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e Development of TASE: We formalize an automated Territorial Acoustic Species Estimation
algorithm called TASE.

e Application of TASE on birds: We apply TASE on birds using a state-of-the-art acoustic species
classifier.

e Proof-of-Concept-Evaluation in bird acoustics: We apply TASE in a 12 hectare real-world
deployment and prove that it works on par with expert’s field monitoring methods.

e Publication of TASE-ASNet: We publish and share the first cohesive acoustic dataset from our
deployment, including field monitoring results, as Open Data.
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Abstract

Accurate biodiversity assessment is fundamental for effective conservation management and environ-
mental policy-making. However, monitoring local species populations is time-consuming, as experts
can cover only one limited area at a time and are also prone to errors due to their varying knowledge
and experience. Advances in low-cost autonomous recording units and Al-based classifiers offer new
tools for species monitoring. However, while helpful in identifying species, current tools for acoustic
species monitoring fall short in providing data on local populations. This limitation emphasizes the
demand for more sophisticated methods, as uncertainties in estimating species populations can lead
to misleading conclusions and misclassification of conservation statuses. In this work, we take a
significant step towards more sophisticated monitoring by presenting a Territorial Acoustic Species
Estimation approach, called TASE, to extract spatial, territorial patterns of species using acoustic
sensor networks, allowing the estimation of territorial individuals of a species. It requires a dis-
tributed sensor network and exploits the characteristic spatial distribution of territorial species. We
formalize TASE, apply it to bird acoustics, and share a proof-of-concept evaluation in a real-world
deployment in a nature reserve, deploying 29 devices over 12 hectares. We show that it works on
par with the time-consuming practice applied by bird experts and can provide novel insights into the
spatial use of sound-producing territorial species.

Keywords: acoustic monitoring, species abundance, birds, BirdNET, AudioMoth, TASE

1. Introduction

Accurate information about local species populations is crucial for assessing species’ local survival
and also serves as an early warning system for environmental and ecosystem health in a given
region. This knowledge can lead us to take proactive measures for species survival and environmental
conservation, while uncertainties can lead to deceptive conclusions or improperly classifying species’
conservation statuses. Acquiring data about species populations is time-consuming as each site needs
to be visited multiple times by experts and is linked to various issues, ranging from disturbances of
the species to methodological bias due to varying knowledge and experience (e.g., [43, pp. 67-69]
[49, pp. 26-68]).

Passive acoustic monitoring (PAM) offers new insights into ecological questions by deploying
autonomous acoustic recorders (ARUs) in natural environments [42]. Tools can effectively survey
sound-producing species and transform monitoring practices. Unlike human observers, PAM con-
tinuously collects field data without any disturbance of the environment [1]. While manual data
analysis is impractical due to the vast amounts of data, recent advances in classification models, like
the Open-Source classifier BirdNET[27] for acoustic bird species identification, provide automated
processing capabilities. Today, we are reaching more and more a state where acoustic monitoring
evolves into a suitable complement or alternative to traditional field surveys [38].

Existing classifiers are effective at detecting species and inferring occupancy status and are exten-
sively used in nature conservation, ecological sciences, and monitoring programs worldwide. However,
ecologists urgently search for species abundances, i.e., to count the individuals of each species at a
recording location or multiple recording locations. To this date, no automated approaches have
proven their application in practice. Existing studies focus on identifying individuals in recordings
based on unique acoustic features, a process known as Individual Acoustic Monitoring (IAM). This
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involves extracting individual features from acoustic signals, organizing them in a feature space,
and identifying clusters to estimate the number of individuals. For various species, manual or semi-
automatic methods can extract individual traits from vocalizations [28]. However, research often
targets a single species, as in [17, 35] using manual methods, apply techniques like Gaussian mixture
models, hidden Markov models [2, 40], support vector machines [12], or neural networks [18]. While
focusing on specific species can improve accuracy, it limits broader adoption and requires method de-
velopment or adaptation for each new species or environment. Some multi-species approaches, such
as [48], rely on expert-driven steps, like separating foreground and background sounds, which are
challenging in noisy environments with overlapping vocalizations. According to [28], TAM performs
poorly under complex conditions and mainly focuses on species with simple vocalizations. Envi-
ronmental factors, including wind, water, and overlapping sounds, mask individual vocalizations,
reducing transferability and generalizability [28]. Key challenges include determining which acoustic
features best identify individuals and developing methods without expert input. Finally, without
individual identification, automated localization of individuals remains infeasible [41]. Above’s limi-
tations on TAM does not apply to methods that rely on species classification. A promising approach
by [33, 34] uses counts of species vocalizations to infer animal density. However, its application still
relies on laborious expert validation of sound files.

Another approach to measure individuals is presented by [22, 47]. They assume a species classifier,
meaning it can identify merely species in a recording, but not individuals, so they always assume it
to be one organism. If multiple ARUs are deployed whose detection ranges overlap, they analyze
the spatial coverage from which they derive the maximum number of simultaneously vocalizing
individuals. Their approach has a critical challenge for real-world deployments: it is based on
an apriori known detection range of the devices, which is, in practice, highly dynamic. Various
factors affect it, such as the recording equipment, specifics, placement, interfering acoustics from
other species, and environmental noise such as wind [50]. Furthermore, the algorithm presumes
that all sources are consistently active within a given time window. However, birds avoid singing
simultaneously, leading to undercounting as not all individuals are vocally active simultaneously,
which is proven, e.g., for birds [14]. While their algorithm is not applicable in natural environments,
it offers an intriguing approach by connecting to advancements in automated species classification
and affordable ARUs, which can form an acoustic sensor network (ASN).

This paper presents TASE (Territorial Acoustic Species Extraction), an algorithm designed to
estimate species populations in acoustic monitoring. Given an ASN that gathers data from a sizeable
cohesive area, we focus on animal species that produce sound to exclude conspecifics from their
territory, creating peculiar spatial patterns. By applying a state-of-the-art species classifier on every
node in our ASN, we derive the same peculiar spatial pattern per species, the territories. Given that,
it is possible to quantify positive or negative trends in animal populations. That is especially true for
songbirds because the number of territories equals the number of males and can be used as a proxy
for animal abundance. Such an ASN gathers huge amounts of data, making automated processing
mandatory. Our main contributions are as follows:

e Development of TASE: We formalize an automated Territorial Acoustic Species Estimation
algorithm called TASE.

e Application of TASE on birds: We use a state-of-the-art acoustic bird species classifier.

e Proof-of-Concept-Evaluation in bird acoustics: We apply TASE in a 12-hectare real-world
deployment and prove that it works on par with expert field monitoring methods.

e Publication of TASE-ASNet: We publish and share our deployment’s first cohesive acoustic
dataset, including field monitoring results, as Open Data.
2. Related Work

To the best of our knowledge, no approaches in computer science follow our approach of capturing
species’ territorial spatial patterns based on their acoustic sounds as a proxy for measuring species



abundance. Our algorithm leverages species territoriality. Thus, we provide an overview of the
territoriality of sound-producing species to understand the biological aspect of our approach better.

Territorial Behavior of Species

Our approach incorporates species’ territorial behavior, so we first provide some background.
On a broader scale, many factors, including the quality and availability of habitat, connectivity,
competition, and behavioral characteristics of the target species, form the distribution and occupancy
patterns of organisms. An individual’s home range describes the whole area that is regularly used
to fulfill all its requirements, whereas a territory is a defended area within the home range.

Territorial behavior in birds is well-studied [36], ranging from small nesting territories in colonial
species (e.g., Barn Swallow Hirundo rustica) to feeding territories maintained by European Robins
Erithacus rubecula in winter. Many songbirds defend territories during the breeding season for
mating, nesting, and feeding, using species-specific songs to repel conspecifics. Territoriality has
been researched for over a century [25], aiding abundance estimates through expert field monitoring.
Although ARUs now facilitate studies on phenology, species composition, and large-scale distributions
[13, 11, 44], their focus remains on species identification rather than estimating species abundance.

In territorial species, individuals spatially segregate and defend areas against conspecifics to secure
mates or exclusive resources [39]. Their vocal interactions often reflect the spatial arrangement of
territories and potential breeding pairs, making them valuable for bioacoustic analysis. Territoriality
has been examined in nearly all vertebrates [31], though its definitions vary [32]. Here, we focus
on sound-producing organisms that acoustically assert exclusive space use. For our approach, the
following territorial characteristics are key:

e Distribution of territories is dynamic: In detail, the territoriality of a species is not a simple
but a complex dynamical phenomenon. The territory’s boundaries are not necessarily clear
and can overlap, resulting in interactions on an individual level [26, pp. 716-718]. Additionally,
individuals might die or lose their territory as conspecifics take over.

e Territories differ in sizes: Individuals of the same species occupy territories of different sizes,
as these vary, for example, with habitat quality and conspecific density [16]. Consequently,
population densities of species differ, and their transferability to other areas is limited. Due
to a cap on expenses, traditional monitoring programs rely on data from only a few site visits.
The density or abundance of a species needs to be calculated without precise information on
territorial extends, thus indirectly assuming a uniform distribution of equal-sized territories.

e Territories are not constantly proclaimed: Not all species show territorial behavior constantly,
e.g., many birds only during mating season [6, pp.274-275]. Many species show species-specific
vocalization activity patterns, leading to individuals proclaiming their territory only seasonally
or at different daytimes, e.g., in the morning and evening [46].

3. Formalization

Before defining the problem our approach solves, we outline the real-world deployment of this
work. We then briefly examine the dataset and eventually formalize the challenge.

3.1. Deployment

A large-scale deployment of 29 ARU (AudioMoth v1.2) devices was conducted on June 3, 2023,
from 4:00 to 10:00, resulting in six continuous soundscapes (174 hours total). The deployment
occurred in a 12-hectare nature reserve in North Rhine-Westphalia, Germany, home to approximately
35 bird species, alongside human-made sounds from a nearby street and farm. The area features
diverse habitats, including forests, hedges, ponds, heather fields, and meadows, creating a complex
acoustic environment with potential interference from mammals and insects.



(b) Exemplary Scene within the forest

(a) Deployment area, the icons refer to the ARUs

(¢) ARU in its waterproof case

Figure 1: Deployment site and recording devices

Based on preliminary tests and insights from bird experts, ARUs were strategically positioned
very densely - typically just 25 to 50 meters apart within forested areas and no more than 100 meters
apart in open spaces. The intentional closure and atypical spacing of recording units, e.g., when
focusing on detecting species presence, were deliberately implemented to ensure substantial overlap
between adjacent units, thereby providing continuous acoustic coverage essential to our approach.
We synchronized all recorders with the AudioMoth app. Although the clocks still experience minor
drift, 12-hour bench tests show a maximum deviation of about 400 ms, which is negligible for our
purposes. Because we do not attempt fine-scale localization, but instead make a crude estimation
based on every node whose 3-second classification windows overlap, this drift remains comfortably
inside that 3-second window.

The devices were configured with firmware version 1.7.1, a 48kHz sampling frequency, 16-bit
depth, microphone gain of 4, and a recording duration of 3595s with a 5s sleep interval. Micro-SDs
were collected at the end of the deployment.

3.2. Problem Definition

Before formalizing the problem, our approach will solve some background. When deploying a set
of nodes, we acquire a set of soundscapes that capture species’ territorial vocalizations. Applying a
species classifier to these recordings yields unitless classification scores (ranging from 0 to 1) for each
identifiable species, e.g. [51], in the following referred to as confidence scores. A score of 0 indicates
the species is not detected, while a score of 1 indicates a strong species detection. Across distributed
nodes in an ASN, this generates spatially distributed confidence scores for each species. As the
species vocalizes, its signal propagates to neighboring nodes, causing peculiar spatial patterns in the
confidence scores. These confidence scores comprise the territoriality of sound-producing species.
Due to territoriality, species remain within a specific area. Over time, these areas consistently
have higher confidence scores, indicating species territories that serve as effective approximations for
species abundance.

Fig. 2 illustrates confidence score sets over time using bird data from a real deployment, repre-
senting a small subset of our dataset (see Sec. 3.1 for details). Each circle represents a recording
node, colored by the classifier’s confidence score of identifying the Common Redstart Phoenicurus
phoenicurus. The recordings were analyzed with BirdNET v2.4 [27], providing confidence scores for
each three-second window over ten seconds. During this time, confidence scores fluctuate with bird
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Figure 2: Schematic of a real ASN for birds. BirdNET identifies Common Redstart Phoenicurus phoenicurus on June
3, 2023, using a sensitivity of 1.5, 2-second overlap, and a minimum threshold of 0.0.

activity. One bird is active in Figs. 2a and 2b in the top right corner, resulting in high confidence
scores. Then, it is silent in Figs. 2c to 2f, and active again in Figs. 2g and 2h. Similarly, another
bird in the bottom right is initially inactive, vocalizes, and then becomes silent. A third Common
Redstart in the west causes high confidence scores at neighboring nodes. Some nodes, such as the
green node at the top in Fig. 2b, show high confidence scores while their neighbors do not, poten-
tially indicating false positives. This is due to the inherent difficulty of acoustic species classification,
where models may mistakenly detect patterns that resemble a species even when it’s not present.
This issue arises from classification errors inherent in the AI model. Therefore, it is crucial to ensure
that subsequent processing steps of finding territories mitigate these errors to prevent inaccurate
results. Our evaluation (see Sec. 6) demonstrates that our algorithm effectively copes with these
classification errors.

Formal Definitions

After the informal introduction of the problem we will solve in this paper, we now provide a
formal definition of the problem. The classifier comprises several parameters denoted as c¢. Overall,
the classifier is a function that takes in a sound sample beginning at f4. and ending at t.,q and
outputs a vector of confidence scores. The vector consists of s entries, each referring to the presence
of a particular species. In short, the classifier can be written as

FC: [tstart; tend] — [O, 1]5 (1>

Obtaining the confidence scores that a certain species is present at a given time point m in the
audio necessitates a shifting window. Let w € N be the size of that time window, with the time
window being W,,, := [m, m+w] where m € {0,1,...,d} and d being the length of the audio. Moving
the time window m in the audio gives a set of sliding windows W = {Wj, ..., W,_,}. Note that
windows with a starting point m > d — w exceed the audio duration d. By sliding the time interval
over the full audio duration, we can identify the presence of a species at a given point in the audio.

Given an acoustic sensor deployment, we have a set of recorders (nodes) V = {vg,v1,...,v,}
with well-defined locations and well-synchronized timing, ensuring time-synchronized recordings. For
simplicity, we assume continuous acoustic recordings and equal recording duration d for all nodes.



Given this set of nodes V' = {vy, ..., v,} and a synchronized time interval [t;,¢;], we define a function
G that applies the classifier F, to all nodes in V' over this time interval:

Go: V X Wiy — {F.(W)}" = [0, 1]7" 2)

Using this function on every time window yields the following data:

GC(V, W) = U U {GC(U, [tia tjD} (3>
[tit;]eW veV
Now that we have formulated the input data, we still need to define the target of our problem. The
signals processed by the classifier originate from different territorial individuals. Let b := {by, ..., bx}
denote that set of individuals. Given the input data G.(V,W), the target is to obtain the number of
territories k.

4. Territorial Acoustic Species Estimation (TASE)

Our Territorial Acoustic Species Estimator, called TASE, aims to solve this challenge. We sub-
stantiate our requirements, formalize the workflow, and discuss its complexity.

4.1. Requirements

The algorithm is based on the assumptions stated below. These simplifications are necessary
when developing this cross-domain algorithm incorporating knowledge from species-related research
(see Sec. 2) in which territorial individuals might show complex behavior that is difficult to model.

Time-synchronized Recordings: As defined, we require a deployment in which all nodes
record their acoustic surroundings simultaneously, assuring that any post-processing refers to the
same moment. That can be fulfilled through a base station connecting and acquiring data from all
nodes. The node’s precise synchronization can be assured, e.g., by GPS!.

Classifier’s confidence score relates to exactly one source: As already stated, automated
individual identification is not possible yet (see Sec. 1), and acoustic species classifiers are only capable
of detecting a species. Thus, we assume that one individual causes a classifier’s confidence score of
a species.

Distant-dependent decline of Classifier’s confidence scores: When a sound source emits
a signal, the node nearest to the source has higher classifier confidence scores than more distant
nodes. This was shown by [15, 37]. For simplicity, we assume that G, the input set containing all
species confidence scores for all nodes is monotonically decreasing with increasing Euclidean distance
between the sound source b; and the node v € V. With increasing distance, the species confidence
score declines, and it becomes more likely to produce false positives, increasing the risk of inducing
errors in further processing.

Node placement: At least two devices record each possible source location in the deployment
area (so-called 2-coverage). Thus, the node placement is denser than the territories’ distribution,
resulting in nodes between two territories.

4.2. Concept

All requirements ensure that there is always an intermediate node between two territories. Due
to the distance-dependent decrease in classifier confidence scores, nodes closest to a vocalizing source
have higher confidence scores than intermediate nodes. Consequently, if neighboring nodes have
higher confidence scores than an intermediate node, we can spatially separate these nodes into distinct
groups corresponding to individual vocal sources. This pattern enables effective identification and
separation of simultaneous vocalizations. By intersecting classification data from multiple recording
devices over long periods, we identify nodes consistently recording the same individual staying in
specific areas. Thus, we acquire a spatio-temporal point cloud that effectively captures territorial
spatial patterns.

Thttps://s.gwdg.de/wjuNOL, last access: 17th May. 25
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Figure 4: lustration of TASE’s steps step 1 to 4 from the real-world deployment (see Sec. 5.2). Weights are without
preceding zero.

4.8. Algorithm

TASE comprises five steps. First, we transform the sensor network into a graph. Second, we
assign weights to the nodes. In the third step, the graph is divided into subgraphs referring to
individuals. The first three steps are depicted in Fig. 4. The steps 2 and 3 are repeated for each
classification period, and lastly, in steps four and five, merged to deduce frequently occupied areas
and territories (exemplarily visualized in Fig. 5).

4.8.1. Transfer the Deployment into a Graph

At first, the deployment area is split into regions closest to each node. This is done by creating
a Voronoi diagram, also known as Dirichlet tessellation or Thiessen polygons [30]. As the classifier
is monotonously decreasing with respect to the distance, we can assign a sound source directly to a
cell. As the source’s signal propagates into neighboring Voronoi cells, other nodes will record and
identify it. To model this relation, we connect two nodes via an edge if the corresponding Voronoi
cells are neighboring. If the Voronoi cell of two nodes share a common border but the nodes are
unreasonably far away, we remove this edge. This comes to hand if the distance is bigger than a
species’ maximum known territory size.

More formally, we build the directed Delaunay-triangulated graph G(V, E) where V' = {vy, ..., v, }
is the set of nodes. The nodes are projected into a 2D plane, e.g., an UTM projected coordinate



system, so each node v; has location p;. Given a set of distinct points P = {p1,ps,...,pn} in a
Euclidean plane, called sites, the Voronoi cell Vor(p;) corresponding to a site p; is the set of all
points x in the plane such that the distance from x to p; is less than or equal to the distance
from x to any other site p; (for all j # ). Let d(x,p;) denote the Euclidean distance between
the point x and the site p;. The set of edges E contains all edges between adjacent Voronoi cells:
Ve = (u,v) € E, if u,v € V and Vor(u) is adjacent to Vor(v) and d(u,v) < dynap With dpe. being a
maximum reasonable distance.

4.8.2. Apply Weights to V' and add Direction to Edges in E

For clarity, we focus on one species s and one-time window W,,, throughout steps two to three.
After generating the Delaunay-triangulated graph, we add the classifier’s confidence score of time
window W, to each node. Furthermore, we indicate the direction in which confidence scores between
nodes decline by assigning a direction to each edge. An edge between two nodes always points
from the node with a higher confidence score to the node with a lower confidence score. Formally,
Ve = (v;,vj) € E, the edge points from v; to v; if and only if w(v;) > w(v;).

The core idea behind this can be summarized as follows: Given that two sources emit a sound
simultaneously at some distance, the recording nodes between them should have only incoming edges
and no outgoing edges, thus separating both sources. We denote this characteristic as territorial
segregation feature (see Fig. 3): Given the weighted, directed Delaunay-triangulated graph G =
(V, E'), sources sp and s; of the same species, and a confidence score function F, that is monotonically
decreasing with distance, anode v € V where d(v, s¢) =~ d(v, s1) will have no or a low number outgoing
edges. Outgoing edges might occur, e.g., if neighboring nodes have identical confidence scores.

4.8.8. Detecting Territory Subgraphs

By design, the underlying directed graph with its nodes’ weights can exploit the territorial seg-
regation feature. Connected areas in the graph belonging to the same individual are referred to as
Territory Subgraphs (TS). Formally, they are constructed as follows:

First, the node with the highest detection confidence score is marked as the root node of the
territory. Using a breadth-first search (BFS), we add neighboring nodes whose confidence score is
less and likely caused by the same sound source. The BFS ends if and only if a node with only
incoming edges is reached. These border nodes mark the boundary between two TS. Once the BFS
terminates, all nodes and edges added to the TS are removed, except for the border nodes. The
procedure is then repeated for the nodes not included in the previous TS, starting with the node
with the remaining highest confidence score, followed by the next highest, and so on. Eventually,
the graph is split into multiple TS, each representing a different individual. Some nodes, however,
remain unassigned because they do not meet the root-node criteria or the criteria to be part of a
TS. Detecting all TS can be efficiently implemented by first sorting the root nodes R according to
their weights. Then, we perform BFS and remove all nodes from G and R that are part of the TS.
To cope with things like misclassifications, we added some extra rules.

Threshold for a subgraphs root nodes R: The higher the classifier’s confidence score, the
closer the distance to the sources, and the less likely false positives are. Thus, we define a threshold
thresholdg for all nodes v € R such that w(v) > thresholdg. In other words, if the confidence score
provided by a certain node is below that threshold, it is not selected as a root node.

Threshold for a cluster’s border-node: As with increasing distance the likelihood of false
positives increase, also a threshold for the border-nodes is set. We define thresholdp for Yv €
V,deg(v) = 0 : w(v) > thresholdg.

Set maximum distance from root to border-nodes: We define a maximum distance from
a node r € R to a border-node, depending on the territory size of the species. This criterion can be
formalized as Yo € V' \ {r}, d(r,v) < thresholdr.

4.8.4. Derive Representatives for Subgraphs belonging to territorial Individuals
Due to the local movement of the territorial individuals, the TS differs for each time window W,,,.
Therefore, we need to merge the information from all T'S to obtain an overview of the territories. To
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Figure 5: Exemplary visualization of TASE step 4 and 5 referring to species Blackcap Sylvia atricapilla in the deploy-
ment (see Sec. 3.1)

achieve this, a representative location for each subgraph is calculated by the centroid of the nodes’
locations weighted by their classifier’s confidence score. Eventually, we acquire a spatio-temporal
point cloud, with high point densities in the territories’ areas. It can be visualized, e.g., by a kernel
density estimation.

4.4. Complexity

The complexity of the algorithm is made up by the complexity of every single step. The first
step consists of the Delaunay Triangulation for a set of nodes V' = {vy,...,v,} to get the edges F
between adjacent Voronoi cells. The complexity of this step is O(Viog(V')) [30]. Second, the weights
are applied, and the graph is directed. This can be done in O (F). Finding the subgraphs root nodes
takes O (Viog(V)), the BFS needs O (V + E) steps, and removing nodes from a territorial subgraph
from the root nodes requires O (V). At most the whole graph belongs to one territory subgraph.
Thus, finding the center is done in O (V). Applying above to all time windows W, step one to
four have a complexity of O (Viog(V)) + O(W - (E + Viog(V))). As our algorithm uses a Delauny-
triangulated graph, which is a specific kind of planar graph, we know that £ = O(V'). By substituting
the second term, we can simplify to O (Viog(V')) + O(W - Viog(V))) =~ O(W -V -log(V)).

5. Applying TASE on Birds

We presented the general approach, which is now applied to birds due to their territorial behavior
and sound-producing capabilities. Furthermore, they are well-researched species, acoustically iden-
tifiable by today’s Al-based species classifiers, and serve as good indicators of environmental health
and ecosystem changes, existing almost everywhere on Earth (e.g., [19]). However, when applying
TASE to birds, additional challenges arise from the increased presence of overlapping sounds, such as
calls from multiple individuals or background noise from other species. These interferences are more
pronounced in avian soundscapes, particularly during events like the dawn chorus, where vocaliza-
tions overlap frequently. Consequently, we will adapt our algorithm to address these complexities,
making it well-suited for avian soundscapes.

Due to its consistent and reliable performance [21, 29], as well as its Open-Source availability, we
have chosen to focus on the BirdNET classifier [27]. BirdNET is applied on the recordings from the
deployment described in Sec. 3.1. Note that ARUs were not acoustically calibrated, for two reasons.
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First, environmental variability is an inherent feature of real-world data that the model should
accommodate rather than eliminate. Second, calibrating dozens of recorders in remote, heterogeneous
habitats is logistically unrealistic and site-specific. To mitigate the resulting variation in BirdNET
confidence scores, we introduce the thresholds in the next section. However, our approach does not
rely solely on this threshold. The ARUs are densely spaced and record continuously, so an erroneous
classification on one unit is usually countered by the thresholdg for the root-nodes and the higher-
confidence detections from neighbouring units when a bird vocalizes. This redundancy keeps overall
detection reliability high, as confirmed by our results.

TASE requires, as stated in Sec. 4.1, the species classifier requires its confidence scores to cor-
respond to the distance between a recording device and a sound source in a monotone relation. In
the following section, we examine whether this is true for BirdNET and assign values to the TASE
parameter defined above.

Table 1: Correlation between distance and confidence

sensitivity!

species referenceg, | 0.50 0.75 1.00 1.25 1.50
T. philomelos 100 -0.47 -0.48 -0.48 -0.49 -0.50
F. coelebs 92 -0.52 -0.53 -0.54 -0.55 -0.55
L. megarhynchos 86 -0.51 -0.52 -0.53 -0.53 -0.53
L. megarhynchos 75 -0.50 -0.51 -0.52 -0.53 -0.53
R. regulus 74 -0.70 -0.71 -0.73 -0.74 -0.75

L sensitivity refers to BirdNET’s configuration parameter, not the machine-learning evaluation metric

0
classifier’s sensitivity

Figure 6: Standard deviation of BirdNET’s confidences per species

5.1. Distant-dependent Decline of BirdNET’s Confidences

A correlation has already been documented for bird classifiers in literature, e.g., [15], and also
the classifier BirdNET we use [37]. However, the latter does not focus on European species but three
American species, and it does not mention the BirdNET model v2.4 or consider different configu-
rations. We wanted to verify this for typical European species and gain more insights into how the
confidence scores change depending on different values for configuration parameter sensitivity. This
parameter is crucial, affecting the gradient of sigmoid-scaled activity function [27] and is meanwhile
known to have a great impact on the classifier’s performance according to [20]. It has not been
examined regarding the distance yet.

In a deployment from 16th to 19th December 2019, we acquired real acoustic data with an ARU
Audiomoth v.1.2 [23]. We placed the ARU in a straight line from the speaker device at 1m and
every 10m up to 100m. At each distance, we replayed four common European species in realistic
amplitudes, referring to the measurements of [7, 9]. The audio chunks have manually been extracted
and classified separately. As the recordings per distance have been made one after the other, the noise
and interference vary due to human-made sounds in the far distance. Audio chunks with extremely
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high interference in which the species of interest could not be segmented manually were excluded,
resulting in a different number of samples per distance.

Table 1 lists the correlation coefficients between Bird NET confidence and distance for all species.
The correlations are moderate to strong, so confidence does not decline in a perfectly smooth fashion
as distance grows. The negative values refer to that decline. Raising the sensitivity level increases the
coefficients to 0.05, making the distance effect slightly clearer. This is likely caused by variations in
confidence score values at different distances. To compensate for the classifier’s variation, we modify
TASE as follows:

1) After building the Delaunay-triangualted graph, we add bidirectional edges between nodes
whose weights have a difference in confidence score of less than Ejs to each other. For G = (V. E)
the edges E become: Ve = (v;,v;) € E e points from v; to v; if and only if |w(v;) — w(v;)| < Ej.

2) Given such a modified Delaunay-triangulated graph as above and an adverse distribution of
weights, separating two simultaneous vocalizations becomes more erroneous. In order to prevent
that, we have added new criteria. For a territorial subgraph T'S = (Grg, Ers), the weights must
decline or remain within a range from the root node to the border nodes. Every node (u,v) € Epg :
w(u) + T'Ss > w(v) with T'Ss being a threshold for the confidence score difference.

In order to derive reasonable values for E5 and T'Ss, we examined for our deployment the standard
deviations of the species’ confidences more closely. A significant, species-independent correlation
between the distance and the confidence variations is not observed. Instead, we found a correlation
between sensitivity and standard deviation, which is visualized in Fig. 6. With increasing sensitivity,
the standard deviation declines notably. Given that observation, for different classifier sensitivities,
the choice for Es and T'S; differs, reaching about 0.2 for a sensitivity of 1.5.

Table 2: Summary of TASE’ parameters in the evaluation

Classifier

sensitivity 15
overlap 2
confidence threshold 0.0
Step 1: Building graph

[ — 100
Step 2: Add Weights and direction to graph

Es 0.2
Step 3: Detecting territorial subgraphs

thresholdp 0.5, 0.6, 0.7, 0.8
thresholdp 0.1
thresholdr species-dependent
TSy 0.2

Step 4: Derive territorial subgraphs’ representatives
Method weighted centroid

5.2. Parametrization

TASE uses a set of parameters across four steps to estimate territorial individuals, with two addi-
tional parameters for bird applications. Table 2 summarizes these parameters used in our evaluation
in Sec. 6. However, we emphasize the urgent need for clear guidelines in acoustic monitoring, as much
of the current knowledge is still based on practical experience rather than standardized protocols.
Our parametrization should, therefore, be seen as a starting point.

Step 1: When building the Delaunay-triangulated graph, we set the maximum euclidean distance
between two nodes d,,., to 100 meters, because it is two times the recommended distance that bird
experts cover [49, pp. 49].

Step 2: As shown in the previous section, we use a classifier’s configuration with a sensitivity of
1.5 as it shows the highest correlation. Furthermore, we set Es and T'Ss to 0.2 based on our previous
measurements.

Step 3: When identifying territorial subgraphs, we evaluate thresholdg values of 0.5, 0.6, 0.7, and
0.8. Nodes exceeding thresholdg are designated as roots of T'S. For boundary nodes (thresholdg), we
use BirdNet’s default confidence threshold of 0.1. The maximum distance from a root to a boundary
node (thresholdr) varies by species based on territory size and environment, requiring input from a
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species expert. We set thresholdr, the maximal distance between TS root to a border node, using
the average bird density (breeding pairs per 10 hectares) from [4], assuming circular territories and
defining thresholdr equal to that radius.

Table 3: Comparison of the expert’s ground truth and expert’s interpretation of TASE’ KDEs

Species Ground Truth thresholdr Reference
0.5 ‘ 0.6 ‘ 0.7 ‘ 0.8

Anthus trivialis 1 1 1 1 1 Fig. 12
Certhia brachydactyla 4 4 4 4 4 Fig. A.l
Fringilla coelebs 4 4 4 4 4 Fig. A.2
Muscicapa striata 2-3 2-3 2-3 2-3 2-3 Fig. A.3
Phoenicurus phoenicurus 4-5 4-5 4-5 4-5 4-5 Fig. A4
Phylloscopus collybita 3-4 3 3 3 3 Fig. A5
Sylvia borin 1-2 1-2 1-2 1-2 1-2 Fig. A.6
Sylvia atricapilla 4 4-5 4-5 4-5 4-5 Fig. 7
Troglodytes troglodytes 2 2 2 2 2 Fig. 8
Erithacus rubecula 4-5 3 -4 3-4¢ 3- 44 3- 44 Fig. 10
Turdus philomelos 1 i il 1b 1b Fig. 11

@ Qverlapping territories, ® Extraordinary large territory

6. Evaluation

We apply TASE to a real-world dataset (cf. Sec. 3.1). The ground truth was provided by a
bird expert who systematically traversed the field on the same day where the recording was taken,
recording all observed birds on a map, following a methodology similar to the monitoring method
known as territorial mapping [49, pp.47-59]. The main difference is that we carried out multiple
field surveys within the same day over six hours rather than over a longer period. By repeatedly
transecting the area — and given that the target species are territorial and highly vocal during
the breeding season — this time-intensive approach allows us to identify stable spatial patterns
that correspond to territory locations, even within a short timeframe. Similar methods have been
applied, e.g., in [3]. In addition to the surveys conducted on the recording day, field surveys were
also performed on prior days, which helped in the interpretation of the same-day observations. By
understanding the spatial distribution of territorial individuals, the expert assesses the number of
territories for that day, providing a ground truth. First, we qualitatively assess the similarities and
differences between the spatial distributions identified by TASE and the expert’s assessment. In the
second step, we analyze cases where TASE performs poorly, highlighting its current limitations.

6.1. Comparing TASE to Fxpert’s assessment

When applied to a species, TASE generates a spatio-temporal point cloud that implicitly captures
the birds’ sound-producing and territorial behavior. We anticipate the highest point density within
territorial areas, representing the spatial extent and intensity of species activity. Kernel Density
Estimation (KDE) is particularly well-suited for analyzing these patterns. It smooths the discrete
points into a continuous density surface, highlighting areas of high intensity while preserving the
spatial structure of territories. We applied KDE (with a bandwidth parameter of 0.15) to eleven
species, using this as a baseline within our parameter space (cf. Sec. 5.2), and incorporated expert
assessments represented as circles. These circles approximate the actual territorial areas, which are
inherently dynamic and lack fixed boundaries (cf. Sec. 2).
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Figure 7: Kernel density estimate (green) of spatio-temporal detections for the Blackcap Sylvia atricapilla generated
by TASE, with the expert’s territorial assessment shown by the colored circles.
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Figure 8: Kernel density estimate (green) of spatio-temporal detections for Eurasian Wren Troglodytes troglodytes after
TASE, with the expert’s territorial assessment shown by the colored circles.

We compare the expert assessment of territories based on field monitoring data and KDE analysis
in Tab. 3. Assessing the number of territories from the KDEs involved a visual interpretation of the
highest-density areas and their distance from each other. The expert analysis of KDE data focused
on identifying high-density areas and evaluating their spatial distance. If the expert’s assessment of
KDEs fits exactly with the ground truth, we color the table’s cell green. If it fits partly, we color
it orange, and if not, we color it red. The initial analysis demonstrates that the proposed approach
effectively aligns KDE assessments with ground-truth territory counts in most cases, underscoring
the method’s effectiveness. Although lowering thresholdg predictably reduces the number of points,
the overall pattern remains largely intact, yielding identical estimates across all species. The pri-
mary source of error appears to be overlapping territories, particularly for the species European
Robin FErithacus rubecula, as the density maps reveal broad areas of activity rather than distinct,
separated spots. However, this discrepancy was limited to one or two territories, confirming that the
overall approach remains highly effective across most species and scenarios. From an ornithologist’s
perspective, missing a single territory is usually minor, especially in large populations. For rare or
endangered species, however, it can significantly affect conservation decisions. Such miscounts are
not unique to our method and are also common in traditional surveys. Fortunately, this issue does
not apply to the species considered in our study.

6.2. Influence of thresholdg in KDE Interpretation

The following sections examine the relationship between KDE interpretation and the impact of
the threshold thresholdg. Starting with the Eurasian Sylvia atricapille in Fig. 7, we initially observe
four distinct high-density clusters, separated by areas of lower density. These four clusters align
closely with expert assessments. However, when we vary the threshold for TS roots thresholdg, as
shown from Figs. 7a to 7d, the high-density area changes in form slightly. Note that with increasing
thresholdg, the number of points declines from 6835 to only 1287. This reduction results from the
interaction between the classifier’s detection ability and TASE’s assumption that any classification
above thresholdg is correct.

It is important to note that TASE detects individuals only when vocalizing. Since singing typically
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occurs at specific, localized spots rather than continuously across a territory, the resulting data may
not form a cohesive area. Temporal or spatial gaps between vocalizations and a lack of observed
movement can cause what would otherwise appear as a contiguous territory to break into several
isolated "hotspots” of high-density activity. Examples of these separated hotspots are highlighted
with orange arrows in Fig. 7. In Sec. 7.1, we further discuss how our methodology may also contribute
to forming such fragmented areas.
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Figure 9: Kernel density estimate (green) of spatio-temporal detections for the Eurasian Wren Troglodytes troglodytes
after TASE processing, with the expert’s territorial assessment shown by the colored circles.

Independent of the thresholdg, when territories overlap in space or time, high-density areas can
become large, as shown for the Eurasian Wren Troglodytes troglodytes in Fig. 8. Experts identify
two distinct territories based on their knowledge of the species, but at first glance, the density map
falsely suggests a single, larger territory. These distortions become visible by analyzing shorter time
intervals, as illustrated in Fig. 9. For the Eurasian Wren, 30-minute segments with 15-minute over-
laps reveal multiple high-density clusters, confirming that singing points are spaced apart rather than
forming a single extensive area. Over time, the distance between these clusters decreases, reflecting a
characteristic behavior known as counter-singing, where individuals advertise their territory bound-
aries toward neighboring birds. As a result, the gaps between territories gradually close, making it
increasingly difficult to visually distinguish individual territories over long periods and highlighting
the crucial role of expert knowledge.
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Figure 10: Kernel density estimate (green) of spatio-temporal detections for European Robin Erithacus rubecula after
TASE, with the expert’s territorial assessment shown by the colored circles.

Reducing the time spans when visually interpreting high-density areas also has limitations, par-
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ticularly when territories are very close together or overlap extensively, as seen with the European
Robin Erithacus rubecula in Fig. 10. The three western territories merge into a single region without
clear low-density borders, aligning with the expert-identified territories (red circles) but highlighting
that TASE-based density estimation struggles to separate neighboring clusters. Dense territories are
also challenging to assess in traditional field monitoring and are a known source of error [5], likely
resolvable only through TAM. Our analysis indicates that using intervals shorter than 15 minutes can
partially alleviate the issue. However, it also reveals that the challenges in assessing spatially close
territories remain, underscoring the need for continued research in this area.

We identified two additional behavioral factors affecting the interpretation of our results. The
first involves species with large territories. 1) Although expert field mapping confirmed the presence
of a single territorial Song Thrush Turdus philomelos, its powerful, far-carrying song was recorded
by multiple devices across the deployment site. As shown in Fig. 11, this resulted in multiple
high-density clusters centered within the deployment area, making it difficult to distinguish clear
territorial boundaries. 2) The second factor, which we have identified involves individuals who are
either non-territorial or temporarily leave their established territories, thereby influencing the data
interpretation. In Fig. 12, two verified high-density cluster (highlighted in red) appears simultane-
ously with vocalizations from another individual of the same species to the south, suggesting the
involvement of multiple territories. Expert ground-truth data confirms only one territory within
the deployment area, with two additional territories located approximately 300 meters beyond its
boundaries. This suggests that territorial birds outside the study area may occasionally enter its
perimeter or that non-territorial individuals may pass through. Such behavior is well-documented
in ornithological studies and represents a recognized source of methodological error in field monitor-
ing (e.g., [5]). These observations show that TASE can capture real behavioral dynamics, such as
temporary territorial incursions and broader movements. It is clear that a more focused approach to
spatial data analysis, particularly in terms of timing, could significantly enhance the interpretation
of territories.
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Figure 11: Kernel density estimate (green) of spatio-temporal detections for Song Thrush Turdus philomelos after
TASE, with the expert’s territorial assessment shown by the colored circles.
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Figure 12: Kernel density estimate (green) of spatio-temporal detections for Tree Pipit Anthus trivialis after TASE,
with the expert’s territorial assessment shown by the colored circles.

The preceding evaluation demonstrates that TASE’s results closely align with expert assessments
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of territorial boundaries. Similar findings for other species are presented in the appendix. Summa-
rizing, territorial recognizability is affected by the interaction between the classifier performance, the
thresholdg, and species behavior. (1) Lowering thresholdg increases the inclusion of classifier errors
in TASE, which could obscure territorial boundaries. Still, our evaluation shows that the overall
pattern remains consistent. Selecting an appropriate thresholdg depends on how well the classifier
works for the species, the region, and the acoustic environment and should make territorial patterns
detectable. (2) Territorial patterns can be observed, but separating them is challenging, especially
when conspecifics are nearby. Shorter time-scale analyses can help by revealing local dynamics often
masked over more extended periods. As already mentioned, this difficulty is not unique to TASE
— field surveys encounter similar challenges ([49, pp. 52-53] [5]). Undoubtedly, expert knowledge
of the target species’ territorial behavior is important and essential to accurately interpret the KDE
and minimize erroneous estimates of their number.
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Figure 13: Impact of overlapping vocalizations during dawn chorus, exemplary for two species

7. Discussion and Future Research

Our evaluation demonstrates that TASE, when applied to bird data collected by an ASN, can
identify territorial patterns for multiple species coexisting in the same area. By visualizing these
patterns, TASE enables experts to analyze the spatial distribution of high-density areas and accu-
rately estimate the number of territories. This capability also unlocks new possibilities for monitoring
species abundance, serving as a novel, powerful tool for advancing ecological research and conserva-
tion efforts.

7.1. Limitations of TASE

7.1.1. Impact of Species Classifier

Our work presents a novel approach that leverages spatially distributed confidence values from
the Al classifier BirdNet for species identification. Although BirdNet is widely used and relatively
reliable, it struggles in complex environments like the dawn chorus [27]. Confidence values decrease
due to overlapping sounds from multiple species sharing similar acoustic frequencies, which obscure
each other’s features.

Figure 13 shows the confidence scores per node for Common Redstart and Song Thrush detections
in 15-minute bins. Values above 0.5 — seeds for territorial subgraphs — drop sharply between 04:00
and 04:30, when the dawn chorus intensifies. Before 04:30, high-confidence detections are far more
common. Overlapping songs reduce confidence scores once additional species join in. This pattern
applies to other species active during low-interference periods such as early morning and late evening.
For TASE, due to its fixed thresholdg, this variation in confidences affects both the number of
detection points and biases towards specific times — high thresholds favor low-interference periods.
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A potential solution is to implement an adaptive thresholdr that adjusts based on interference
conditions, considering the confidence values of both target and other species to provide a more
flexible threshold mechanism. Another option would be to ground-truth the acoustic data directly,
enabling the calculation of precision and recall metrics that could support fine-tuned, species-specific
thresholds tailored to the local acoustic environment. It is important to note that these metrics may
also vary over time due to changing outdoor acoustic conditions and acoustic behavior.

I - h - T —
/] / /
s FTar B - * T —
T P Fr i Ot
L) o ]
: =. g = 5 P
/ =& - =
S~ ,‘/‘ s~ ,‘/‘
a0 / -~ 0 o0 - w
g E = ‘ = ;
P AR ! A
5 o] g , 5 ] 5 e S
- ) \*‘>\‘ - “ \'g‘?\
- = = 2 e
& TS & 5 & =
@ TS o [ ] =
@ T [} TS &
® TS 13 at o muliple TS
art o multiple TS op ent o TS

T

N Easting

(a) 04:00:5 to 04:00:8

m

T N Easting

(b) 04:00:41 to 04:00:43

m

T N Easting

(c) 04:37:48 to 04:37:51

m

Figure 14: Impact of variation in classifier’s confidence over time.

7.1.2. Impact of TASE Parameters

Variations in the classifier’s confidence scores can influence how well TASE generates spatio-
temporal point clouds. To explore this effect, we examine three representative TASE runs in detail.

Local noise and interference can degrade classifier accuracy and can lead to overcounting. For
example, the gray node between TS 1 and TS 3 in Fig. 14a has a confidence value of 0.582, causing
it to be assigned to both territories and falsely splitting what should be a single TS into two.
Additionally, we set a maximum distance from a T'S’s root node to its border nodes. However, during
low-interference periods, high confidence levels can extend detections beyond this limit, resulting in
duplicate TS, as illustrated in Fig.14b, where TS 2 (green) and TS 4 (cyan) represent the same
individual. Interference also significantly reduces the detectable range of vocalizations, lowering
classification confidence. As shown in Fig.14c, neighboring nodes recorded the Common Redstart
with a maximum confidence of only 0.16, compared to much higher values under low-interference
conditions (Figs.14a and 14b).

While these erroneous T'S are an issue, our prior evaluation shows that they have minimal overall
impact for two reasons: 1. We concentrate on the dawn chorus (4 to 10 a.m.), where low interference
affects only about 45 minutes of the six-hour deployment, resulting in few induced errors. 2. The
territorial nature of our species confines them to specific areas, minimizing error impact as long as
territories are sufficiently spaced apart. Nevertheless, reducing classification variability can enhance
our algorithm’s resilience. A promising approach is to incorporate contextual information from
species detection time series in the future, as proposed in [45].

7.1.8. Integrate precise Localization

In step 4 of TASE, we derive representations for the territorial subgraphs corresponding to in-
dividual vocalizing animals. A key advancement at this stage is the precise localization of these
sources. Existing methods perform poorly in complex soundscapes like the dawn chorus, where over-
lapping vocalizations aggravate localization and hinder full automation[41]. However, prior work by
[10] provides a promising approach for overcoming these challenges.

7.1.4. Automated Fvaluation of spatio-temporal Point Cloud
Past evaluations have revealed that high-density areas, while aligning well with the territorial
approach, also present significant limitations. These areas can evolve and change over time, with
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distinct territories merging into larger cohesive areas, posing a challenge in visual interpretation. It is
crucial to recognize that territorial behavior is often more dynamic than the fixed-border assumption
underlying this work. This shift in perspective is necessary for a more comprehensive understanding
of the subject (see Sec. 7.2). Future studies should adopt more sophisticated clustering methods that
account for spatial and temporal scales and are capable of handling occasional errors in the data or
migrating individuals. Incorporating expert knowledge into the point cloud clustering process without
focusing only on the point density is the long-term direction for automated evaluation. However,
translating expert insights—such as species behavior or habitat use—into algorithmic rules remains
challenging. Strategies like semi-supervised learning or rule-based constraints may help, though they
could increase computational complexity.

7.2. Territoriality - Limitations and Future Research

While territorial spatial patterns generally align with expert assessments, TASE struggles when
territories overlap extensively, when a single territory is unusually large, or when territorial individu-
als migrate through the array altogether — difficulties that also arise in traditional field monitoring.
Our findings suggest that spatial patterns of individuals might exceed the idea of fixed territorial
boundaries., which is already well-documented in ornithology (e.g., [5], [49, pp.52]), where it is known
that large territories, densely populated habitats, and individuals temporarily leaving their core ter-
ritories can complicate assessment of territories. By comparing these field-based methodological
challenges with TASE’s performance, we find that both methods share similar limitations. However,
we also find that many field monitoring limitations are caused by data scarcity. We expect TASE
to overcome those since recorders remain in the field continuously, collecting data when species are
undisturbed. But this advantage brings a new challenge: developing advanced analytical methods
to untangle complex territorial dynamics. We see two primary research directions to address them:
1. Extend the fixed territory concept by a soft boundary concept: Statistical models could define
territorial subgraphs by embracing uncertainty and allowing for dynamic, overlapping boundaries.
2. Replace the fixed temporal resolution with a dynamic one: Using fixed time intervals may not
capture species-specific temporal dynamics. Adaptive temporal resolution could sharpen territorial
estimates, especially for species with fluctuating activity. Even so, expert insight remains crucial for
interpreting the dynamics and extending TASE to longer deployments in diverse acoustic settings.

7.3. Future Viability of Next-Generation Species Classifiers

New, more advanced species identification models, such as those introduced by [24], are emerg-
ing and may eventually surpass BirdNET’s current performance, including improved robustness to
overlapping sounds. As these classifiers become more resilient to interference, TASE will benefit ac-
cordingly. However, TASE relies on a fundamental assumption: there must be a correlation between
classification confidence and distance. Before adopting any new classifier, verifying that it meets this
criterion is essential. Datasets like [50] or Open-Source acoustic simulators such as [8] can assist in
conducting these preliminary evaluations to ensure that future classifiers fulfill that correlation.

7.4. Time- and Space Scalability

The deployment in this paper is limited in time and space. To assess TASE performance, longer
and larger deployments should be conducted on various species. Of course, the computational demand
grows with number of sensor nodes (spatial coverage) and input temporal resolution. TASE must
be run on much broader data sets to capture richer, species-specific territorial dynamics that will
emerge over longer time spans and larger areas. Reducing computational time by parallelizing the
algorithm is an objective for future work.

In addition to the TASE application, ground-truthing also becomes an issue. Manual validation
becomes impractical when scaling up to larger or more complex environments, such as a rainfores.
Given the limitations of TASE application and the impracticality of manual validation in such envi-
ronments, there is an need to explore alternative ground-truthing methods. Future research might
focus on methods such as bird banding, GPS tracking, or semi-automated IAM techniques for broader
applications.
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Our approach relies on densely placed recorders, which raises several practical questions. There-
fore, future work should prioritize developing clear deployment guidelines for ornithologists because
current knowledge is based on practical experience. Key priorities include: (i) optimizing sampling
periods to balance battery life, storage, and detection rates, (ii) standardizing microphone gain and
configuration settings to ensure consistent recording quality, (iii) establishing practical field deploy-
ment strategies, including recommendations for sensor spacing, mounting, and orientation.

7.5. Transferability to other Species and Regions

Although we applied TASE primarily to birds, the underlying approach can be adapted to other
territorial, sound-producing species, such as cicadas [52]. The key prerequisites remain the same:
(i) the species is territorial and emits identifiable vocalizations, (ii) a reliable classifier exists, and
(iii) the requirements in Sec. 4.1 are satisfied. Detailed knowledge of a species’ call structure and
territorial behavior remains critical because it dictates recorder spacing and the spatial parameters
of the detection graph. Once these inputs are in place, the workflow transfers with minimal extra
effort.

Scaling TASE to large, species-rich soundscapes, such as tropical forests, poses additional chal-
lenges that TASE likely fails to handle. For example, the ”one bird per cluster” assumption, which
is based on the idea that each bird’s vocalization can be distinctly identified and separated from
others, may fail when several individuals sing in close proximity. Possible solutions might involve
denser node deployments with limited recording ranges or directional microphones, which eventually
require modifications when building the graph.

7.6. Opening up new research Opportunities

TASE advances bioacoustic monitoring on two critical fronts. First, accurately estimating terri-
tories through bioacoustic methods offers significant ecological and conservation benefits. By delin-
eating the spatial extent of different individuals or populations, researchers gain insights into species
distribution, resource use, and habitat preferences. Such knowledge can inform land-use decisions,
guide habitat restoration efforts, and improve species management strategies. When combined with
long-term acoustic monitoring, territorial estimates can help to track population dynamics, detect
changes in species abundance or distribution over time, and identify critical areas for conservation.
Second, TASE collects reliable abundance data in places where traditional field surveys cannot op-
erate, e.g., remote alpine valleys or countries lacking extensive bird-watching expertise. Because
many species migrate across national borders, closing these data gaps is essential for coordinated,
multi-country protection efforts.

8. Conclusion

This work offers a promising solution for estimating species abundance from ASNs using an Al-
based species classifier. Instead of identifying individuals by their unique features, we leverage their
territoriality to estimate the number of territories as a proxy for species abundance. Our approach
combines a species classifier with a network of acoustic recorders deployed across a cohesive area to
reveal spatial patterns corresponding to territories. We tested our method on territorial bird species
in a qualitative proof-of-concept evaluation. Our results were compared with expert field assessments,
providing a robust validation of our approach. Our findings closely matched expert perceptions of
territorial boundaries despite errors arising from complex avian behaviors and classifier limitations.
However, much refinement remains, including assessing TASE in large-scale and long-term deploy-
ments and introducing a concept of soft-territorial boundaries to develop automated spatial-temporal
clustering instead of spatial high-density interpretation. In future research, TASE has the potential to
become a valuable tool for acquiring abundance data in areas where field monitoring is traditionally
challenging.
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Data Availability

We provide our dataset at the following link: https://doi.org/10.26249/FK2/VORDOF
Companion tools, including our algorithm and plotting scripts, are available at: https://github.

com/sys-uos/TASE
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Figure A.1: Kernel density estimate (green) of spatio-temporal detections for Short-toed Treecreeper Certhia brachy-
dactyla after TASE, with the expert’s territorial assessment shown by the colored circles.
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Figure A.2: Kernel density estimate (green) of spatio-temporal detections for Eurasian Chaffinch Fringilla coelebs
after TASE, with the expert’s territorial assessment shown by the colored circles.
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Figure A.3: Kernel density estimate (green) of spatio-temporal detections for Spotted Flycatcher Muscicapa striata
after TASE, with the expert’s territorial assessment shown by the colored circles.
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Figure A.4: Kernel density estimate (green) of spatio-temporal detections for Common Redstart Phoenicurus phoeni-
curus after TASE, with the expert’s territorial assessment shown by the colored circles.
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Figure A.5: Kernel density estimate (green) of spatio-temporal detections for Common Chiffchaff Phylloscopus collybita
after TASE, with the expert’s territorial assessment shown by the colored circles.
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Figure A.6: Kernel density estimate (green) of spatio-temporal detections for Garden warbler Sylvia borin after TASE,
with the expert’s territorial assessment shown by the colored circles.
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