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A B S T R A C T   

The positive impact of urban forests and trees on the well-being of urban residents worldwide is well known. 
Resistance to pests, diseases, and extreme weather events are among the most critical characteristics of resilient 
cities, closely related to species richness and, consequently, to the diversity of street trees. However, urban forest 
inventories are currently scarce worldwide. For this reason, urban trees’ biodiversity and capacity to provide 
these ecosystem services are not developed enough. Three state-of-the-art species identification applications 
were tested, Plant.id, Pl@ntNet and Seek (iNaturalist) to identify a large number of tree families, genera, and 
species automatically. Two individual Google Street View images were queried for each tree in the study area, 
adjusting the Field of View and pitch parameters. The predictive capacity of the three apps was compared, and a 
biodiversity analysis was performed for different geospatial scales within the study area (i.e., at the whole study 
area, neighborhood, and street levels, respectively). Notably, our research contributes in an innovative way to 
the assessment and monitoring of the ecosystem services provided by street trees and sheds light on the great 
potential of combining remote sensing, citizen science and artificial intelligence for urban forest biodiversity 
assessments at multiple spatial and temporal scales.   

1. Introduction 

As the population of cities continues to grow, so does the importance 
of urban forests and trees due to their ability to provide ecosystem 
services key to human well-being. Climate change is expected to in
crease temperatures in built-up areas further, so the cooling effect of 
trees and their ability to sequester and store carbon becomes relevant 
concerning human well-being (Ow and Ghosh, 2017; Roebuck et al., 
2022; Xing et al., 2021). In addition to these ecosystem services, urban 
forests also have a positive effect on mental and physiological health 
(Helbich et al., 2019; Wood et al., 2018), especially in areas with higher 
biodiversity (Billé et al., 2012; Giacinto et al., 2021). 

In this context, tree species diversity and spatial configuration are 
crucial to the urban forest ecosystem’s functioning (Alvey, 2006; Li and 
Ratti, 2018; Yahiaoui et al., 2012). Higher urban biodiversity, including 
higher diversity of tree species, can contribute to improved vegetation 

stability and resilience (Roebuck et al., 2022). In the same vein, urban 
trees create corridors that connect larger green areas, enabling animal 
mobility and facilitating the exchange of genetic material through cross- 
pollination (Caneva et al., 2020). For instance, a study made in the city 
of McAllen in Texas, United States of America, found that native trees 
hosted a relatively high number of arthropods (approximately 90 spe
cies) in the canopy foliage, thus providing sustenance for a more 
extensive food web and enhancing biodiversity (Racelis et al., 2013). 
However, even if the species composition is generally diverse in many 
cities, they are often planted in a rather monospecific way, especially 
alongside the roads, predisposing the trees to disease or damage (Kara, 
2012). 

This information regarding tree location and taxonomic classifica
tion is currently found in urban forest inventories. Importantly, this 
dearth of comprehensive urban forest inventories perpetuates a signifi
cant gap in information, hindering an understandable urban forest 
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dynamics and impeding targeted conservation efforts (Zhang et al., 
2015). Furthermore, identifying tree species can be difficult, time- 
consuming, and expert-intensive (Jones, 2020; Wäldchen and Mäder, 
2018), which increases the challenges regarding biodiversity conserva
tion and plant studies in a situation where both biodiversity and the 
number of taxonomic experts are declining (Gaston and O’Neill, 2004; 
Hopkins and Freckleton, 2002; Jones, 2020; Wäldchen et al., 2018). To 
overcome these constraints, previous research has addressed the map
ping and massive identification of urban trees through remote sensing 
data (Atasoy, 2020; Branson et al., 2018; Fassnacht et al., 2016; Li et al., 
2019; Wang et al., 2018). For instance, species identification through 
Light Detection and Ranging (LiDAR) data (Chi et al., 2020; Sun et al., 
2019; Timilsina et al., 2020) or satellite imagery (Hartling et al., 2019; 
Jiang et al., 2017; Ozkan et al., 2016), as well as tree mapping (Branson 
et al., 2018; Laumer et al., 2020; Lumnitz et al., 2021), have been the 
focus of research in recent years. However, previous research has seldom 
focused on automatic urban forest inventory, especially regarding spe
cies identification and mapping. In the few cases available, the research 
has been modest in scope, or the models have had poor replication 
(Branson et al., 2018; Seiferling et al., 2017), which has contributed to 
the current gap in knowledge on the application of new technologies to 
the assessment of urban tree diversity in a spatially-explicit and auto
matic way. 

Artificial intelligence opens new possibilities to massive tree species 
identification from ground-sourced images, which can contribute to 
filling the void arising from the costly field inventories and the lack of 
experts, especially in urban areas where footage such as the Google 
Street View (GSV) images already exists and are available over large 
scales worldwide (Seiferling et al., 2017). GSV has emerged as a viable 
alternative for analyzing elements on Earth, directly competing with 
traditional remote sensing sources (Hou and Biljecki, 2022). A 
contemporary trend in scientific advancement is the emergence of citi
zen science. Citizen science involves the active participation of the 
general public, without scientific training, in research projects (Roman 
et al., 2016). This approach has garnered popularity also in forest 
research, where citizens contribute through continuous species consul
tation and corrective identification, thereby facilitating the establish
ment of an expanding bank of botanical samples (Otter et al, 2012). 
There are already multiple smartphone applications, such as LeafSnap 
(Kumar et al., 2017) and Pl@ntNet (Anubha Pearline et al., 2019), 
which allow any user to identify plant species with photos taken with 
their phones (Iskrenovic-Momcilovic, 2020; Otter et al., 2021). Some of 
these applications have been made in cooperation with entrepreneurs, 
research groups, and botanists. They are mostly citizen science-based 
leading to a steady increase in the accuracy of these apps, thus 
providing a tool for species recognition open to the public (Otter et al., 
2021). Some research has previously evaluated the performance of these 
tree-recognition applications (Bilyk et al., 2020; Xing et al., 2021). 
However, these studies have been conducted with photographs taken 
directly by the users, which implies moving to the field and the target 
study area. While facilitating field data collection, tree-to-tree city visits 
remain arduous (Jones, 2020). Capecchi et al. (2023) studied the per
formance of Pl@ntNet and Plant.id with massively available ground- 
sourced data as a cost-effective option to inventory urban street trees. 

The main objective of this study is to evaluate the predictive capa
bility of citizen science-based species identification applications in a 
large-scale setting, using automatically generated individual-tree geo
positioning data from remote sensing data. The paper introduces an 
approach to provide an individual ground-level images for each tree 
from multiple viewpoints. Model performance was validated in a 
selected study area of the city of Lleida, Spain, for which an available 
field-based urban tree inventory could be used as ground truth for model 
testing and validation. The second objective was to evaluate tree 
biodiversity by automatically analyzing biodiversity indices obtained 
from the best-performing citizen science application and comparing 
these results with the ground-truth tree inventory information. This 

study represents a significant step forward in automating the urban 
forest inventory process and the study of urban tree biodiversity, with 
the potential to inform urban forest biodiversity at multiple spatial and 
temporal scales. Furthermore, by addressing the shortcomings of pre
vious research and explicitly comparing with existing global urban 
forest inventory practices, this study contributes to bridging critical 
knowledge gaps in the field. 

2. Material and methods 

2.1. Study area 

The study area was located in the western part of the city center of 
Lleida. Lleida is located alongside the river Segre in Lleida province, 
Catalonia region, northeastern Spain. The municipality of Lleida covers 
an area of 212 km2 (Ajuntament de Lleida, 2022), of which the study 
area covered 59.12 ha (Fig. 1). 

According to the official forest inventory provided by the city council 
of Lleida, the street trees in the study area consisted of 30 families, 40 
genera, and 49 species of trees. According to this field inventory, 52 % of 
the trees in the study area belong to 4 species: Morus alba L. (20 %), 
Platanus × hispanica Mill. ex Münch 21.78 (16 %), Ligustrum japonicum 
Thunb (10 %), and Melia azedarach L (7 %). Most of the individuals of 
these species are grouped in specific streets, Morus alba being mainly 
located north of the study area, among detached houses and along some 
important avenues, Platanus x hispanica being distributed primarily in 
the northwest part of the city, while Ligustrum japonicum is more wide
spread but mainly distributed within the western area of the city. 
Overall, the study area is composed of 37 streets, 22 of which have trees, 
encompassing three different neighborhoods; Joc de la Bola (1), Uni
versitat (2), and Camp de Esports (3). 

2.2. Data 

For this study, two different data sources were used, namely, i) the 
official forest inventory of Lleida, based on field inventory of urban trees 
and including taxonomic classification at the species level, among other 
attributes, and ii) remote sensing data on the location of individual 
urban trees automatically generated by Velasquez-Camacho et al. 
(2023). The latter relies on a methodology that maps street trees using 
deep learning algorithms by combining GSV and aerial or satellite im
ages. It returns the following geographic information of each street tree: 
the distance from the image center to the tree mapped, the area covered 
by the bounding box delimiting the tree detected in the GSV image, the 
unique identifier assigned by Google Maps to the images (Google, 2022), 
the heading value (degree camera rotation 0̊ − 360̊), and an individual 
coordinate. In the study area, information on 968 individual trees was 
returned, to which the taxonomic classification at the family, genus, and 
species level from the official urban inventory of the city of Lleida was 
added to construct the validation database. 

2.2.1. Google street View parameters 
To query each GSV tree image and obtain the best view of the tree 

canopy, it was necessary to adjust two additional parameters to the 
heading: the pitch and the Field Of View (FOV). The FOV refers to the 
zooming level that provides a broader or narrower view of an image, 
while the pitch is the camera tilt angle from top to bottom (Fig. 2). 

These adjustments were made considering the tree size, determined 
by the bounding box size and distance between the tree and the image 
center (Table 1). 

The query parameters were constructed by consulting the individual 
identifier for individual GSV images, which was used in a request in 
Python 3.10 using the Static Street View API key in Google Maps. On 
average, two static images per tree were consulted automatically. 
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2.3. Methods 

2.3.1. Plant species identification applications 
After conducting thorough research regarding the state-of-the-art 

and availability of tree taxa identification applications based on citi
zen science and artificial intelligence (deep learning algorithms), three 
of them were selected for this study, namely, Plant.id (Plant.id, 2022), 
Pl@ntNet (Pl@ntNet, 2022), and Seek from iNaturalist (iNaturalist, 
2020). Pl@ntNet and Plant.id, both center around a crowdsourcing 
approach, where users upload images of plants, and the system, through 
the analysis of visual features, facilitates the identification of plant 
species with the contribution of the community (Pl@ntNet, 2022; Plant. 

id, 2022). Seek, follows a similar paradigm, incorporating image 
recognition technology to identify not only plants but also animals and 
fungi. It stands out for its educational orientation (iNaturalist, 2020). 
While the architectures used are not publicly disclosed, these applica
tions share the purpose of promoting plant identification through the 
leveraging of deep learning techniques and citizen science (iNaturalist, 
2020; Jones, 2022; Plant.id, 2022; Pl@ntNet, 2022). In the selection 
process of suitable applications for our research aims, we specifically 
chose these three applications due to their unique feature of providing 
an API key. This key, essential for developer mode access, enables 
seamless requests through a web version of each app. These applications 
predict the probability of a given tree to belong to a specific family, 

Fig. 1. Study area and tree distribution by the street tree or park tree. Green dots represent the street trees. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.): Red dots represent the trees located in parks. 

Fig. 2. Example of request parameters in a panoramic image in Google Street View. Heading. Degree camera rotation. Pitch: Camera tilt angle from top to bottom; 
FOV: Field of view. 
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genus, and species through the analysis of pictures obtained from 
various types of cameras, including mobile or internet images. Upon 
uploading an image, these applications utilize image classification al
gorithms to assign a taxonomic category to the tree analyzed. The 
crucial input information for the successful operation of these applica
tions includes the mandatory API key and the geographical location, 
ensuring precise and context-specific tree identification. Plant.id and 
Pl@ntNet provide a confidence score and the predicted taxonomic 
information. 

2.3.2. Analysis of predictive performance of tree taxa 
The taxonomic classification yielded by each citizen science appli

cation was assessed with a multi-class and multi-labeling method. Multi- 
class refers to classifying the input (i.e., tree species, genus, or family) 
into one class out of two non-overlapping classes (correct – incorrect). 
Data from the official forest inventory of Lleida (validation database) 
was used to evaluate the accuracy in the predictive performance of each 
application (Plant.id, Pl@ntNet, and Seek) for each taxonomic level 
(family, genus, and species). 

The total accuracy obtained from each application was calculated as 
the number of Trees Correctly (TC) identified divided by the total 
number of tree species, genus, or family in the study area, respectively. 
The total number of records (samples) for each taxon (Total number) 
was extracted from the validation database:  

(1) Accuracy: 

Accuracy =
TC(species/genus/family)

Totalnumber(species/genus/family)
*100  

Secondly, a multi-labeling method was used to evaluate the performance 
in predicting the individual label. Thus, this multi-labeling method was 
used to analyze the result of surveying the taxonomic classification of 
the same tree separately at the species, genus, and family levels. So that 
the performance in the identification of different taxonomic levels was 
studied independently for each taxonomic level using several metrics, 
namely, precision, recall and F1 (Sokolova and Lapalme, 2009):  

(2) Precision: 

PM =

∑l
i=1

tpi
tpi+fpi

l
*100    

(3) Recall: 

RM =

∑l
i=1

tpi
tpi+fni

l
*100    

(4) F-1 score: 

F1M =
PrecisionMRecallM

PrecisionM+RecallM
*100  

where:Mmacro averaging, tpitrue positive for taxonomic level i, tnitrue 
negative for taxonomic level i, fpifalse positives for taxonomic level i, 
ltotal number of trees in taxonomic level i in the validation dataset. 

In addition to the average precision, recall, and F1 metrics, a macro 
(M) and weighted average of these metrics were used to evaluate each 
application’s performance in the massive automatic prediction of the 
family, genus, and species of urban trees from GSV images. The 
weighted averaging considered the different degrees of importance for 
each class into which the data were classified based on the number of 
samples in each category (Patro and Ranjan Patra, 2014). We chose the 
nine most frequently occurring species/genus/family labels to simplify 
the resulting plotting. Additionally, we incorporated the “other” cate
gory to account for the remaining labels predicted by the apps (for 
complete results, refer to the Supplementary material). 

2.3.3. Biodiversity analysis 
A biodiversity analysis was performed at three different spatial 

scales, namely at the whole study area, neighborhood and street levels, 
by comparing the results from the citizen science apps with the biodi
versity indices calculated from the ground truth (official urban forest 
inventory). Namely, richness (i.e., number of families, genera, and 
species), Simpson’s index (Simpson, 1949) and Shannon’s index 
(Shannon and Weaver, 1949) were used to evaluate urban tree biodi
versity as predicted by each citizen science application. Moreover, In
verse Simpson’s index and equitability index based on Shannon’s index 
were calculated to quantify species/genera/families evenness (Fedor 
and Zvaríková, 2008):  

(5) Shannon’s index: 

H = −
∑S

i=1
PilnPi    

(6) Simpson’s index: 

D1 = 1 −
∑S

i=1
p2

i    

(7) Inverse Simpson’s index: 

IS =
1

D1  

where pi represents the proportional number of species/genera/families 
i, and S was the richness of species/genera/families. IS is the Inverse 
Simpson’s index, where D is the Simpson’s index.  

(8) Equitability index: 

EH =
H

lnS  

where EH represents the equitability index, H is the Shannon’s index, 
and S was the number of different species/genera/families (richness). 
Equation 3 resulted in a value between 0 and 1, with zero indicating low 
evenness and one indicating high evenness between the species. 

Table 1 
The parameters set for the automatic request of the Google Street View Images. 
Bounding box area ratio: Relation between the bounding box size and pixel size. 
Field of view: The smaller the number, the higher the zoom level. Pitch: Defines 
the angle variance < 0 = tilt down; > 0 = tilt up.  

Distance from 
image to tree (m) 

Bounding box 
area ratio 

Field of view 
(FOV degrees) 

Pitch (-90 – 0 – 
90 degrees) 

<5 <0.5 30 10 
<5 0.5 – 0.7 45 15 
<5 >0.7 80 40 
5–10 <0.25 30 5 
5–10 0.25–0.50 30 10 
5–10 0.5 – 0.75 40 10 
5–10 >0.75 40 30 
10–20 <0.25 20 5 
10–20 0.25 – 0.50 20 10 
10–20 >0.50 45 20  
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2.3.4. Performance in the prediction of biodiversity indices 
In order to ascertain the consistency of the results, a comparison was 

made between the biodiversity indices generated using the validation 
database and the identifications obtained from the most effective 
application. In addition, the Shannon’s index and Inverse Simpson’s 
index results were normalized between 0 and 1. Normalizing the 
biodiversity indices facilitates the comparison and interpretation of the 
predictions and validation data, as well as among different geographic 
scales. The normalization was computed as follows:  

(9) Normalization: 

zi =
(xi − min(x))

(max(x) − min(x))

where zi was the normalized biodiversity index value, xi the ith value of 
the dataset, min(x) the minimum value of the dataset, and max(x) the 
maximum value of the dataset. The normalized biodiversity values from 
the validation database and the biodiversity values from the citizen 
science apps were then subtracted to obtain the normalized difference 

Fig. 3. Number of trees mapped by distance from the image center to the tree in meters (grey bars) and the accuracy of taxonomic classification. The lines show the 
different accuracies for each taxonomic level (a: Family, b: Genus, c: Species). Red line.: Accuracy forPlant.id app (%);Green line: Accuracy for Pl@ntNet app (%); 
Purple line: Accuracy for Seek app (%). 
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between the predicted and the observed biodiversity:  

(10) Normalized difference: 

N = AppresultsStreeti − ValidationDbStreeti  

N indicates the difference index, Validation DbStreet i is the normalized 
biodiversity index of a street from the validation database, and App 
resultsStreet i, the normalized biodiversity index of a street as predicted 
from a given citizen science app. 

3. Results 

3.1. Predictive performance of citizen science apps 

The predictive performance of the tested citizen science apps varied 
with the distance between the image center and each tree, as well as by 
taxonomic level (Fig. 3). Out of all the 2087 taxonomic classifications, 
Plant.id resulted in the highest overall accuracy at all taxonomic levels 
(family 42.9 %, genus 37.7 %, species 16.6 %), Seek being the second 
highest at the family and genus levels, still, the worst performing at the 
species level (family 36.9 %, genus 34.5 %, species 4.6 %), while 
Pl@ntNet had the lowest accuracy among the tested apps at the family 
and genus levels (family 26.9 %, genus 26.4 %, species 9.7 %). 

Regarding species identification, Plant.id exhibited a significantly 
higher success rate compared to Seek and Pl@ntNet, particularly for 
trees located within a maximum distance of 5 m (40.20 %, 13.40 %, and 
17.52 % of accuracy, respectively, as shown in Fig. 3c). At the genus 
level, all the applications showed notable improvements in accuracy 
compared to the species level (15 % for Plant.id and Pl@ntNet, and 30 % 
for Seek). At the family level, Plant.id achieved a 12 % higher accuracy 
compared to the genus level, while Seek exhibited a slight increase (2 %) 
(Table 2). 

The distance between the image capture location and the tree 
influenced the accuracy of the applications. Among the trees located 
within a range of 2.5–5 m from the image capture location (95 trees), 
Plant.id resulted in the highest accuracy at all taxonomic levels (61.85 % 
at the family level, 62.88 % at the genus level, and 40.20 % at the species 
level). However, it should be noted that the number of samples at closer 
distances (0–2.5 m) was lower (5 trees), comprising less than 5 % of the 
evaluated trees, compared to those located further away. The accuracies 
with Plant.id app in the family-level analysis at distances greater than 5 
m remained relatively constant, with 640 (30.6 %) images captured at 
5–10 m, 677 (32.4 %) images at 10–15 m, and 668 (32 %) images at 
15–20 m of distance. Indeed, similar trends were observed with the 
Pl@ntNet and Seek apps, where the accuracies tended to be higher at the 
lowest distances. This pattern of higher accuracies differed for Pl@ntNet 
and Seek at the species level as their accuracy was notably lower than 
Plant.id predictions, even at the closest distance (5 m). 

Out of the 34 families identified by Plant.id, only 14 were found in 
the validation database. Plant.id obtained the best macro-averaging 
precision, with 16 %, 9 %, and 4 % precision at the family, genus, and 
species level, respectively. The recall metric was low for all the tested 

applications being Plant.id the app with the highest recall value (12 %), 
and consequently, all F-scores were also low. 

The results based on the weighted average showed that the majority 
of families and genera were correctly assigned to their corresponding 
categories in the validation dataset. Plant.id showed a significant in
crease in accuracy when comparing the macro average with weighted 
average metrics, namely, a 23 % increase in accuracy at the family level, 
a 44 % increase at the genus level, and a 17 % increase at the species 
level. Similarly, Pl@ntNet and Seek also showed high scores across all 
categories. Pl@ntNet achieved a 38 % increase in accuracy at the family 
level and a 42 % increase at the genus level compared to the macro 
averaging metric. Seek showed a 26 % increase at the family level and a 
35 % increase at the genus level. 

Across all applications, the best performance in taxonomic classifi
cation was observed at the family level (Fig. 4). Upon normalizing the 
results, it was found that Plant.id showed the highest accuracy in 
correctly assigning trees to the Moracea family, with only a few mis
identifications. On the other hand, Seek showed the best performance in 
identifying trees of the Platanaceae family, although there were in
stances where the trees were misidentified as Sapindaceae family or 
“other” families. Pl@ntNet showed better accuracy detecting Meliacea 
family trees than the other two applications. However, it is worth noting 
that Pl@ntNet did not achieve a remarkable detection rate for any 
specific family, as it frequently misidentified trees from various families 
as “other” species. 

In general, Plant.id exhibited higher accuracy in genus-level classi
fication, but certain genera, such as Prunus sp. and Morus sp., were 
successfully detected by all three applications. On the other hand, Seek 
performed exceptionally well in identifying Platanus sp., the most 
common genus in the study area, while Plant.id outperformed the other 
apps in detecting Celtis sp. and Ligustrum sp. We noted a recurring 
detection error in Pl@ntNet and Plant.id, where the most ten common 
genera in the validation data were erroneously identified Prunus sp. 

At the species level, the most accurately identified trees were 
Lagerstroemia indica, consistently well-detected by all apps. Ligustrum 
japonica was predicted with high accuracy in both Pl@ntNet and Plant. 
id, while Acer campestre was classified better with Plant.id, and Morus 
alba with Seek. However, it is worth noting that the detection accuracy 
for species is remarkable only in these four cases, as the other species 
showed lower detection rates. 

The results of Plant.id were used to compare the biodiversity indices 
with the validation database (the 968 trees mapped) since it demon
strated the highest performance in taxa prediction at all taxonomic 
levels (Table 3). 

3.2. Predictive performance of biodiversity indices 

The analysis of total identifications from Plant.id revealed an over
estimated biodiversity compared to the validation database. At the 
family level, the richness estimate from the automatic predictions was 
160 % higher than the ground truth. Shannon’s index was 18 % higher, 
Simpson’s index was 6 % higher, and Inverse Simpson’s index was 56 % 

Table 2 
Evaluation metrics by taxonomic level and application. Macro averaging (macro-avg) precision, recall, and F1 score. Weighted averaging (weighted-avg) precision, 
recall, and F1 score.   

Family (%) Genus (%) Species (%) 

Application Plant.Id Pl@ntNet Seek Plant.Id Pl@ntNet Seek Plant.Id Pl@ntNet Seek 

Overall accuracy 42 26 36 38 26 34 16 9 4 
macro-avg Precision 16 7 8 11 4 4 6 1 1 
macro-avg Recall 13 4 5 8 2 2 5 1 1 
macro-avg F1 12 4 5 7 2 2 4 1 1 
weighted-avg Precision 65 64 59 74 68 69 33 25 27 
weighted-avg Recall 43 27 37 38 26 34 17 10 5 
weighted-avg F1 48 36 43 45 36 42 20 13 7  
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higher compared to the validation database. Similarly, at the genus 
level, the Shannon’s index was 19 % higher, and the 7 % in Simpson’s 
and Inverse Simpson’s indices were 7 % and 60 % higher, respectively, 
compared to the validation data. At the species level, the Shannon’s, 
Simpson’s, and Inverse Simpson’s indices were 11 %, 6 %, and 57 % 
higher than in the validation database. Both at the genus and species 
levels, the richness was overestimated by approximately 200 %, as the 
total identifications from Plant.id resulted in an overestimated count of 

genera and species compared to the actual biodiversity in the validation 
database. 

At the neighborhood level, the trends suggest that the predicted 
values tend to overestimate biodiversity (except for Simpson’s Index D, 
where it is underestimated) in all neighborhoods, with varying magni
tudes of differences between observed and predicted values. In Neigh
borhood 1 (Joc de la Bola), the average difference between observed and 
predicted biodiversity indices was approximately − 0.258. Neighbor
hood 2 (Universitat) showed an average difference of roughly 0.113, 
indicating slight overestimation, except for Simpson’s Index D, which 
was slightly underestimated by − 0.019. However, the average differ
ence in Neighborhood 3 (Camp de Esports) was approximately − 0.644, 
suggesting that the overestimation was higher. The most significant 
difference in species richness was observed in Neighborhood 1 with a 
value of − 71, followed by Neighborhood 3 with − 72, and Neighborhood 
2 with − 40 (Table 4). 

At the street level, the predicted biodiversity indices were generally 

Fig. 4. Associated normalized confusion matrices depicting the performance of the taxonomic classification of each tree by each application at different taxonomic 
levels (family, genus, and species). The ratios within the matrices indicate the degree of accuracy between categories, with a higher ratio meaning higher accuracy. 

Table 3 
Richness values at the family, genus, and species level in the validation database 
and the database resulting from all and correct identifications by Plant.id.  

Database Family Genus Species 

Validation database 21 30 41 
Plant.id – total identifications 34 63 83 
Plant.id – correct identifications 14 20 16  
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overestimated compared to the validation dataset, particularly with 
neighborhood-level predictions. However, there were some exceptions, 
such as the square within neighborhood 2 (Universitat), where the 
predicted biodiversity was underestimate in family category in all 
indices (Table 5). 

The normalized difference analysis at the street level unveiled 
certain shared trends between the validation database and the biodi
versity indices calculated using Plant.id identifications (Table 6). Posi
tive values indicate an overestimation of biodiversity indices when 
utilizing Plant.id identifications, whereas negative values imply un
derestimations. These findings suggest a correlation between Plant.id 
identifications and ground truth data, indicating potential reliability in 
assessing differences in biodiversity levels between streets within urban 
areas. 

Notably, at the family level, streets 6 and 21 consistently exhibited 
the most congruent biodiversity indices (lower difference values) be
tween the validation database and Plant.id predictions. Conversely, 
streets 1, 12, and 20 showed the highest differences between predicted 
and observed biodiversity indices. According to the validation dataset, 
these three streets harbored two species, resulting in lower biodiversity 
indices, so that Plant.id predictions resulted in overestimated biodiver
sity (See complementary material: Difference Index Maps folder). 

In 27 % of the streets there was a significant correlation between the 
predicted and observed Shannon indices, with values ranging from − 0.1 
to 0.1. About 50 % of the streets exhibited correlation values between 
0.1 and 0.5 in absolute value, while 22 % displayed disparities over 0.5 
(absolute value). Only two streets (16 and 4) exhibited pronounced 
underestimations in predictions (values lower than − 0.5). Regarding 
Simpson’s index, the minimal difference (lower than 0.1 in absolute 
value) prevailed in a mere 22 % of streets. Around 54 % of streets dis
played differences between 0.1 and 0.5 in absolute value, while 24 % 
showcased differences over 0.5 in absolute value. Only one street (4) 
yielded an underestimation of Simpson’s difference index, while three 
streets resulted in overestimation (>0.5). Finally, the inverse Simpson’s 

index at the family level revealed four streets with differences exceeding 
0.5 and lower than − 0.5, 60 % with values ranging from 0.1 to 0.5 and 
from − 0.5 to − 0.1, and 18 % with values oscillating between − 0.1 and 
0.1, indicating substantial associations. 

At the genus level, Plant.id provided the most accurate predictions of 
Inverse Simpson’s index. Approximately 36 % of the streets exhibited 
difference values ranging from − 0.1 to 0.1, while around 45 % displayed 
values from − 0.5 to − 0.1 and 0.1 to 0.5. Merely 18 % (4 streets) had 
differences higher than 0.5 in absolute value. 

At the species level, more streets exhibited lower differences (lower 
than 0.1 in absolute value) regarding Inverse Simpson’s index, ac
counting for 22 % (8 streets). In contrast, only five streets exhibited 
similar normalized difference to the ground truth for Simpson’s and 
Shannon’s indices. 

4. Discussion 

This study contributes to further improve and expand the growing 
body of research on the automated taxonomic classification of urban 
trees by utilizing three different citizen science-based applications 
combined with ground-sourced GSV images. In contrast to previous 
studies, which manually selected tree images, our approach utilized the 
automatic retrieval of tree images from GSV (Bertrand et al., 2018; Bilyk 
et al., 2020; Otter et al., 2021; Xing et al., 2021) in the same vein as 
Cappechi et al. (2023), who employed an automatic model to segment 
urban tree canopies and utilized GSV images for species identification 
via species identification applications. We selected 59 ha of a repre
sentative study area in the city of Lleida (Spain) as detailed in the 
Methods section (section 2.1. Study area). This enhances the replica
bility and generalization of our findings, while also providing a 
comprehensive understanding of the urban tree biodiversity within the 
geographical context of the study area. The ensuing discussion unfolds 
across three key sections. The first section delineates the fundamental 
aspects of our approach, while the second section delves into the factors 

Table 4 
Biodiversity indices computed at the species taxonomic level at the neighborhood scale. Neighborhood 1: Joc de la Bola; Neighborhood 2: Universitat; Neighborhood 3: 
Camp de Esports.  

Neighborhood Category Shannon index Shannon equitability index Simpson’s index D Inverse Simpson index (1/D) Species richness  

Val Pred Val Pred Val Pred Val Pred Val Pred  

1 Species  2.247  2.39  0.716  0.883  0.175  0.108  5.70  9.191 23 94  
2  2.461  2.193  0.835  0.914  0.107  0.126  9.263  7.912 19 59  
3  1.982  2.470  0.608  0.838  0.236  0.119  4.229  8.362 23 95   

Table 5 
Average biodiversity indices, equitability index, and species richness on a street level and a city square, on family, genus, and species level, obtained from the 
validation database and Plant.id’s identifications. *The range of indices within all the studied streets.  

Results streets/square 
(mean) 

Category Shannon’s 
index 

Shannon’s equitability 
index 

Simpson’s index (1- 
D) 

Inverse Simpson index (1/ 
D) 

Richness  

Validation database streets Family 0.78  0.72 0.45 2.11 3.3  
(0.15–1.86)*  (0.22–1)* (0.07–0.82)* (1.07–5.66)* (1–7)*  

Genus 0.81  0.73 0.46 2.16 3.3  
(0.15–1.86)*  (0.22–1)* (0.07–0.83)* (1.07–5.79)* (1–7)*  

Species 0.83  0.73 0.47 2.22 3.4  
(0.15–1.86)*  (0.22–1)* (0.07–0.83)* (1.07–5.79)* (1–7)*  

Plant.id identifications Family 1.54  0.82 0.69 4.42 7  
(0.41–2.52)*  (0.44–1)* (0.24–0.91)* (1.32–11.3)*  

Genus 1.6  0.83 0.71 4.91 8  
(0.69–2.68)*  (0.43–1)* (0.32–0.92)* (1.46–12.9)*  

Species 1.77  0.84 0.74 5.59 8.8  
(0.69–2.98)*  (0.46–1)* (0.38–0.94)* (1.6–17.5)*  

Validation database square Family 1.598  0.821 0.727 3.662 3  
Genus 1.919  0.923 0.834 6.025 5  
Species 1.919  0.923 0.834 6.025 5  

Plant.id identifications square family 1.381  0.771 0.678 3.11 6  
genus 2.084  0.905 0.844 6.42 10  
species 2.084  0.905 0.844 6.42 9   
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influencing taxonomic classification. The final section offers an analysis 
of the practical implications in urban forest planning. 

4.1. Factors influencing taxonomic classification 

A comprehensive exploration of factors affecting taxonomic classi
fication follows. Noteworthy insights include the significance of image 
proximity, the influence of various vegetative parts on identification, 

Table 6 
Normalized difference index at the street level illustrates the difference between predicted and observed biodiversity indices in the same street when the normalized 
biodiversity indices of the validation database and Plant.id’s total identifications are compared. Lower value = lower difference in the indices; Dark grey = index <
0.05; Light grey = index 0.05–0.1; No coloring = index > 0.1. See complementary material for the specific index value.  

Normalized difference 

Street
Shannon's Index Simpson's Index Inverse Simpson's index

Family Genus Species Family Genus Species Family Genus Species

1 0,60 0,62 0,50 0,43 0,43 0,39 0,81 0,81 0,56

2 0,03 0,03 0,00 0,05 0,05 0,04 0,20 0,24 0,18

3 −0,10 −0,23 −0,24 −0,02 −0,10 −0,19 −0,01 −0,02 −0,05

4 −0,50 −0,45 −0,47 −0,73 −0,51 −0,61 −0,29 −0,25 −0,30

5 0,08 −0,05 0,00 0,19 0,12 0,12 0,06 0,04 0,02

6 0,02 −0,05 0,03 −0,01 −0,07 −0,01 −0,02 −0,03 −0,04

7 0,18 0,07 0,08 0,12 0,05 0,04 0,03 0,02 0,00

8 0,49 0,51 0,42 0,33 0,33 0,29 0,33 0,31 0,19

9 −0,24 −0,26 −0,32 −0,17 −0,19 −0,24 −0,57 −0,61 −0,74

10 0,34 0,44 0,38 0,46 0,72 0,67 0,12 0,26 0,19

11 0,33 0,33 0,34 0,34 0,36 0,35 0,49 0,46 0,41

12 0,64 0,71 0,64 0,63 0,67 0,64 0,55 0,73 0,54

13 0,42 0,36 0,45 0,31 0,29 0,31 0,28 0,23 0,22

14 0,34 0,27 0,20 0,18 0,15 0,13 0,11 0,07 0,00

15 0,31 0,20 0,29 0,38 0,32 0,32 0,11 0,09 0,08

16 −0,54 −0,30 −0,24 −0,35 −0,13 −0,05 −0,79 −0,54 −0,24

17 −0,26 −0,39 −0,32 −0,47 −0,58 −0,59 −0,15 −0,16 −0,18

18 0,00 0,19 0,05 −0,03 0,13 0,07 −0,15 0,08 −0,05

19 0,45 0,46 0,44 0,30 0,31 0,32 0,42 0,46 0,47

20 0,66 0,56 0,48 0,75 0,72 0,67 0,41 0,35 0,25

21 0,00 −0,12 −0,15 0,03 −0,03 −0,10 −0,01 −0,03 −0,08

22 0,20 0,10 0,41 0,24 0,21 0,50 0,22 0,16 0,34
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and the challenges posed by the structural complexity of urban 
environments. 

We observed that the accuracy of the taxonomic classification 
increased considerably when the images were taken at closer distances 
to the trees, particularly within a 5-meter range. This consideration 
could be incorporated in future versions, wherein the FOV and pitch 
settings are determined automatically rather than relying solely on 
predefined rules. This is attributed to the fact that close-up images better 
capture the distinctive characteristics of the tree foliage, which are 
crucial for accurate identification. It is worth mentioning that traditional 
botanical identification typically relies on studying the vegetative parts 
of the plant, such as leaves and stems (bark), for plant identification 
(Bilyk et al., 2020). However, species identification often requires the 
analysis of reproductive organs, such as flowers (Jones, 2020). 

On the other hand, Bertrand et al. (2018) discovered that including 
the bark improves the tree recognition abilities compared to only using 
the leaf. In our study, the limited accuracy in tree species detection by all 
applications can be attributed to several factors. Firstly, the tree images 
available from GSV were captured on different dates and may not always 
correspond to the spring or flowering season when flowers and leaves 
are present. Secondly, identifying flowers in the images would require a 
separate and more specialized process, with specific parameters 
adjusted accordingly. However, incorporating the bark tree segment 
could potentially enhance the identification process. Nonetheless, this 
requires adjusting the image pitch. Additionally, plant identification in 
urban environments is particularly challenging due to the numerous 
ornamental elements and diverse plant species visible in GSV images. 
This further adds to the complexity of accurately identifying and dis
tinguishing individual trees in the cityscape. 

Although all applications are citizen science-based, they exhibit 
differences in their functioning that can influence the accuracy of their 
predictions. Plant.id’s accuracy is generally regarded as high, particu
larly at the genus level, where it performs better than other plant 
identification apps. Our results showed this for all taxonomic categories 
with images taken at closest distances. Its ability to identify a wide range 
of genera and species may be due to its extensive database, which in
cludes data from the Global Biodiversity Information Facility (GBIF) 
(Plant.id, 2022). Seek, a plant and animal identification app, generally 
shows high accuracy, particularly for common and well-documented 
species. The app’s database draws from the vast collection of observa
tions contributed to iNaturalist, one of the largest citizen science plat
forms for biodiversity data (iNaturalist, 2020). Our study focused solely 
on the initial automated classification of trees without considering any 
feedback from users or experts. This approach was taken to evaluate the 
effectiveness of the automation process itself, which significantly re
duces its full potential for improvement through user-contributed 
feedback that could take from two to eighteen days (iNaturalist, 2020. 

iNaturalist, 2022). 
In contrast, the literature shows that Pl@ntNet has a dataset of 140 

million images more evenly distributed worldwide, enabling it to 
identify approximately 7,000 species in Europe (Pl@ntNet, 2022). 
However, it is documented that Pl@ntNet’s performance is influenced 
by the quality of the images and the specific organ being used for 
identification, such as flowers, bark, and leaves (Jones, 2020). In our 
study, we evaluated the predictive capacity based on all the crowns but 
without considering other items, such as flowers or bark, which may 
have contributed to lowering the overall predictive ability. 

According to our results, taxonomic identification at different levels 
was influenced by morphological characteristics. For instance, genera 
with larger crowns or distinctive colors were better identified. For 
example, Prunus sp., with a very characteristic color, was correctly 
identified by all three apps, or Ligustrum japonicum, with its well-defined 
foliage, achieved a good classification rate. This observation aligns with 
the findings of Capecchi et al. (2023), who reported that tree species 
with distinct morphological characteristics exhibit higher classification 
accuracy. However, contrary to our initial expectations and previous 

reports by Capecchi et al. (2023), Jones (2020) and Nguyen et al. 
(2018), our study found that the use of geographical location had no 
significant effect on the prediction accuracy. 

4.2. Comparison of taxonomic identification accuracy 

Our results can be categorized into two main aspects: first, the 
overall accuracy, where Plant.id achieved the highest accuracy at 42 %, 
followed by Seek at 36 %, and Pl@ntNet at 26 % when considering 
family-level identification. These accuracy values are lower than those 
reported by Capecchi et al. (2023) and Jones (2022). However, it’s 
important to note that a more appropriate interpretation of our main 
findings can be obtained by using weighted average metrics, considering 
the multi-class problem involved in individual classification. It is worth 
noting that Jones’s study (2020) focused solely on species identification, 
which was achieved with high accuracy due to the availability of flower 
and fruit images. In our study, we observed that Plant.id achieved an 
identification rate of 16 % at the species level and 38 % at the genus 
level. Secondly, when we examined the precision metrics at the family 
level (65 % for Plant.id, 59 % for Seek, and 64 % for Pl@ntNet), our 
results indicated higher precision compared to those reported by Jones 
(2020), who found performance rankings for the applications as follows: 
62 % for Plant.id, 51 % for Seek, and 42 % for Pl@ntNet. On the other 
hand, our results align with those reported by Xing et al. (2021), where 
Pl@ntNet also achieved the lowest accuracy at the species and genus 
levels. These findings underscore the potential of Plant.id for accurate 
automatic taxonomic classification. 

The biodiversity assessment using Plant.id predictions resulted in 
overestimation of richness values at the family level. The normalized 
biodiversity indices also resulted in overestimation compared to the 
ground-level values. Despite these discrepancies, the overall trend 
across all taxonomic levels provides insights into identifying levels of 
tree biodiversity in urban environments. 

4.3. Practical implications for urban planning 

Despite the inaccuracies in the species/genera/families predictions, 
these findings can serve as a foundation for strategically planning street 
trees to uphold biodiversity at a city-wide scale rather than being 
confined to specific areas. By considering the general patterns and 
trends observed, decision-makers can strategically select tree species 
and locations to promote biodiversity richness across neighborhoods 
and urban landscapes. This can contribute to creating more ecologically 
sustainable and resilient urban environments (Alvey, 2006). 

Regarding the accessibility to use the different citizen science-based 
taxonomic classification apps, when this research was conducted 
Pl@ntNet offered the most accessible option, allowing up to 500 daily 
image consultations for free, while Plant.id provided a free trial for 100 
identifications, and Seek allowed only five identifications without a 
subscription. For our study, we opted for a paid subscription in Seek and 
Plant.id, while Pl@ntNet provided us with a research license. It is crucial 
to acknowledge that restricted access to these applications may impede 
their widespread use, potentially limiting their impact on urban biodi
versity assessments. However, it is worth noting that Pl@ntNet and Seek 
data can be downloaded to create personalized models. This offers a 
significant opportunity in the realm of open data practice. Nevertheless, 
it is essential to acknowledge that this approach demands high 
computational capacity. 

In the broader context, this research underscores the potential of 
automated species identification technology together with further 
remote sensing and artificial intelligence, representing a transformative 
shift in the field of urban forest inventory. The ability of these applica
tions to streamline and enhance species identification processes, even 
with their current limitations, together with further technological 
progress in image quality and AI algorithms, holds promise for 
advancing citizen science initiatives and community-based projects. The 
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democratization of access to these tools fosters inclusivity and em
powers individuals and communities to actively participate in biodi
versity assessments, thereby contributing to the broader goals of urban 
forest conservation and management. Future work could entail refining 
image quality through the implementation of more sophisticated algo
rithms, especially those designed to query images within the Google 
platform. Additionally, exploring innovative technologies to address 
existing challenges related to coverage and access is essential. Moreover, 
considering the introduction of complementary steps, such as a pre
liminary classification based on tree morphological characteristics or 
foliage color, holds promise for enhancing accuracy and bolstering the 
effectiveness of automatic species identification applications in the 
realms of urban forestry and biodiversity. Emphasizing the importance 
of ongoing research into innovative technologies to address existing 
challenges related to coverage and access remains crucial. These ad
vancements are instrumental in ensuring the continuous evolution and 
efficacy of automated species identification applications within the 
fields of urban forestry and biodiversity research. 

5. Conclusions 

This study highlights the potential of citizen science-based applica
tions for taxonomic classification in automatically recognizing tree taxa 
and estimating biodiversity based on GSV images, particularly when the 
trees are located within 5 m from the image capture point. The accuracy 
in taxonomic classification increases significantly at the genus and 
family levels compared to the species level. However, it is not enough for 
the results to be used to create comprehensive databases of trees or to 
study the level of biodiversity in the city without a significant error 
when compared to the ground truth. Using all the suggestions obtained 
from the applications would result in a remarkable overestimation of 
tree species richness and, in turn, also of other biodiversity metrics. 
Nevertheless, the predicted taxonomic classification and related biodi
versity indices could help to identify the areas with lower or higher 
biodiversity within cities. 

Moreover, the results obtained in this study provide promising first 
steps to study tree species efficiently, and some species with high ac
curacy, from ground-level imagery and further assess biodiversity if 
traditional field-based tree inventories are not available. Future ad
vancements in automatic taxonomic classification and biodiversity as
sessments of urban forests and trees are promising. Improved image 
quality and advanced artificial intelligence algorithms will enhance the 
accuracy of tree identification and classification through the citizen 
science application as Plant.id, Pl@ntNet or Seek. Certainly, the active 
participation and observations of citizen scientists have the potential to 
significantly contribute valuable data to these efforts. As a result, this 
should promote greater accessibility to information within these appli
cations. Moreover, the integration of identification applications with 
complementary remote sensing technologies such as LiDAR or photo
grammetry has the potential to further enhance the automatic identifi
cation process. The synergy of these technologies will ultimately 
contribute to the broader goals of urban landscape observation and 
geoinformation, and a deeper understanding of the ecological signifi
cance of urban forests and trees. 
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Billé, R., Lapeyre, R., Pirard, R., 2012. Biodiversity conservation and poverty alleviation: 
a way out of the deadlock? S.a.p.i.en.s 5, 1–15. 

Bilyk, Z.I., Shapovalov, Y.B., Shapovalov, V.B., Megalinska, A.P., Andruszkiewicz, F., 
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