effect, we examine three representative TASE runs in d
cal noise and interference can degrade classifier accuracy and can lead to overcounting
le, the gray node between TS 1 and TS 3 in Fig. 14a has a confidence value of 0.582, ca
be assigned to both territories and falsely splitting what should be a single TS into
ionally, we set a maximum distance from a TS’s root node to its border nodes. However, d
terference periods, high confidence levels can extend detections beyond this limit, resulti
ate TS, as illustrated in Fig.14b, where TS 2 (green) and TS 4 (cyan) represent the
dual. Interference also significantly reduces the detectable range of vocalizations, low
cation confidence. As shown in Fig.14c, neighboring nodes recorded the Common Red
maximum confidence of only 0.16, compared to much higher values under low-interfe

ions (Figs.14a and 14b).
hile these erroneous TS are an issue, our prior evaluation shows that they have minimal o
t for two reasons: 1. We concentrate on the dawn chorus (4 to 10 a.m.), where low interfe
only about 45 minutes of the six-hour deployment, resulting in few induced errors. 2.
rial nature of our species confines them to specific areas, minimizing error impact as lo
ries are sufficiently spaced apart. Nevertheless, reducing classification variability can enh
lgorithm’s resilience. A promising approach is to incorporate contextual information
s detection time series in the future, as proposed in [45].

Integrate precise Localization

step 4 of TASE, we derive representations for the territorial subgraphs corresponding t
al vocalizing animals. A key advancement at this stage is the precise localization of
s. Existing methods perform poorly in complex soundscapes like the dawn chorus, where
g vocalizations aggravate localization and hinder full automation[41]. However, prior wo
rovides a promising approach for overcoming these challenges.

Automated Evaluation of spatio-temporal Point Cloud
st evaluations have revealed that high-density areas, while aligning well with the territorial
ach, also present significant limitations. These areas can evolve and change over time, with
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l to recognize that territorial behavior is often more dynamic than the fixed-border assum
lying this work. This shift in perspective is necessary for a more comprehensive understan
subject (see Sec. 7.2). Future studies should adopt more sophisticated clustering methods
nt for spatial and temporal scales and are capable of handling occasional errors in the da
ting individuals. Incorporating expert knowledge into the point cloud clustering process wi
ng only on the point density is the long-term direction for automated evaluation. How
ating expert insights—such as species behavior or habitat use—into algorithmic rules rem
nging. Strategies like semi-supervised learning or rule-based constraints may help, though
increase computational complexity.

erritoriality - Limitations and Future Research

hile territorial spatial patterns generally align with expert assessments, TASE struggles
ries overlap extensively, when a single territory is unusually large, or when territorial indi
grate through the array altogether — difficulties that also arise in traditional field monito
ndings suggest that spatial patterns of individuals might exceed the idea of fixed terri
aries., which is already well-documented in ornithology (e.g., [5], [49, pp.52]), where it is k
arge territories, densely populated habitats, and individuals temporarily leaving their cor
s can complicate assessment of territories. By comparing these field-based methodolo
nges with TASE’s performance, we find that both methods share similar limitations. How
o find that many field monitoring limitations are caused by data scarcity. We expect T
rcome those since recorders remain in the field continuously, collecting data when specie
urbed. But this advantage brings a new challenge: developing advanced analytical met
angle complex territorial dynamics. We see two primary research directions to address t
tend the fixed territory concept by a soft boundary concept: Statistical models could d
rial subgraphs by embracing uncertainty and allowing for dynamic, overlapping bound
place the fixed temporal resolution with a dynamic one: Using fixed time intervals ma
re species-specific temporal dynamics. Adaptive temporal resolution could sharpen terri
tes, especially for species with fluctuating activity. Even so, expert insight remains cruci
reting the dynamics and extending TASE to longer deployments in diverse acoustic setti

uture Viability of Next-Generation Species Classifiers

w, more advanced species identification models, such as those introduced by [24], are em
d may eventually surpass BirdNET’s current performance, including improved robustne
pping sounds. As these classifiers become more resilient to interference, TASE will benefi
gly. However, TASE relies on a fundamental assumption: there must be a correlation bet
cation confidence and distance. Before adopting any new classifier, verifying that it meet
on is essential. Datasets like [50] or Open-Source acoustic simulators such as [8] can ass
cting these preliminary evaluations to ensure that future classifiers fulfill that correlation

ime- and Space Scalability

e deployment in this paper is limited in time and space. To assess TASE performance, l
rger deployments should be conducted on various species. Of course, the computational dem
with number of sensor nodes (spatial coverage) and input temporal resolution. TASE
on much broader data sets to capture richer, species-specific territorial dynamics tha

e over longer time spans and larger areas. Reducing computational time by parallelizin
thm is an objective for future work.
addition to the TASE application, ground-truthing also becomes an issue. Manual valid
es impractical when scaling up to larger or more complex environments, such as a rain
the limitations of TASE application and the impracticality of manual validation in such
nts, there is an need to explore alternative ground-truthing methods. Future research m

on methods such as bird banding, GPS tracking, or semi-automated IAM techniques for broader
ations.
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uture work should prioritize developing clear deployment guidelines for ornithologists be
t knowledge is based on practical experience. Key priorities include: (i) optimizing sam
s to balance battery life, storage, and detection rates, (ii) standardizing microphone gain
uration settings to ensure consistent recording quality, (iii) establishing practical field de
strategies, including recommendations for sensor spacing, mounting, and orientation.

ransferability to other Species and Regions

though we applied TASE primarily to birds, the underlying approach can be adapted to
rial, sound-producing species, such as cicadas [52]. The key prerequisites remain the s
species is territorial and emits identifiable vocalizations, (ii) a reliable classifier exists
e requirements in Sec. 4.1 are satisfied. Detailed knowledge of a species’ call structure
rial behavior remains critical because it dictates recorder spacing and the spatial param
detection graph. Once these inputs are in place, the workflow transfers with minimal

aling TASE to large, species-rich soundscapes, such as tropical forests, poses additional
that TASE likely fails to handle. For example, the ”one bird per cluster” assumption, w
ed on the idea that each bird’s vocalization can be distinctly identified and separated
, may fail when several individuals sing in close proximity. Possible solutions might in
node deployments with limited recording ranges or directional microphones, which event
e modifications when building the graph.

pening up new research Opportunities

SE advances bioacoustic monitoring on two critical fronts. First, accurately estimating
through bioacoustic methods offers significant ecological and conservation benefits. By d
the spatial extent of different individuals or populations, researchers gain insights into sp
ution, resource use, and habitat preferences. Such knowledge can inform land-use deci
habitat restoration efforts, and improve species management strategies. When combined
erm acoustic monitoring, territorial estimates can help to track population dynamics, d
es in species abundance or distribution over time, and identify critical areas for conserva
d, TASE collects reliable abundance data in places where traditional field surveys canno
e.g., remote alpine valleys or countries lacking extensive bird-watching expertise. Be
species migrate across national borders, closing these data gaps is essential for coordin
country protection efforts.

nclusion

is work offers a promising solution for estimating species abundance from ASNs using a
species classifier. Instead of identifying individuals by their unique features, we leverage
riality to estimate the number of territories as a proxy for species abundance. Our app
nes a species classifier with a network of acoustic recorders deployed across a cohesive ar
spatial patterns corresponding to territories. We tested our method on territorial bird sp
alitative proof-of-concept evaluation. Our results were compared with expert field assessm
ing a robust validation of our approach. Our findings closely matched expert perceptio
rial boundaries despite errors arising from complex avian behaviors and classifier limita
er, much refinement remains, including assessing TASE in large-scale and long-term de
and introducing a concept of soft-territorial boundaries to develop automated spatial-tem
ring instead of spatial high-density interpretation. In future research, TASE has the potent
e a valuable tool for acquiring abundance data in areas where field monitoring is traditio
nging.
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e provide our dataset at the following link: https://doi.org/10.26249/FK2/VORDOF
anion tools, including our algorithm and plotting scripts, are available at: https://git

ys-uos/TASE

ration of generative AI and AI-assisted technologies in the writing process

e authors used ChatGPT and Grammarly to enhance the manuscript’s readability and
, thoroughly reviewing and revising the content, and assume full responsibility for the
hed article.
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A.1: Kernel density estimate (green) of spatio-temporal detections for Short-toed Treecreeper Certhia b
after TASE, with the expert’s territorial assessment shown by the colored circles.
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A.2: Kernel density estimate (green) of spatio-temporal detections for Eurasian Chaffinch Fringilla c
ASE, with the expert’s territorial assessment shown by the colored circles.
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A.3: Kernel density estimate (green) of spatio-temporal detections for Spotted Flycatcher Muscicapa
ASE, with the expert’s territorial assessment shown by the colored circles.
21



Journal Pre-proof

0
U

1678

1259

839

420

0

U
T

M
32

N
N

or
th

in
g

[+
5,

76
1,

73
2m

]

3.0

×10−5

(

1678

]

3.0

×10−5

1678

]

3.0

×10−5

15

1678

]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
A

S
E

P
oi

nt
D

en
si

ty

×10−5

Figure hoeni-
curus a

0
U

1678

1259

839

420

0

U
T

M
32

N
N

or
th

in
g

[+
5,

76
1,

73
2m

]

(

15
0.0

0.5

1.0

1.5

2.0

T
A

S
E

P
oi

nt
D

en
si

ty

×10−5

Figure llybita
after T

0
U

1678

1259

839

420

0

U
T

M
32

N
N

or
th

in
g

[+
5,

76
1,

73
2m

]

(

15
0.0

0.5

1.0

1.5

2.0

T
A

S
E

P
oi

nt
D

en
si

ty

×10−5

Figure ASE,
with th

Refer

[1] A rs for
m 7.

[2] A ocal-
iz erica
1

[3] A with
t

[4] B opas:
A .

[5] B ische
B

Jo
ur

na
l P

re
-p

ro
of

353 707 1061 1415
TM 32N Easting [+434,421m]

# Points: 16961

Recorder

Field-monitored territory (safe)

Field-monitored territory (possible)

# Points: 16961

Recorder

Field-monitored territory (safe)

Field-monitored territory (possible)

0.0

0.5

1.0

1.5

2.0

2.5

T
A

S
E

P
oi

nt
D

en
si

ty
a) thresholdR: 0.5

0 353 707 1061 1415
UTM 32N Easting [+434,421m]

1259

839

420

0

U
T

M
32

N
N

or
th

in
g

[+
5,

76
1,

73
2m

# Points: 13372

Recorder

Field-monitored territory (safe)

Field-monitored territory (possible)

# Points: 13372

Recorder

Field-monitored territory (safe)

Field-monitored territory (possible)

0.0

0.5

1.0

1.5

2.0

2.5

T
A

S
E

P
oi

nt
D

en
si

ty

(b) thresholdR: 0.6

0 353 707 1061 1415
UTM 32N Easting [+434,421m]

1259

839

420

0

U
T

M
32

N
N

or
th

in
g

[+
5,

76
1,

73
2m

# Points: 10204

Recorder

Field-monitored territory (safe)

Field-monitored territory (possible)

# Points: 10204

Recorder

Field-monitored territory (safe)

Field-monitored territory (possible)

0.0

0.5

1.0

1.5

2.0

2.5

T
A

S
E

P
oi

nt
D

en
si

ty

(c) thresholdR: 0.7

0 353 707 1061 14
UTM 32N Easting [+434,421m]

1259

839

420

0

U
T

M
32

N
N

or
th

in
g

[+
5,

76
1,

73
2m

# Points: 6818

Recorder

Field-monitored territory (safe)

Field-monitored territory (possible)

# Points: 6818

Recorder

Field-monitored territory (safe)

Field-monitored territory (possible)

(d) thresholdR: 0.8
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lles über Biologie, Gefährdung und Schutz. AULA-Verlag, Wiebelsheim, Hunsrück, 2011

erthold, P. Methoden der Bestandserfassung in der Ornithologie: Übersicht und krit
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