Standardsignatur
Titel
Recombinant hybrids retain heterozygosity at many loci : new insights into the genomics of reproductive isolation in Populus
Verfasser
D. Lindtke (*)
C.A. Buerkle
Thelma Barbará
Berthold Heinze
Stefano Castiglione
Dénes Bartha
Christian Lexer
Erscheinungsort
Oxford
Verlag
Blackwell Science Ltd.
Erscheinungsjahr
2012
Seiten
S. 5042-5058
Material
Bandaufführung
Datensatznummer
176722
Quelle
Molecular Ecology, S. 5042-5058
Abstract
The maintenance of species barriers in the face of gene flow is often thought to result from strong selection against intermediate genotypes, thereby preserving genetic differentiation. Most speciation genomic studies thus aim to identify exceptionally divergent loci between populations, but divergence will be affected by many processes other than reproductive isolation (RI) and speciation. Through genomic studies of recombinant hybrids sampled in the wild, genetic variation associated with RI can be observed in situ, because selection against incompatible genotypes will leave detectable patterns of variation in the hybrid genomes. To better understand the mechanisms directly involved in RI, we investigated three natural replicate hybrid zones between two divergent Populus species via locus-specific patterns of ancestry across recombinant hybrid genomes. As expected, genomic patterns in hybrids and their parental species were consistent with the presence of underdominant selection at several genomic regions. Surprisingly, many loci displayed greatly increased betweenspecies heterozygosity in recombinant hybrids despite striking genetic differentiation between the parental genomes, the opposite of what would be expected with selection against intermediate genotypes. Only a limited, reproducible set of genotypic combinations was present in hybrid genomes across localities. In the absence of clearly delimited hybrid habitats , our results suggest that complex epistatic interactions within genomes play an important role in advanced stages of RI between these ecologically divergent forest trees. This calls for more genomic studies that test for unusual patterns of genomic ancestry in hybridizing species.
admixture, coadapted gene complexes, epistasis, hybrid breakdown, hybrid zone, speciation